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Abstract

Architecture and Implementation of a High Frame-Rate Stereo Vision System

Jamin Islam

Master of Applied Science

Graduate Program of Electrical and Computer Engineering

Ryerson University

2008

For the purpose of autonomous satellite grasping, a high-speed, low-cost stereo vision system

is required with high accuracy. This type of system must be able to detect an object and

estimate its range. Hardware solutions are often chosen over software solutions, which tend

to be too slow for high frame-rate applications. Designs utilizing �eld programmable gate

arrays (FPGAs) provide �exibility and are cost e�ective versus solutions that provide similar

performance (i.e., Application Speci�c Integrated Circuits). This thesis presents the archi-

tecture and implementation of a high frame-rate stereo vision system based on an FPGA

platform. The system acquires stereo images, performs stereo recti�cation and generates

disparity estimates at frame-rates close to 100 fps; and on a large-enough FPGA, it can pro-

cess 200 fps. The implementation presents novelties in performance and in the choice of the

algorithm implemented. It achieves superior performance to existing systems that estimate

scene depth. Furthermore, it demonstrates equivalent accuracy to software implementations

of the dynamic programming maximum likelihood stereo correspondence algorithm.
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Chapter 1

Introduction

Computer vision is an important technology for autonomous space robotics. Consider the

following scenarios: 1) When satellites are in orbit they face the risk of colliding with debris

that can cause structural damage. It is often more economical to repair the damages that

occur from these types of events, rather than to deploy brand new equipment into orbit. New

emerging research allows developers to design modules that can be added to the satellites

to collect more meaningful information. However, in order to perform repairs or upgrades,

the satellite, much like a car being serviced on a hoist, must be linked to a base station.

Due to the relative lack of humans in outer space, the satellites are required to have the

base stations rendezvous and dock autonomously to them. 2) When satellites are launched

in space, they are supplied with enough fuel to keep them in orbit for a number of years

before the reserve depletes. When the fuel reserve does deplete, the satellites begin to move

into the atmosphere where they being to corrode and become debris. This situation can be

avoided, while increasing the lifetime of the device by a routine refueling process. Similar to

the �rst scenario, the satellites are required to have the base stations, containing the fuel,

rendezvous and dock autonomously to them. 3) While satellites are in orbit, preventative

maintenance steps can be taken to ensure that the device does not fail (e.g., replacing the

gyroscope, thrusters, etc.). Much like the �rst and second scenario, the satellite and base

1



station required docking.

Each of the scenarios described above requires using a three-dimensional (3-D) computer

vision system. The stereo vision system is needed to detect a target satellite from a distance,

and in an arbitrary orientation, to guide the service module to the docking port of the

satellite.

1.1 Motivation

This thesis represents part of a project, known as FastTrack, to develop a stereo vision sys-

tem to track and follow moving objects (e.g., satellites) at fast speeds, equivalent to 200

frames per second (fps). The deployment of this system is targeted for space applications,

but many other applications exist. This 3-D computer vision system requires having high

frame-rate image capturing to measure the motion of the satellite in very small increments,

while preventing motion blur, which often occurs on frame-rate (i.e., 30 fps) capturing sys-

tems when objects are moving at high-speeds. As an example, light detection and ranging

(LiDAR) technology is currently used on the Canadarm2 to guide and control spacecraft

docking. This technology works well for objects in long ranges, however its accuracy is poor

for shorter ranges (between zero to �ve metres). The system proposed in this thesis can be

used to resolve the accuracy problem for short ranges.

1.2 Objectives

This project has been divided among three research groups, where each group is respon-

sible for designing a portion of the system. The research team from Ryerson University

is responsible for the design and development of the high frame-rate stereo vision camera,

while research teams from the University of Toronto and Queen's University are responsible

for the hardware implementations of stereo correspondence and object tracking algorithms,

respectively. Each portion of the system is to be designed, tested and veri�ed on a �eld pro-

2



grammable gate array (FPGA). These FPGAs contain arrays of recon�gurable logic blocks

that allow for rapid hardware prototyping at relatively low costs. Other methods, such as ap-

plication speci�c integrated circuits (ASICs), often perform better and consume less power,

but are compromised by large costs and lengthy design periods. The complete system is to

be implemented on one FPGA-based platform. This requires interfacing and integrating the

stereo camera and the hardware algorithms to the processing platform.

One objective of this thesis is to develop the architecture of a high frame-rate stereo image

recti�cation module, which places corresponding points (features) on the same scanline in

both images. Another objective of this work is to combine the individual portions of the

system together, to form the high frame-rate stereo vision system.

1.3 Contributions

In this work, we develop a 3-D vision system that achieves benchmarks that no other state-

of-the-art frame-rate vision system accomplishes. This system presents novelty in its perfor-

mance, as it achieves superior frame-rates (>100 fps) to existing systems that perform stereo

matching in an attempt to estimate depth in the scene. Furthermore, the system is also novel

in its quality as compared to other frame-rate systems, as the stereo correspondence algo-

rithm used is globally optimal over a scanline [1], while existing frame-rate implementations

use local algorithms. The best stereo matching results are obtained using graph cuts algo-

rithms [2], however, they are extremely di�cult, if not impossible, to implement e�ciently

on FPGAs. For example, a graph-cuts algorithm could be designed using a soft-processor on

an FPGA, however, its likely that it wouldn't even approach frame-rate performances. The

contributions made to this project, which are discussed in later stages of this thesis, include:

• the on-chip design of a high frame-rate stereo image recti�cation module,

• interfacing the video-acquisition system with the stereo image recti�cation module,

• assisting in hardware modi�cations to the stereo extraction module,

3



• developing the interface between the stereo image recti�cation module and the stereo

extraction module,

• the integration of the stereo vision system on the FPGA-based platform and analysis

of results.

1.4 Thesis Organization

This document begins in Chapter 2 with an introduction to the human vision system, camera

systems, FPGAs and a review of recent literature. Following this, Chapter 3 explores the

hardware architecture and implementation of our state-of-the-art stereo vision system. The

chapter describes a high-speed implementation of a stereo image recti�cation module. It

also overviews the video-acquisition system and our processing platform. Furthermore, the

chapter describes the integration of the system with an FPGA implementation of a dynamic

programming maximum likelihood (DPML) stereo matching algorithm developed by Sabi-

huddin et al. [3]. In Chapter 4, the results obtained from the hardware implementations are

evaluated. Chapter 5 concludes with possible directions for future work associated with this

project.

4



Chapter 2

Theory and Related Works

2.1 Introduction

This chapter contains background information for many of the concepts and ideas discussed

in later chapters of this thesis. Section 2.2 explores how the brain and eyes interact to form

the human vision system. Sections 2.3 and 2.4 introduce a background on camera modeling

and stereo vision systems, which are used to model the human vision system. Section 2.5

brie�y discusses FPGAs and VHDL. Section 2.6 presents a literature review of previous

hardware implementations of image recti�cation, stereo correspondence and stereo vision

systems. Finally, Section 2.7 summarizes the chapter's contents.

2.2 The Human Vision System

This section is included in this thesis as an attempt to explain the contents in the rest of

the chapter in a more meaningful way. The study of the human vision system gives us an

idea of how images of the scene are captured by the eye and processed by the brain. This

knowledge will allow us to use machines to implement similar functionalities. Furthermore,

knowledge of how the human vision system uses the scene information to estimate depth will

give us an idea of how to implement this type of functionality with a machine. This study
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also gives us an idea of the complexity of performing this sort of information.

The human vision system is composed of interconnections between the brain and the

eyes. The human brain is a very complex organ in nature, as humans have the ability to see,

breathe, cough, sneeze, vomit, mate, swallow, urinate and think. We can also do arithmetic,

speak, write, sing and compose poems. We even have the ability to play sports and play

musical instruments. The brain contains approximately 1012 cells, which is an astronomical

number compared to any other organ in the body. Better evidence of the brain's complexity

is seen by the number of interconnections it possesses. A typical nerve cell in the brain

receives information from hundreds or thousands of other nerve cells and in turn transmits

information to hundreds or thousands of other cells. The total number of interconnections

in the brain should therefore be somewhere around 1014 to 1015 [4]. A limited amount of the

brain's functionality is understood, however a good understanding about the machinery of

the visual system and how the brain interprets this information exists.

Figure 2.1: The human eye [5]

The design of our eyes allows us to have high resolution vision, as a result of the 125

million receptors in the retina. The light focuses onto these receptors, which are known as

rods and cones. These receptors are nerve cells specialized to emit electrical signals when

photons hit them. The task of the rest of the retina and the brain is to properly make sense

of these signals and to extract information that is useful to us. An illustration of the human

eye is shown in Figure 2.1. The function of the non-retinal parts of the eye is to keep a clear,
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focused image of the outside world stabilized on the two retinas. The cornea and the lens

together form the equivalent of the camera lens. Two-thirds of the eyes' focusing power is

supplied at the air-cornea interface, while the remaining one-third is supplied by the lens.

The main job of the lens is to make adjustments and focus on objects at various distances.

For cameras, the focus is achieved by changing the distance between the lens and the �lm.

We focus our eyes, not by changing the distance between the lens and the retina, but by

changing the shape of the lens using cilliary muscles. The iris muscle changes the diameter

of the pupil in the eye, thus it adjusts the amount of light allowed in. The blinking of the

eyelids and the lubrication from the tear glands serves as a self-cleaning mechanism for the

front cornea.

Figure 2.2: The visual pathway

The region of the brain which deals with the visual system is known as the primary visual

cortex, or striate cortex. This part is perhaps the best understood part of the brain today, as

it is known what each of its nerves are doing at most times in a person's everyday life, and

what each nerve contributes to the analysis of the visual information. The primary visual

cortex is a serially connected system of neurons. This visual pathway is shown in Figure 2.2.

The retina of each eye consists of a plate having three layers of cells, one of which contains

the light-sensitive receptor cells. The two retinae send their output to two peanut-sized nests

of cells deep within the brain known as the lateral geniculate body. These structures in turn
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send their �bres to the striate cortex. After being passed from layer to layer through several

sets of synaptically connected cells, the information is sent to several neighbouring higher

visual areas; each of these sends its output to several yet-higher cortical areas.

Stereopsis is a strategy used for judging the depth by comparing the images on our two

retinas. The images cast on our retinas are two-dimensional, however we look out onto a

three-dimensional world. Having a sense of how far away things are from us is important for

many of the things we do in our everyday lives. We judge depth in many ways. One way is

when we roughly know the size of something, such as a person, tree or cat, we can judge its

distance from its apparent size in the image. Another way is if one object is partly in front

of another and blocks its view, we judge the front object as closer. A powerful indicator of

depth (known as perspective) occurs when the image of parallel lines, like railroad tracks,

draw together as they go o� into the distance. Stereopsis is perhaps the most important

mechanism for assessing depth and is dependent on the use of the two eyes together. In any

scene with depth our eyes receive two slightly di�erent images. The brain compares them

and estimates relative depths with great accuracy.

The term disparity is the computed di�erence in retinal position between corresponding

points. When we stare at an object it is imaged on the fovea of each eye, which is responsible

for high resolution vision. Scene points which are imaged on the same point of both retinae

(i.e., foveae) are said to have zero disparity. Closer and more distant objects are imaged on

di�erent parts of each retina and are said to have retinal disparity. The retinal disparity can

be either positive or negative. Positive disparity means that a scene point images further to

the right in the right image than it does in the left image. Negative disparity means that

a scene point images further to the left in the left images than it does in the right image.

Objects further away from the �xated scene point are said to have a positive disparity, while

closer objects are said to have a negative disparity.Figure 2.3 illustrates the relative position

of given scene points on the retinae. It can be noticed at point Pa, the relative position

on the retinae are equal and this represents zero disparity (PR
a − PL

a = 0). The relative
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position on the retinae of point Pb are less than zero and this represents a negative disparity

(PR
b − PL

b < 0). Furthermore, point Pb is comparatively closer than point Pa. Finally, when

we look at point Pc, we notice that it is further away than

Figure 2.3: The relative position of given scene points on the retinae

point Pa and accordingly has a positive disparity. The relative position of the point Pc on

the retinae is greater than zero (PR
c − PL

c > 0). If we extract this information about retinal

disparity we then have valuable information about depth relative to where we are looking.

Things with a negative disparity are closer and those with positive disparities are further

away. Furthermore, the greater the disparity, the closer or further away the object will be

[6].

The physiology of stereopsis uses the information presented about retinal disparity as

a major cue to depth. We should therefore expect to �nd cells within the brain that are

sensitive to retinal disparity. The �rst place where information from both eyes come together

is in the striate cortex and it has been shown that many of these cells are sensitive to retinal

disparity of the images in the two eyes [4]. Figure A.1 (see Appendix A) shows the �ring rates
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of four cells as a function of the retinal disparity. The �rst column in this �gure represents

the position of two objects and de�nes the disparity of the test area. We can see that the

cell illustrated in the second column responded vigorously to small disparities (particularly,

slightly negative ones) but not to large disparities. These types of cells are known as tuned

excitatory. Other cells �re only to large disparities and are termed tuned inhibitory, as seen

in the third column in the illustration. Some cells �red most when the test stimulus was

further away from the �xation point (i.e., positive disparity) and this type of response is

shown in the fourth column and is termed a far cell. There are similar cells which respond

well to negative disparities, shown in the last column and are termed near cells. Please refer

to the work published by Hubel in [4] for more information about the visual interaction of

the brain and the eyes.

2.3 Camera Modeling

In computer vision systems we must rely on cameras to capture images of the scene at hand

and thus must understand the image formation process. Section 2.3.1 discusses the geom-

etry of a single-view pinhole camera model. Section 2.3.2 describes a calibration algorithm

which is used for obtaining the camera parameters mentioned in Section 2.3.1. Section 2.3.3

describes using the Camera Calibration Toolbox for Matlab which is a common tool used

for obtaining the camera parameters. Section 2.3.4 discusses a stereo camera model, which

is important for solving the problem of stereo correspondence (see Section 2.4.2). Finally,

Section 2.3.5 discusses a special case of the Camera Calibration Toolbox for Matlab which

deals with stereo calibration.

2.3.1 The Camera Model: Single-view Geometry

Modeling cameras is commonly done using the pinhole camera model. The pinhole camera

requires no lens, but uses instead a very small aperture. Such cameras require excessively long
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exposure times in reality, but provide a good model for perspective projection. Perspective

projection is the process of transforming the three-dimensional visual information received

by the camera into a two-dimensional (2-D) image. Figure 2.4a shows an illustration of the

pinhole camera model. From this, it can be seen that rays of light pass through a lens and

intersect with an image plane. The image plane is usually a light sensitive �lm, or more

recently, digital image sensors. It is common to model the image plane as being in front of

the lens for mathematical convenience, as shown in Figure 2.4b.

(a) A pinhole camera model (b) A modi�ed pinhole camera
model

Figure 2.4: The pinhole camera model

In Figure 2.4, f represents the focal length of the camera lens, while D represents the

distance of the object. The focal length and distance measurements are typically relative to

the camera centre, C. The optic axis of the lens assembly is perpendicular to the image plane

and passes through the camera centre. The image is then projected on to the image plane.

It should be noted that the image plane is described in reference to the 2-D image coordinate

system. The point of intersection of the optic axis with the image plane is called the principle

point or image centre. The perspective transformation of a 3-D point, P = (X, Y, Z)T , on

to a 2-D image, p = (x, y)T is given by Equation 2.1.

− f
Z

=
x

X
=

y

Y
(2.1)

This equation can be re-written as a set of equations in homogeneous coordinates (with

p =
[
pT |1

]T
and P̄ =

[
P T |1

]T
) as shown in Equation 2.2. It should also be noted that
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λ = 1/Z in Equation 2.2.

p =


x

y

1

 = λ


−f 0 0

0 −f 0

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0





X

Y

Z

1


= λK [I3|0]P (2.2)

The pinhole camera model gives us a good starting point, however it deviates from real

camera systems. The pinhole camera model assumes that the optic axis and the image

plane are perfectly perpendicular in the alignment of the lens assembly. However, in reality

the alignment of the lens can never be exact and the lack of perpendicularity causes skew

distortions [7]. Other examples of distortions appearing from the lens assembly are scale,

radial and tangential distortions. Assuming that there is no radial or tangential distortions,

the pinhole camera model maps lines to lines, but does not preserve lengths, ratios or angles.

The distortions that may appear due to the lens assembly can be corrected for by using

parameters that modify Equation 2.2. These parameters are modeled in Equation 2.3 and

are known as the intrinsic parameters of the camera. The matrix K, forms what is known

as the camera calibration matrix. This includes the skew parameter, s, camera principal

point (xo, yo) and scaling factors kx and ky (in millimeters). The radial distortion, L(r̄),

presented by the lens assembly, is a non-linear function of the radius, r, where r is relative

to the principal point. The parameters of this distortion model are considered part of the

intrinsic parameters. The tangential distortion component is omitted from the model as it

is typically not a signi�cant contributor to distortion in the resulting image.

p =


x

y

1

 = λL(r)K [I3|0]P = λL(r)


kxf s xo

0 kyf yo

0 0 1

 [I3|0]P (2.3)

The 3-D point coordinates, P = (X, Y, Z)T , are de�ned in terms of a camera centric-
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coordinate system. It is possible to transform the camera centric-coordinate system to

some world coordinate system, P̃ = (X̃, Ỹ , Z̃)T , by knowing the extrinsic parameters of

the camera. The extrinsic parameters include a rotation, R, and a translation,
−→
T . These

allow one to perform an Euclidean transformation to align the two coordinate systems by

forming the relationship seen in Equation 2.4. The extrinsic parameters are de�ned by the

matrix τ . The combination of the intrinsic and extrinsic parameters into a projection matrix,

Pr, is shown in Equation 2.5.

P =



X

Y

Z

1


=

 R
−→
T

0T 1




X̃

Ỹ

Z̃

1


= τ

 P̃

1

 (2.4)

p = λL(r)K [I3|0] τ

 P̃

1

 = Pr

 P̃

1

 (2.5)

A good reference for more in-depth theory associated with camera modeling and single-view

geometry can be found in work by Harley and Zisserman in [8].

2.3.2 Camera Calibration

Camera calibration is the process of estimating the camera parameters of Equations 2.3 and

2.4 through simultaneous measurement of corresponding coordinate pairs
{
p̄i, P̃i

}N
i=1

. In

order to estimate the coordinates P̃i of 3-D scene points, camera calibration methods rely

on one or more images of a calibration pattern. The calibration pattern is a 3-D object

of known geometry, possibly located in a known position in space and generating images

features that can be located accurately. A common calibration pattern is a checkerboard.

The use of camera calibration procedures opens up the possibility of using a wide range of

existing algorithms for 3-D reconstruction and recognition, all relying on the knowledge of
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the camera parameters. One method we can use to retrieve the camera parameters is by

estimating the projection matrix (see Section 2.3.1), Pr, without solving explicitly for the

intrinsic and extrinsic parameters, assuming that L(r) = 1. This calibration method consists

of two sequential stages:

1. estimate the projection matrix linking the world and image coordinates

2. compute the camera parameters as closed-form functions of the entries of the projection
matrix

Work by Hartley and Zisserman in [8], recommend "renormalizing" the observed data of both

P̃i and p̄i. For points in the world coordinate system, they recommend creating a matrix, U ,

such that for P̈i = UP̃i, then
1
N

∑
i P̈i = [0, 0, 0, 1]T and

√
1
N

∑
i(P̈

2
i1 + P̈ 2

i2 + P̈ 2
i3) = 1/

√
2.

Similarly, for points in the camera coordinate system, they recommend creating a matrix,

W , such that for p̈i = Wp̄i, then
1
N

∑
i p̈i = [0, 0, 1]T and

√
1
N

∑
i(p̈

2
i1 + p̈2

i2) = 1/
√

2. As seen

in Equation 2.5, the matrix Pr is de�ned up to an arbitrary scale factor and therefore has

only 11 independent entries, which can be determined through a homogeneous linear system

formed by writing Equations 2.6 and 2.7 for at least 6 world-image point matches.

p̄1 =
p̃r11P̃1 + p̃r12P̃2 + p̃r13P̃3 + p̃r14

p̃r31P̃1 + p̃r32P̃2 + p̃r33P̃3 + p̃r34

(2.6)

However, by using the calibration patterns, many more correspondences and equations can

be obtained. This allows estimating using least-squares techniques.

p̄2 =
p̆r21P̃1 + p̆r22P̃2 + p̆r23P̃3 + p̆r24

p̆r31P̃1 + p̆r32P̃2 + p̆r33P̃3 + p̆r34

(2.7)

If we assume that we are givenN matches for the homogeneous linear system we have Ap̆r = 0

(see Equations 2.8 and 2.9), where p̆r is the normalized vector of the projection matrix Pr.

Since A has rank 11, the vector p̆r can be recovered from singular value decomposition (SVD)

techniques as the column of V corresponding to the zero (in practice the smallest) singular
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value of A, with A = UDV T . It is required to de-normalize the subsequent matrix to get

Pr = W−1P̆rU .

A =



X1 Y1 Z1 1 0 0 0 0 −x1X1 −x1Y1 −x1Z1 −x1

0 0 0 0 X1 Y1 Z1 1 −y1X1 −y1Y1 −y1Z1 −y1

X2 Y2 Z2 1 0 0 0 0 −x2X2 −x2Y2 −x2Z2 −x2

0 0 0 0 X2 Y2 Z2 1 −y2X2 −y2Y2 −y2Z2 −y2

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

XN YN ZN 1 0 0 0 0 −xNXN −xNYN −xNZN −xN

0 0 0 0 XN YN ZN 1 −yNXN −yNYN −yNZN −yN



(2.8)

p̆r =

[
p̆r11, p̆r12, . . . , p̆r33, p̆r34

]T
(2.9)

With the projection matrix, Pr, recovered we can use an "RQ" decomposition on the �rst

three columns of Pr to compute the camera parameters, K. Here "R" is an

upper-triangular matrix, representing the intrinsic parameters. It should be noted that to

get proper scaling, the �rst two rows will have to be divided by K33. The "Q" matrix is an

orthogonal matrix and represents the rotation, R .

This matrix is guaranteed to be orthogonal (within the limits of numerical precision)

due to the properties of the "RQ" decomposition. Once the rotation, R, and the intrinsic

parameters are known, we can easily recover the translation,
−→
T . When L(r) 6= 1, a further

step involving non-linear optimization is required to re�ne parameter estimates. For fur-

ther details on performing the SVD and "RQ" decomposition, please refer to [9] and [10],

respectively.

2.3.3 The Camera Calibration Toolbox

We utilize the Camera Calibration Toolbox for Matlab, developed by Jean-Yves Bouguet of

the California Institute of Technology [11]. The toolbox provides the user with a simple yet
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powerful approach for tackling the camera calibration algorithm seen in Section 2.3.2. The

only requirements needed for this process is that a set of calibration images are captured

from the camera system. The toolbox returns the intrinsic and extrinsic parameters of the

camera system to the user. The main calibration procedure is for extracting the intrinsic

parameters. The design of the toolbox does not only allow the extraction of data for just

one camera, it also allows calibration of binocular stereo systems. Furthermore, the toolbox

allows using its calibration engine on calibration data that was previously produced using

other tools. The calibration data sets include: Zhengyou Zhang [12], Heikkila [13], Bakstein

and Halir [14]. The extraction of the intrinsic and extrinsic parameters is an o�ine process

and is explained in Sections 2.3.3.1 and 2.3.3.2.

2.3.3.1 Intrinsic Parameters

In order for the Camera Calibration Toolbox to extract the intrinsic parameters of the

camera system, a set of calibration images are required. The computer vision community

generally uses a standard checkerboard pattern for the calibration images. An example of

the checkerboard pattern used is shown in Figure 2.5. Generally, a set of 10-15 calibration

images are required to extract accurate values.

Figure 2.5: Camera calibration checkerboard images

The process in Matlab begins by running the Matlab script calib_gui.m. This opens up

a window which allows selecting the mode of operation. The two modes consist of Standard

and Memory e�cient. The Memory e�cient mode is useful on older computers where CPU
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resources are often low. Here, the calibration images are loaded one by one, rather than

loading the full set. Regardless of which mode is chosen, a new window will appear with

all the calibration options. The di�erent options for calibration include Load, Save, Read

images, Extract grid corners, Calibration, and Comp. Extrinsic, among others as seen in

Figure 2.6.

Figure 2.6: Camera calibration user interface

Loading the calibration images for processing purposes is achieved by selecting the Read

images option. Once the set of images are known to the toolbox they can be used for

determining the coe�cients needed for solving the equations presented in Section 2.3.2.

Solving these equations is simpli�ed by using the Extract grid corners option. This allows

the user to manually select the four outer corners of the checkerboard, enter the number

of rectangles in the x and y directions, followed by the height and width of each rectangle

in millimetres. An illustration of this is shown in Figure A.2 (see Appendix A), where

O, represents the origin and {X, Y}, represent the directions of the rectangle. With this

information provided, a Matlab routine automatically estimates and shows the locations of

corners on the checkerboard as seen in Figure A.3 (see Appendix A), where O, represents the

origin and {dX, dY}, represent the size of the sides of each rectangle. Some images may be

e�ected by lens distortion produced by the camera, there is an option for entering a distortion

coe�cient to improve the corner extraction accuracy. These steps must be repeated for each

image in the set.

The completion of the corner extraction procedure allows us to begin the main calibra-

tion step, this is started by selecting the Calibration option from the GUI. Calibration is

done in two steps, these steps include initialization and optimization. The initialization
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step computes a sub-optimal linear closed-form solution (as described in Section 2.3.2) for

the calibration parameters. This is followed by an optimization step which minimizes the

total reprojection error over all calibration parameters by iterative gradient descent with an

explicit (closed-form) computation of the Jacobian matrix [11].

2.3.3.2 Extrinsic Parameters

In order for the Camera Calibration Toolbox to extract the extrinsic parameters of the camera

system, one new calibration image that was not used in the main calibration procedure (of

Section 2.3.3.1) is needed to provide a world coordinate system origin.

The process for extracting these values is quite similar to the main calibration procedure.

To begin this procedure, the Comp. Extrinsic option must be chosen from the GUI. Then,

the four extreme corners are selected by the user on the calibration image. This is then

followed by entering the number of rectangles in the x and y directions. The height and

width of each rectangle are also entered for an accurate estimate of the corners in the image.

The toolbox then returns the computed values for the rotation and translation. In order to

further utilize this information along with the intrinsic parameters, they must be saved by

selecting the Save option found on the GUI. The �le will be named < Calib_Results.mat >.

2.3.4 The Stereo Camera Model: Two-view Geometry

A two-camera view of the scene presented can reduce the depth estimation to a problem of

triangulation. Triangulation relies on the fact that most points in each of the two images can

be identi�ed as representing the same 3-D position. Figure 2.7a presents a binocular stereo

vision camera model. Each camera is represented by the pinhole camera model. The points e1

and e2 are the epipoles of the camera model and are given by the intersection of the baseline

with the image planes of each camera. The baseline, B, is the distance of separation between

the principle points of the two camera (i.e., B = |c1 − c2|) . A scene point, P = (X, Y, Z)T ,

is projected onto each camera at points p1 = (x1, y1)
T and p2 = (x2, y2)

T such that they lie
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on epipolar lines de�ned by (e1, p1) and (e2, p2), respectively. The plane represented by these

two lines is known as the epipolar plane, π. The epipolar plane contains the scene point and

the corresponding centres of the two cameras. Given a point in one image, the epipolar line

in the other image contains the matching (corresponding) point.

Being able to match point correspondences can allow us to determine the depth, Z, of a

point in the scene, given two di�erent views. The problem of stereo correspondence can be

reduced to a one-dimensional (1-D) search once the epipolar lines are known. If we know

the principle points of the two cameras (c1 and c2) and the orientation of the image planes

(p1 and p2), then knowing the location of the image of a scene point in one image completely

speci�es the entire epipolar line (along with the matching scene point) in the other image.

This can be easily seen from Figure 2.7.

(a) Generalized Stereo Setup (b) Recti�ed Stereo Setup

Figure 2.7: A binocular (two-view) stereo camera model

2.3.5 Stereo Calibration

A special case of the Camera Calibration Toolbox for Matlab, discussed in Section 2.3.3,

can be used to perform stereo calibration. Two-camera stereo calibration requires obtaining

the left and right camera parameters. Once the camera parameters are obtained, the saved

�les should be re-named to Calib_Results_left .mat and Calib_Results_right .mat for each

19



associated view. Following this step, the stereo calibration process begins by running the

Matlab script �le stereo_gui.m. The Stereo Calibration user interface is shown in Figure 2.8.

Performing stereo calibration is straight forward. Once the camera parameters are loaded, an

Figure 2.8: Stereo calibration user interface

initial calibration is executed which gives a rough estimation of the stereo rig. A better, more

accurate estimation of the stereo rig can be found by selecting the Run stereo calibration

option on the GUI. This performs a global stereo optimization procedure which recomputes

the intrinsic and extrinsic parameters for the cameras. The stereo calibration results can be

saved by choosing the Save option. The �le will be named < Calib_Results_stereo.mat >.

2.4 Stereo Vision System

Having knowledge of the camera models, this section looks further into using computer vision

approaches to interpreting the captured information. Section 2.4.1 introduces stereo image

recti�cation, which is used to place points and features of two di�erent images of the same

scene on corresponding scanlines. This is done in an attempt to extract depth information

from the scene in a less complex manner. Section 2.4.2 introduces stereo correspondence

and a dynamic programming solution which allows machines to perform stereopsis much like

we do. A brief literature review is found in Section 2.6, which discusses previous hardware

implementations of image recti�cation, stereo correspondence and stereo vision systems.
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2.4.1 Stereo Image Recti�cation

In stereo camera geometry, matching points are constrained to lie on epipolar lines in both

the left and right image. The main goal of stereo image recti�cation is to transform the

stereo images into a camera geometry where the optic axes are parallel, so that the images

of corresponding 3-D scene points will lie on the same scanline in both images, as illustrated

in Figure 2.7b. Misalignments in the assembly of the stereo camera image sensors may

cause slight rotations and translations between the image pairs. This may result in features

that appear in both images being placed on di�erent scanlines in the two images. The

importance of performing stereo image recti�cation is to help reduce the complexity of stereo

correspondence problem. Typically, images that are un-recti�ed require searching along a

non-horizontal epipolar line, which is complex. The complexity arises as di�erent epipolar

lines would be needed for every point and due to image resampling, among other things.

However, after performing stereo image recti�cation, the problem of matching corresponding

points is reduced to a 1-D search.

2.4.1.1 Algorithm

Assuming that the stereo camera has been calibrated and the stereo parameters are known,

two homography matrices can be de�ned in order to transform the original images. The

transformation rotates the (virtual) image planes about their optical centres and re-projects

the scene on to them. This makes the epipolar lines of the image planes collinear and

horizontal. Equivalently, this means that the epipoles (e1 and e2) are at in�nity. The

following steps from [7] describe how the rotation matrix, Rrect, can be computed assuming

we know the relative translation (baseline),
−→
T = c1c2, and rotation, R, of the right camera

with respect to the left camera.

1. Choose: −→e1 =

−→
T∥∥∥−→T ∥∥∥ to make the epipole of the left camera perpendicular to the optic

axis
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2. Choose: −→e2 = −→e1 × ẑ =
[−Ty, Tx, 0]T√

T 2
x + T 2

y

to make −→e2 perpendicular to both −→e1 and the

optic axis (ẑ)

3. Cross-product: −→e3 = −→e1 ×−→e2

4. Create the rotation matrix: Rrect =


−→
eT1
−→
eT2
−→
eT3


It should be noted that −→e1 and −→e2 are not the epipoles. The images are resampled via

a homography, H, which is also known as a projective collineation. A homography is a

3 × 3 non-singular matrix, and can be used to transform an image I to create an image

I ′ (H : I → I ′). Remapping the points in the left image is achieved by setting the left

homography HL = Rrect. In a similar manner, the points in the right image are remapped

by setting the right homography HR = RrectR
T . Each image location, −→xL and −→xR, in each of

the left and right image is mapped to −→xL′ = HL
−→xL and −→xR′ = HR

−→xR. A problem here exists

since −→xL′ and −→xR′ may not be integral pixel locations. Thus we perform an inverse map for

each (integral) image location −→xL′ and −→xR′, we compute −→xL = H−1
L
−→xL′ and −→xR = H−1

R
−→xR′.

The image data must be �normalized� if the assumption of xo = yo = 0 is untrue. This

requires H−1
L = KLH

−1
L K

−1

L and H−1
R = KRH

−1
R K

−1

R . The intrinsic parameter of each view

is represented by matrix K (see Section 2.3.1). It will typically be the case that −→xL or −→xR

will not represent an integral image location. We can however, use the exact value of −→xL

or −→xR to interpolate the intensity values of neighbouring pixel locations. This is achieved

using various interpolation methods; we chose bilinear interpolation as it provides a simple

yet accurate estimate of pixel intensities.

2.4.2 The Depth Estimation Problem: Stereo Correspondence

In Figure 2.7b, the values of d1 and d2 allow the computation of the disparity, d = d1 − d2.

The disparity of corresponding pixels is the displacement of the images of a scene point with

22



respect to each other, measured relative to the principal points. The process of recti�cation

allows this to be possible because the principal points of the two images are aligned to

the same image coordinates. The depth, D, of a 3-D world point that corresponds to the

matched feature pair can be computed using Equation 2.10, where f = f1 = f2 (assumption

of recti�cation) represents the focal length of the two cameras, while d, B and α represent

the disparity, baseline length and scale factor (pixel/mm), respectively. Often, the scale

factor is set to 1 (i.e., α = 1) if the focal length is measured in pixels. It can be noticed that

the depth is inversely proportional to disparity, up to some scale factor.

D =
fαB

d
(2.10)

A technique used for identifying corresponding points in each of the two images from a

stereo camera system is known as stereo matching. As mentioned earlier, having knowledge

of point correspondences provides a means to perform triangulation. Methods used for

identifying matches among pairs of points across images include similarity metrics, cost

functions or even likelihood functions, to name a few. The computer vision community

has studied the stereo correspondence problem extensively and many algorithms exist for

determining matching points. Such algorithms are grouped into two classes: sparse and

dense. Sparse methods use feature-based matching techniques, such as corners or scale-

invariant feature transform (SIFT), to identify matching points in each view of the stereo

image. The disparity estimates for the matching points are used to generate sparse disparity

maps. The dense method uses matching techniques which are pixel-based rather than feature-

based, so the disparity values are estimated for all pixels. Matching based on a correlation

window computes a correlation score between windows centred at a particular pixel (feature)

in each of the two images of the stereo pair. For a given pixel (feature) in one image, the

window slides over nearby coordinates in the other image to produce other correlation scores.

The best scoring pixel (feature) pairs are deemed as being matched and a corresponding

disparity estimate is computed from the relative shift of the windows. Figure 2.9 shows
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a �ow chart of sparse and dense disparity estimation methods. Equations 2.11, 2.12 and

2.13, de�ne three commonly used cost functions that can be used for locally matching pixels

or features. The Sum of Squared Di�erence (SSD) and Sum of Absolute Di�erence (SAD)

functions are shown in Equations 2.11 and 2.12, where w1 and w2 are the windows containing

pixels (features) p1 and p2 of camera 1 and 2, respectively. The Normalized Cross-Correlation

(NCC) based function is shown in Equation 2.13. This function takes into account image

statistics within a window which include the mean (µw1 , µw2) and standard deviation (σw1 ,

σw2).

CSSD =
∑

∀p1,2εw1,2

[I (p1)− I (p2)]
2 (2.11)

CSAD =
∑

∀p1,2εw1,2

|I (p1)− I (p2)| (2.12)

CNCC =
∑

∀p1,2εw1,2

[I (p1)− µw1 ] [I (p2)− µw2 ]

σw1σw2

(2.13)

Figure 2.9: Flow chart of sparse and dense disparity estimations

2.4.2.1 Stereo Issues

A number of issues arise when performing stereo matching. The �rst issue deals with oc-

clusions. Occluded pixels (features) are visible in the view of one camera, but not in the
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other. During local stereo matching occlusions can result in an attempt to assign a depth

estimate to a pixel (feature) that has no corresponding point for triangulation. The stereo

correspondence algorithm used in this thesis was designed to take occlusions into account

by including a penalty term in the cost function. Not all algorithms do this.

The second issue occurs as a result of thin objects. Typically the relative ordering

of neighbouring scene points is assumed to be preserved in the two images. This is an

assumption which is often made for stereo matching. However, an exception can be made for

objects known as thin occluders. Thin occluders violate the ordering assumption mentioned

previously. A good example to verify this is to consider a particular scene point which

generates corresponding images points p1 and p2, in cameras 1 and 2, as a result of perspective

projection. Suppose that a narrow object, such as a pencil, is positioned near the stereo

camera at a central location. The image of the pencil in camera 1 might generate an image

point, ṕ1, to the left of p1 while generating an image point, ṕ2, to the right of p2 in camera

2. It can be noticed here that the ordering assumption fails, as ṕ2 does not appear before p2

in camera 2.

Aside from the issues concerning occlusions and thin objects, some other issues e�ect the

detection of pixels (features). These issues include di�erences in magni�cation between the

two images, regions of low texture and changes in illumination across the cameras. It should

be mentioned that magni�cation changes violate uniqueness.

2.4.2.2 Dynamic Programming Maximum Likelihood Stereo Algorithm

The stereo matching process imposes the epipolar line constraint as discussed earlier. An-

other constraint made for the search process is to assume that all objects in the scene are

thick, allowing us to assume the ordering constraint. An additional set of constraints include

the uniqueness constraint and disparity range constraint. The ordering constraint says that

the order of neighbouring correspondences on a particular epipolar line is always preserved.

The uniqueness constraint requires that each pixel in one image only maps to at most one
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pixel in the other image. Lack of a match can be used to determine occlusions. Finally,

the disparity range constraint indicates that corresponding pixels in one image can be found

within some limited distance in the other image. This range limit can be predicted from

camera and scene geometry.

An illustration of the ordering and uniqueness constraints is shown in Figure 2.10. This

graphical description demonstrates that these constraints hold true given opacity and thick

scene objects. It can be seen that points on the object map appear on the left and right

cameras in a unique order. The point map obtained in the view of Camera 1 shows that

point 5 of the object is occluded. Similarly, for the point map of Camera 2, point 2 is found

to be occluded.

Figure 2.10: Ordering and uniqueness constraints

Given that pre-recti�ed images are used for the extraction of depth information, a Dy-

namic Programming Maximum Likelihood (DPML) optimization approach can be used to

estimate disparities. We use an algorithm originally developed by Cox et al. in [1]. For

any optimization problem to be solvable with dynamic programming, it must include opti-

mal substructure and overlapping subproblems. Dynamic programming solves problems by

combining the solutions to subproblems. If the sub-problem solutions can be reused sev-

eral times, it is said to have overlapping substructure. The optimization problem is said to

have optimal substructure if each subproblem can be shown as the optimal solution within

the scope of its inputs. Memoization is a technique of storing values of a function, rather
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than recomputing them each time the function is called. This technique is used as a variant

method for taking advantage of the overlapping subproblem property [15].

The stereo correspondence algorithm developed in [1] is for cases of dense disparity es-

timation. The DPML optimization approach is used to determine the Longest Common

Subsequence (LCS), where the sequence is de�ned by the pixel intensity values. Each in-

put scanline from either view (left or right) can be viewed as two distinct subsequences.

The optimal substructure of the DMPL solution means that the disparity results generated

from input scanlines are globally optimal [16]. The DPML algorithm consists of two phases

which execute in sequence: a forward-pass and a backward-pass. A Matlab-like outline of

the forward-pass is shown in Algorithm 1 (see Appendix B). The forward-pass begins by

initializing the match matrix, MM and cost matrix, CM. Here, N represents the number of

pixels per scanline. The cost matrix is initialized with constant occlusion costs, OC, given

by Equation 2.14, where Pd is the probability of each camera imaging a point in the scene, φ

is the associated �eld of view and σ2 represents the variance associated with camera sensor

noise. Following this, left and right image pixel streams from corresponding scanlines are

compared to each other sequentially up to some maximum disparity range, Dmax. The pixel

comparisons are used to produce a cost estimate given by Equation 2.15, where IL(x) and

IR(x) are pixel values at position x in corresponding scanlines. Cost values are generated

by comparing every pixel in the left stream to every pixel in the right stream. For each cost

matrix entry, an associated entry is also made to the match matrix which stores values indi-

cating the presence of occlusions occurring between the two subsequences, or non-occlusions

when a match is deemed to exist.

OC(Pd, σ
2, φ) = log

Pdφ

(1− Pd)

√
2π

σ2
(2.14)

NOC(IL(x), IR(x+ d), σ) =
[IL(x)− IR(x+ d)]2 σ2

4
(2.15)
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The backward-pass initiates following the storage of all cost values to the N×N cost

matrix by the forward-pass, as shown in Algorithm 2 (see Appendix B). Minimizing the cost

value is accomplished by backtracking through the match matrix to reveal the lowest-cost

path. The left and right pixel locations corresponding to points along the shortest path are

used to compute the disparity or to indicate an occlusion [16]. It should be mentioned that

dynamic programming is particularly suited to hardware implementations. For more details

on this algorithm please refer to [1, 17, 16].

2.5 FPGAs

The term FPGA is an acronym for Field Programmable Gate Array. Essentially, FPGAs

are digital integrated circuits (ICs) that contain con�gurable (programmable) blocks of logic

along with con�gurable interconnects between them. Design engineers can con�gure (i.e.,

rewire on the �y) such devices to perform a tremendous variety of tasks. All FPGAs include

three major components: I/O blocks, logic blocks and programmable routing. These com-

ponents can be con�gured to implement basic combinational logic (e.g., AND, OR, NOT,

NAND, NOR functions) or more complex synchronous logic (e.g., a microprocessor). Xilinx

FPGAs contain a large quantity of sub-circuits known as Con�gurable Logic Blocks (CLBs),

which are made up of modules known as slices. The interconnection between CLBs use

long wires to transfer information. Slices consist of two logic cells and are interconnected

in a more localized manner using shorter wire segments. A logic cell comprises a 4-input

Look-up Table (LUT), which can also act as a 16×1 RAM or a 16-bit shift register, a 2-to-1

multiplexer and a register. A 4-input LUT can synthesize any Boolean-valued function with

(up to) four Boolean inputs. Figure A.4 (see Appendix A) shows an illustration of a logic

cell.

FPGAs are powerful tools for realizing custom hardware solutions. Other solutions can

utilize Application Speci�c Integrated Circuits (ASICs), Digital Signal Processors (DSPs)
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or even microprocessors. General purpose processors are often too slow due to their se-

quential nature of processing, while DSPs are often best-suited to applications that utilize

MAC (multiply-accumulate) operations. On the other hand, ASICs often provide the best

performance and power consumption. However, similar to the DSPs and microprocessors,

ASICs have some drawbacks. The main problem with ASICs is the long development cycle

required to get from the initial design to the �nal product. Another problem is in the cost

of developing an ASIC: often ASIC designers spend millions of dollars for specialized equip-

ment, which requires a high degree of expertise. Furthermore, any changes in the design can

be costly and may result in time-to-market delays. The typical cost of producing a single

90 nm ASIC design ranges between $20-30 million according to [18]. FPGAs are commonly

used for rapid prototyping, as they have the advantage of quickly reprogramming the device

as many times as required. This feature is useful when design �aws are found, as �xes can

be made and veri�ed quickly. Another advantage of the FPGA is that it is cost-e�ective

when used for products of a limited quantity. When production is in large quantities, ASICs

are often more cost-e�ective [19]. FPGAs also provide �exibility to the user, as the large

array of con�gurable logic allows the implementation to be accelerated by duplicating (or

parallelizing) functional units. Furthermore, some FPGAs include dynamic recon�guration

(or partial recon�guration) capabilities [20]. This capability allows a portion of the con�g-

urable logic on the device to be loaded with a new design while the rest of the custom logic

operates normally. A good reference for learning more on FPGAs is [20].

2.5.1 VHDL

The design of digital logic circuits on FPGAs is achieved by coding in a hardware-description

language such as VHDL. This name is an acronym for VHSIC Hardware Description Lan-

guage, where VHSIC stands for Very High Speed Integrated Circuit. This language is used

to describe the behavior and structure of digital hardware designs. Another commonly used

coding language for the design of digital circuits is Verilog.
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VHDL provides support for describing concurrent events, which takes advantage of the

FPGA's ability to perform multiple operations concurrently. This concurrency di�erenti-

ates VHDL from other high-level languages (e.g., Pascal, C and C++) which are primarily

used for software design. The coding of the design allows using parameters, known as

parametrization, which allows application and design speci�c changes to be made without

having to re-code the design. Without parameters, large designs would require a signi�cant

amount of time to incorporate simple changes. Coding in VHDL also allows the behav-

ior of complex circuits to be captured into a design system for automated synthesis or for

functional simulation.

As an example, the VHDL code shown in Figure 2.11 describes a 1-bit full-adder. The

design has three inputs and two outputs. The inputs consists of two addends (x and y) and

a carry-in (Cin). The two outputs generated are a sum (s) and a carry-out (Cout).The code

in Figure 2.11 highlights VHDL keywords in bold face. The ENTITY section of the code is

essentially a black-box description of the design, as it contains and describes the inputs and

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− 1− b i t f u l l adder des i gned in VHDL

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;

ENTITY f u l l add1 IS

PORT(Cin , x , y : IN STD_LOGIC;
s , Cout : OUT STD_LOGIC) ;

END f u l l add1 ;

ARCHITECTURE d e s c r i p t i o n OF f u l l add1 IS

BEGIN

s <= x XOR y XOR Cin ;
Cout <= (x AND y ) OR ( Cin AND x ) OR ( Cin AND y ) ;

END d e s c r i p t i o n ;

Figure 2.11: VHDL code for a 1-bit full-adder

outputs. The ARCHITECTURE section of the code describes the internal functionality of

the design, it can be seen that the outputs are assigned by a logical expression of the inputs.

The code shown in Figure 2.12 describes an 8-bit full-adder. This example makes use of the
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′+′ operator, which exploits the high-level nature of the language. A complete reference for

VHDL and a guide for synthesis can be found in [21] and [22], respectively.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− 8− b i t f u l l adder des i gned in VHDL

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . std_logic_unsigned . a l l ;

ENTITY f u l l add8 IS

PORT(x , y : IN STD_LOGIC_VECTOR(7 downto 0 ) ;
Cin : IN STD_LOGIC;
s : OUT STD_LOGIC_VECTOR(7 downto 0 ) ;
Cout : OUT STD_LOGIC) ;

END f u l l add8 ;

ARCHITECTURE d e s c r i p t i o n OF f u l l add8 IS

signal tmp : std_log ic_vector (8 downto 0 ) ;
BEGIN

tmp <= x + y + Cin ;
SUM <= tmp(7 downto 0 ) ;
Cout <= tmp ( 8 ) ;

END d e s c r i p t i o n ;

Figure 2.12: VHDL code for a 8-bit full-adder

2.6 Literature Review

A brief overview on di�erent hardware implementations of image recti�cation is given in

Section 2.6.1. Similarly, previous hardware implementations of stereo correspondence algo-

rithms are discussed in Section 2.6.2. Finally, an overview of fully integrated stereo vision

systems are presented and compared in Section 2.6.3.

2.6.1 Image Recti�cation

A number of di�erent hardware based image recti�cation modules were developed and re-

ported in [23, 24, 25, 26, 27]. Most of these image recti�cation modules were developed on

recon�gurable devices with the exception of the work produced by Courtney et al. [23], which
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was developed using memory and VLSI components. The general design of the implementa-

tions share a common structure, as they all include blocks to hold the input image, compute

the transformation and perform pixel intensity interpolation. The work by Jörg et al. [24]

and Masrani et al. [25] use a bicubic polynomial to perform the warping transformation,

where the coe�cients are computed o�ine by camera calibration. This type of operation

provides a more accurate estimation but requires considerably more hardware resources in

terms of adders and multipliers when compared to our implementation which uses a 1st-order

Taylor Series Polynomial model. The implementation with a 1st-order Taylor Series Polyno-

mial works well for cameras that are fairly aligned (see Chapter 3). The work developed by

Serguienko [26] and Vancea et al. [27] utilize look-up tables (LUTs) rather than polynomials,

for obtaining the warping transformation. The LUTs are computed o�ine by calibration and

stored in dedicated memory locations. Vancea et al. [27] use multiple 64 MB Synchronous

Dynamic RAMs to store the LUT and the input images, while Serguienko [26] uses on-board

memory to store its LUT. The image recti�cation module developed by Courtney et al. [23]

used VLSI and memory components, rather than recon�gurable devices as mentioned previ-

ously. The performance achieved by the work of Vancea et al. [27] is 85 frames per second

(fps) on 640 × 512 resolution images, [23, 24, 25] perform image recti�cation at 30 fps on

384×288 and 640×480 resolution images. [23] failed to mention the resolution of the image,

while [26] failed to mention anything about its associated performance.

To date there have not been any hardware implementations of high-speed (i.e., 200 fps)

stereo image recti�cation circuits. This thesis explores an image recti�cation solution that

achieves high frame-rates on full resolution images (i.e., 640× 480), while utilizing minimal

resources on an FPGA device that will be used to develop a larger system.

2.6.2 Stereo Correspondence

Hardware based stereo correspondence provides for the computation of disparity maps and

estimation of depth information at higher frame-rates than associated software implemen-
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tations. Common approaches for the development of stereo correspondence in hardware

generally use correlation and other area-based methods. The most common methods make

use of SAD aggregated cost functions to compare pixel intensities, since they are easy to

implement and cheap in terms of resources. However, they do not provide very accurate

disparity estimates as mentioned by Scharstein et al. in [2]. These types of implementations

utilize line bu�ering to align pixels in the left and right images of a stereo pair for parallel

windowing computations. The stereo correspondence implementations described in Han et

al. [28], Hariyama et al. [29], Mitéran et al. [30], Miyajima et al. [31] and Perri et al. [32] all

utilize this method for parallelizing computations. Most of these implementations produce

results at approximately 30 fps. Hariyama et al. [29] operates on image resolutions of 64×64

pixels and its design is large as it requires using multiple smaller FPGA devices to realize

the implementation. Furthermore, it fails to mention the disparity range. The performance

reported in the work by Han et al. [28] achieves approximately 60 fps on image resolutions

of 640× 480 with a disparity range of 128 pixels. Jia et al. [33] and van der Horst et al. [34]

propose methods in their work, however they fail to make the details of their designs clear.

Table 2.1 lists a summary of the SAD-based stereo implementations.

Another approach for the development of stereo correspondence in hardware follows phase

based correlation methods described in [35, 36, 25]. The phase based correlation methods of

[35, 25] use Freeman �lters, while [36] uses Gabor �lters to model the retinal cell responses

described in Section 2.2. Phase based correlation has the advantage of producing signi�cantly

better results than SAD methods and compete well with DPML methods. Similar to other

methods, phase based correlation uses line bu�ers to facilitate parallel computations. The

di�culty with this method occurs in performing square root computations, as these are

di�cult to implement in hardware and require a large amount of resources when parallelized.

Similar to the SAD based implementations, the phase based correlation implementations

produce results of approximately 30 fps. Frame-rates of over 200 fps are achieved by the

work by Díaz et al. [36], however the disparity range is compromised to only 4 pixels at image
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resolutions of 640 × 480. Another implementation by Wood�ll et al. [37] uses a consensus

algorithm which is very simple and leads to poor accuracy. The implementation produces

results of 200 fps on image resolutions of 512× 480 pixels, with a maximum disparity of 52

pixels.

Table 2.1: Summary of SAD-based stereo implementations
N×M Dmax FPS

Hariyama et al. [29] 64× 64 N/A 30
Han et al. [28] 640× 480 128 60

Mitéran et al. [30] 256× 256 20 10
Miyajima et al. [31] 640× 480 80 20
Perri et al. [32] 512× 512 256 25
Jia et al. [33] 640× 480 64 30

van der Horst et al. [34] 256× 256 18 20

There have not been any hardware implementations of the DPML solution to date. Ex-

isting solutions for stereo correspondence produce good results at low frame-rates on images

which have resolutions of 640×480 or less. This thesis looks at the modi�cation and integra-

tion of a high frame-rate DPML solution developed by Sabihuddin et al. [3] which does not

compromise accuracy and has little compromise on the disparity search range and resolution.

It should be mentioned that correlation based approaches use SSD cost functions with the

constraints mentioned to obtain a globally optimal solution.

2.6.3 Stereo Vision Systems

This section looks at a number of di�erent stereo vision systems that have been previously

developed. In general, these types of systems include a video-acquisition system, an optional

video pre-processor and a stereo correspondence circuit. Recon�gurable systems have been

integral for the development of these types of systems as FPGAs have had increases in

capacity and speed over the last few years. The parallelization capabilities of the FPGA

allows computationally intensive computer vision applications to be accelerated. The stereo

vision systems reported in [35, 38, 25, 39, 40] all use FPGAs for some purpose in their
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associated systems. The stereo vision system developed by Kanade et al. [41] is the only

system reviewed that is solely composed of discrete components: a C40 DSP-array board

and a real-time operating system board. The stereo vision system known as INRIA [38], uses

23 Xilinx XC3090 FPGAs and operates on 256 × 256 resolution images, with a maximum

disparity of 32 pixels. This system, like many others, includes a frame grabber to capture

the images, an image recti�cation circuit and also a stereo extraction unit. The performance

of the system, however, is quite poor as it produces a frame rate of 3.6 fps. The PARTS

[39] recon�gurable vision system consists of a 4 × 4 array of mesh-connected Xilinx 4025

FPGAs, which operates on 320 × 240 resolution images, with a maximum disparity of 24

pixels. This system does not include an image recti�cation circuit, but it does provide a

better performance than [38] at a frame rate of 42 fps.

The next three stereo vision systems all perform at frame rate (i.e., 30 fps). The CMU

vision system developed by Kanade et al. [41], as already mentioned, does not use recon�g-

urable logic to implement the system. The system operates on 200× 200 resolution images

and includes an image recti�cation circuit. The maximum disparity of the system is 30

pixels. The TM-3A system developed by Darabiha et al. [35] uses 4 Xilinx Virtex 2000E

FPGAs and does not include an image recti�cation circuit. It produces disparity results on

256× 360 resolution images and has a maximum disparity of 20 pixels. An improvement to

the system by Darabiha et al. [35] was accomplished by Masrani et al. [25]. This system

produces disparity results on 640 × 480 resolution images and has a maximum disparity of

128 pixels. Furthermore, it includes an image recti�cation circuit. The system was developed

using the TM-4 board which contains 4 Altera Stratix S80 FPGA devices.

Finally, a more recent stereo vision system has been developed by Wood�ll et al. [40] that

provides a much higher performance than the other described previously. The Tyzx DeepSea

G2 vision system produces disparity results at 200 fps on 512 × 480 resolution images and

has a maximum disparity of 52 pixels. It should be noted that the system includes an image

recti�cation circuit. The system was designed on a platform that consists of a PowerPC chip
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(666 MHz) running Linux, DeepSea II stereo ASIC, an FPGA and a DSP/Co-processor.

The main purpose of the FPGA is to provide as a communication interface and for storage.

Table 2.2 compares the characteristics of each stereo vision system discussed. From this table,

N×M represents the image resolution, Dmax is the maximum disparity, FPS represents the

performance and IR represents the presence of an image recti�cation circuit.

Table 2.2: Summary of the reported stereo vision systems
N×M Dmax FPS IR Platform

INRIA [38] 256× 256 32 3.6
√

23 Xilinx XC3090 FPGAs
PARTS [39] 320× 240 24 42 χ 16 Xilinx 4025 FPGAs
CMU [41] 200× 200 30 30

√
C40 DSP-array board+RTOS

TM-3A [35] 256× 360 20 30 χ 4 Xilinx Virtex 2000E FPGAs
TM-4 [25] 640× 480 128 30

√
4 Altera Stratix S80 FPGAs

TYZX [40] 512× 480 52 200
√

PowerPC+ASIC+FPGA+DSP

2.7 Summary

This chapter introduces many of the concepts that are essential to develop a stereo vision

system in hardware. We began by looking at the human vision system, as a model for

developing systems capable of replicating the biological function of stereopsis. Following

this, we discussed imaging models such as the pinhole camera model, camera calibration,

the stereo camera model and perspective projection to lead us into our description of stereo

image recti�cation and stereo correspondence. The pinhole camera model introduces some

basic principles about imaging; this model was extended to the stereo (two-view) camera

model. Stereo image recti�cation is introduced as a method for placing corresponding points

(features) on the same scanline in both images by aligning the epipolar lines. The epipo-

lar constraint allows performing stereo matching at a reduced complexity, as corresponding

points (features) lie on the epipolar lines, reducing the disparity estimation to a 1-D search

problem. The stereo correspondence problem can be solved using a dynamic-programming-

maximum-likelihood solution, which is based on ordering, uniqueness and disparity range
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constraints. The solution uses SSD cost functions as the similarity metrics for comparing

pixels. This solution is well suited for hardware implementations on FPGAs. Field Pro-

grammable Gate Arrays have been introduced as tools for rapidly prototyping digital circuit

designs. They provide the bene�ts of low production cost, high �exibility, and excellent

performance versus other digital design solutions. Finally, we presented details of existing

hardware implementations of image recti�cation, stereo correspondence and stereo vision

systems, most of which achieve frame-rates in the range of 30 fps. While there are systems

that achieve frame-rates above 30 fps, they have a relatively poor accuracy or reduced image

resolution. In the next chapter, the architecture and implementation of a high frame-rate

stereo vision system will be the focus.
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Chapter 3

Architecture and Hardware

Implementation

3.1 Introduction

In this chapter we focus on the architecture and hardware implementation of an FPGA-based

stereo vision system. In Section 3.2, we begin with an overview of the system architecture.

Following this, we describe the on-chip design of the video pre-processor and custom-built

video-acquisition system in Sections 3.3 and 3.4, respectively. These sections include two

generations of the vision system, one which operates at 30 frames per second (fps) and the

other at 200 fps. In Section 3.5, we explore the features of our processing platform, the

Amirix AP1100. In Section 3.6 we describe the integration, modi�cation and veri�cation of

the sub-systems which operate with the 200 fps video-acquisition system. Finally, Section

3.7 summarizes the chapter's contents.

3.2 Overview of the System Architecture

Figure 3.1 shows the general overview for our system's architecture. The core modules in the

system include: the video-acquisition system, the video pre-processor, the stereo extraction
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module and the object tracking module, while the stereo controller serves as an interfacing

component. The purpose of the video-acquisition system is to provide a real-time binocular

view of the scene for processing in 3-D. The video pre-processor is needed to perform stereo

image recti�cation. The stereo extraction module uses the information from the video pre-

processor to match corresponding pixels in the two views. As a result of the pixel matching,

disparity information (i.e., inverse of depth) can be obtained. Finally, the object tracking

module uses the disparity information and a model of an object (i.e., a satellite) to recover

the pose and also to determine the location of the object with respect to the world coordinate

system.

Figure 3.1: Overview of the system architecture

The implementation of the video pre-processor, the stereo extraction module and the

object tracking module exist on the same recon�gurable architecture, known as an FPGA.

It should be noted that the object tracking module is not yet integrated to the system, but

will be included in future work.

3.3 Architecture of Video Pre-processor

The operation of the video pre-processor (VPP) follows the theory presented in Chapter

2 regarding stereo image recti�cation. This section describes the architecture of the video

pre-processor. The design of the video pre-processor is implemented on the Xilinx Virtex-

II Pro XC2VP100 FPGA found on the Amirix AP1100 Platform (see Section 3.5). The
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development of the VPP is di�erent for each of the two di�erent camera systems, the 30

and 200 fps video-acquisition systems (see Section 3.4). The following sections introduce the

major components used for the VPP and the architecture of the �nal product.

3.3.1 Architecture-to-task vs. Task-to-architecture Designs

Designers can be placed in di�erent design situations. One situation is where they plan a

design from the initial stages. Here the designer can come up with a set of components, links

and procedures to implement the application. In the another situation, the designer is given

a set of components, links and procedures. He or she must then use this to carry out the

application.

The �rst situation described is more formally known as Architecture-to-task designs, the

architecture A, of the system composed of a set of components, links and procedures, {C,

L, P}; must be designed in order to meet the speci�cations of the given task. Similarly,

the second situation is more formally known as Task-to-architecture designs. Here, the

architecture A, composed of the set of components, links and procedures {C, L, P} is already

established. The task must be designed in order to properly meet all speci�cations of the

target application.

For the design of the system, a device must be selected to ensure that the required per-

formance is achieved. The bottleneck of the system is the stereo correspondence algorithm.

Executing the DPML algorithm by Cox et al. [1] in software, on a general-purpose processor

produces very low frame rates, just above 3 fps [42]. This sequential implementation of the

algorithm does not achieve the required performance, thus a di�erent approach is needed.

A parallelized approach to the DPML algorithm was introduced by MacLean et al. [17]

which provides much higher frame rates. This approach requires using a device that has the

�exibility of performing customized parallel operations at the same time. This narrows the

choices down to programmable logic devices (e.g., FPGAs) or application speci�c integrated

circuits. The latter can operate using higher clock frequencies and provide better perfor-
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mance, however the development costs are greatly higher. With this being said, we were

provided with the Amirix AP1100 Platform (see Section 3.5) which includes a large FPGA,

for which the processing tasks are to be developed in a Task-to-architecture design. The

design of the video-acquisition system (see Section 3.4) took on the same approach, as it had

to be tailored to work with the same processing platform.

3.3.2 Architecture of Image Warp Module

The purpose of the Image Warp Module is to generate recti�ed image coordinates so that

the original stereo image pair can be warped to a recti�ed pair. The homographies needed

to warp the original images are computed o�ine using the calibration parameters obtained

using the Camera Calibration Toolbox for Matlab. Normalized image coordinates can be

generated without requiring division by creating a Taylor Series approximation of the 3× 3

homography matrices. This is important because performing division on hardware can be

expensive in resources and lengthy in latencies.

During the assembly of the video-acquisition system, the placement of the image sensors

and lens housing were mechanically adjusted to minimize the rotation between the two

views. This allowed the Taylor Series Polynomial (TSP) to be of 1st-order. A poorly aligned

assembly of the video-acquisition system could have resulted in higher rotational angles

and larger translations. These factors alone could require 2nd- and 3rd-order Taylor Series

Polynomials to achieve the desired level of accuracy. The general form of a 1st-order Taylor

Series Polynomial is seen in Equation 3.1,

P = Ax+By + C (3.1)

where A, B, C and P are real numbers. For this reason, we must use adders and multipliers

that perform operations on numbers with fractional components (i.e., real numbers). In

digital systems, operations on real numbers can be performed using either �oating-point
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or �xed-point operators. Generally, IEEE 754 �oating-point operators give more precise

results over a larger dynamic range when using real numbers, the drawback for them are

the long latencies for computations and large resources. An alternative is to use �xed-

point operators: although they may not produce results to the accuracy of �oating-point

operators, they typically are faster and require less logic for implementation. With questions

pertaining to the amount of resources we will have available for the end design of the complete

system, we chose �xed-point operators to reduce our resource overhead as well as increase

our throughput.

Our design of the Image Warp Module is parallelized as the 1st-order Taylor Series

Polynomials require the least amount of multipliers and adders. We require four parallel

units, to obtain (x, y) warped image plane coordinates for each of the left and right camera

views. A generalized data �ow graph of one Taylor Series Polynomial computation is shown

in Figure 3.2, where A, B and C are �xed coe�cients of the TSP. The module with four

parallel TSP units uses 8 �xed-point adders and 8 �xed-point multipliers. The latency of the

Image Warp module is 3 clock cycles, and the cycle time, or rate of producing the output,

is equivalent to the rate of the inputs, which is either 4 clock cycles for the 30 fps system or

2 clock cycles for the 200 fps system.

Figure 3.2: Taylor Series Polynomial computation data-�ow graph
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3.3.3 Architecture of Bilinear Interpolation Module

The Bilinear Interpolation Module serves as a means to estimate the pixel intensities of the

recti�ed image from the original image given the transformed image coordinates (x′, y′)T .

In most cases the recti�ed pixel location may not map to an exact integer location in the

original image, thus interpolating from the original image will require the pixel intensity to be

computed from four neighbouring pixels. Similar to the Image Warp Module, this module

is implemented using �xed-point operators. The design of the module is parallelized to

maximize the throughput; two separate hardware units are implemented in parallel to process

the pixel interpolation computation for the left and right views. The bilinear interpolation

module was designed to implement the function shown in Equation 3.2 [43]. In this equation,

4x and 4y represent the fractional portions of the recti�ed pixel coordinates (see Section

3.3.2), while Iold and Inewrepresent the intensity of a pixel at a speci�c coordinate.

Inew(x, y) = (1−4x)(1−4y)Iold(x, y) + (1−4x)(4y)Iold(x, y + 1)+

(4x)(1−4y)Iold(x+ 1, y) + (4x)(4y)Iold(x+ 1, y + 1) (3.2)

Figure 3.3 shows one hardware unit of this module, the full module contains two parallel

units for the left and right views. Thus, 16 �xed-point multipliers and 6 �xed-point adders

are used for the full implementation. The latency of the Image Warp module is 4 clock

cycles, which represents the number of stages in the pipeline. The cycle time is equivalent

to the rate of the inputs.

3.3.4 Architecture of Pixel Bu�er

A portion of the incoming frame needs to be temporarily stored in order to compute correct

pixel intensities, using the Bilinear Interpolation Module. The Pixel Bu�er uses the addresses

provided by the Image Warp Module, to output a 2× 2 region of pixels. As the Image Warp

Module provides di�erent pixel addresses, only a limited region of the incoming frame will
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Figure 3.3: Bilinear Interpolation computation data-�ow graph

be accessed. Thus, if a circular bu�er is used, we can guarantee that the required portions

of the incoming frame will always be available during processing. The incoming stream data

is saved following a Least Recently Used strategy.

The Pixel Bu�er is composed of a number of internal block RAMs (BRAMs), which are

the basis for storing and retrieving pixels. The BRAMs are referenced using logic to identify

which row of the frame they represent. The pixels are accessed from the BRAMs using row

and column addresses supplied by the Image Warp Module. Since performing the bilinear

interpolation requires a 2× 2 region of pixels, subsequent BRAMs can be read in parallel.

As the video-acquisition system provides the pixels of the left and right views, the Pixel

Bu�er was designed to store and retrieve pixel information based on the scanline value.
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Each scanline of pixels is stored into a di�erent BRAM instance for indexing purposes. The

number of BRAMs required in the architecture of the Pixel Bu�er can be calculated by

computing the maximum di�erence between the recti�ed Y-coordinates and the original Y-

coordinates. In addition, a few extra BRAMs were instantiated to avoid ever reading and

writing simultaneously to the same BRAM. The amount of BRAMs required can vary based

on alignment of the images sensors and lens housing (i.e., camera calibration parameters).

The use of generic parameters in the VHDL code of the Pixel Bu�er allows changing the

size of the bu�er in a simple manner. This saves the user time, by not having to manually

modify portions of the code. This component can be used not only for bilinear interpolation,

but for any image processing algorithm which performs processing on a 2×2 region of pixels

(e.g., an edge detector).

The di�erences between the design of the 30 fps and 200 fps Pixel Bu�er are quite small.

The design of the Pixel Bu�er for the 30 fps system utilized single-ported BRAMs to save

the contents of scanlines. Here, each BRAM would contain the contents of only one scanline

with the data addressed by the column value. On the other hand, the design of the Pixel

Bu�er for the 200 fps system utilized dual-ported BRAMs. The dual-ports on the memory

device allows multiple access of the memory at the same time. Furthermore, the dual-ports

make it convenient to store multiple scanlines into each BRAM. We saved two scanlines into

each BRAM by manipulating the addressing. For the �rst scanline being saved into the

BRAM, we assign the upper most bit to '0' followed by the column value; for the second

scanline being saved into the same BRAM, we assign the upper most bit to '1' followed by

the column value.

3.3.5 Architecture of Stereo Recti�cation Module

The architecture of the video pre-processor is designed to implement the modules described

in the previous sections. The architecture is fully pipelined and synchronous, which allows it

to perform at the required frame rate. The implementations of the 30 fps and 200 fps Stereo
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Recti�cation Modules (SRMs) are discussed next.

The Stereo Recti�cation Module interfaced with the 30 fps video-acquisition system (see

Section 3.4.1) has seven main components and is shown in Figure 3.4. The Pixel Bu�er, Im-

age Warp and Bilinear Interpolator have been described previously. The other components

include a Counter which provides the original (x, y) coordinates in �xed-point nomenclature.

It begins counting when it receives a start signal from the Pixel Bu�er. The Pixel Bu�er as-

serts a start signal which indicates enough pixels have been bu�ered to correctly perform the

image transformation. An Out-of-Range signal is used to identify whether the warped (x′, y′)

coordinates exist within the range of the original frame (0, 0)−→(639, 479). It also separates

the data produced by the Image Warp Module into integer and fractional portions, which

are used as the read address of input pixels and the coe�cients for bilinear interpolation,

respectively. The 5-stage FIFO is used to synchronize coe�cients for bilinear interpolation

with the 2 × 2 region of pixels from the Pixel Bu�er when they are available. Finally, the

Recti�cation Bu�er component is used to store the recti�ed pixels into a temporary location

for video display purposes and to pass them to the stereo extraction unit.

The coe�cients used after the conversion of the 3× 3 homographies into the normalized

1st-order Taylor Series Polynomial are listed in Tables 3.1 and 3.2. As several 30 fps video-

acquisition systems have been constructed, the coe�cients mentioned pertain to the SFGv1-

Ryerson board. The left view warped image plane coordinates are subscripted with XL and

YL, similarly the right view warped image plane coordinates are subscripted with XR and

YR.

Table 3.1: 30 fps TSP coe�cients for left view
X

AXL 1.0039
BXL 0.0057
CXL -22.8353

Y

AYL -0.0059
BYL 1.0015
CYL 1.9368
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Figure 3.4: 30 fps SRM block diagram

Table 3.2: 30 fps TSP coe�cients for right view
X

AXR 1.0069
BXR 0.0065
CXR -47.4809

Y

AYR -0.0070
BYR 1.0037
CYR 5.0099

The block diagram of the Stereo Recti�cation Module interfaced with the 200 fps video-

acquisition system (see Section 3.4.2) is shown in Figure 3.5. This SRM has six main com-

ponents. Once again, the modi�ed Pixel Bu�er, Image Warp and Bilinear Interpolator have

been described previously. The other components, include the Address Generator which pro-

vides the original (x, y) coordinates in �xed-point nomenclature. The Out-of-Range signal

identi�es whether the warped (x′, y′) coordinates exist within the range of the original frame

(0, 0)−→(639, 479). It also separates the data produced by the Image Warp Module into

integer and fractional portions, which are used as the read address of input pixels and the

coe�cients for bilinear interpolation, respectively. Finally, the Sync Control component is

used to temporarily hold the fractional portion of the location data from the Image Warp
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Module as well as the Out-of-Range (OOR) value for the current left and right pixels. The

Sync Control also provides the start signal for the Address Generator, indicating that enough

pixels have been bu�ered to correctly transform the image.

The coe�cients used after the conversion of the 3× 3 homographies into the normalized

1st-order Taylor Series Polynomial are listed in Tables 3.3 and 3.4. As several 200 fps

video-acquisition systems have been constructed, the coe�cients mentioned pertain to the

SFGv2-Ryerson board. The left view warped image plane coordinates are subscripted with

XL and YL, similarly the right view warped image plane coordinates are subscripted with XR

and YR. Two 9-bit outputs are produced by the module with the same associated address.

Each 9-bit result contains the OOR value on the most signi�cant bit (MSB), while the lower

8-bits contain the recti�ed pixel intensity.

Figure 3.5: 200 fps SRM block diagram
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Table 3.3: 200 fps TSP coe�cients for the left view
X

AXL 0.9985
BXL 0.0184
CXL 7.4212

Y

AYL -0.0206
BYL 0.9942
CYL 8.1546

Table 3.4: 200 fps TSP coe�cients for the right view
X

AXR 0.9997
BXR 0.0124
CXR -2.0650

Y

AYR -0.0157
BYR 0.9982
CYR 11.2222

3.3.6 Timing Analysis

The architecture of the 200 fps, explored in Section 3.3.5, will now be analyzed using timing

diagrams. The operation of the SRM begins when the start signal is asserted following a

reset of the system, as seen in Figure 3.6. The arrow in Figure 3.6 indicates when the start

signal is asserted. The calibration characteristics of this system requires bu�ering 16 rows

of the �rst frame before the operation can begin. The start signal remains high until the

system is reset.

Figure 3.6: Timing diagram of the start signal

One clock cycle following the assertion of the start signal, the original (x, y) coordinates

are generated by the Address Generator in �xed-point nomenclature. This is pointed out by

the arrows and bubble shown in Figure 3.7. The shaded regions shown in the �gure identify

data that are invalid, while the valid regions are labeled to indicate the corresponding row and

column values. Also seen in Figure 3.7 is the generation of the warped (x′, y′) coordinates
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by the Image Warp Module. The Image Warp Module begins processing on the input

information one clock cycle after it is produced by the Address Generator. The �gure also

shows a window of 4 clock cycles, which indicates the amount of time required to produce

and latch the output. The outputs of the Image Warp Module are labeled to indicate the

row and column values they are associated to; this labeling scheme will be used for the rest

of the timing diagrams.

Figure 3.7: Timing diagram of the Address Generator and Image Warp Module

The generation of the out-of-range signal, oor, and pixel read address values are shown

in Figure 3.8. The arrow indicates that only one clock cycle is required to generate the oor

output and the pixel read addresses. The output of the Pixel Bu�er, two 2× 2 pixel regions,

is shown in Figure 3.9. The Pixel Bu�er uses the pixel read addresses generated by the

Out-of-Range Module one clock cycle after they are produced. The �gure shows a window

of 6 clock cycles, which indicates the amount of time required to read and latch 8 pixels.

The Bilinear Interpolation Module, which is the �nal stage of the system, uses the 2× 2

pixel regions to estimate the pixel intensity. Figure 3.10 shows a window of 5 clock cycles,

which indicates the amount of time required to produce and latch the output. Finally, Figure

3.11 shows an overall timing diagram of the SRM. The �gure shows that an initial 17 clock

cycle latency is required to produce the �rst set of recti�ed pixels.
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Figure 3.8: Timing diagram of the Out-of-Range Module

Figure 3.9: Timing diagram of the Pixel Bu�er

3.4 Video-acquisition system

The purpose of the video-acquisition system is to capture a pair of images, which represent

two di�erent views of the same scene. Cameras that provide two simultaneous views of a

scene for three-dimensional reconstruction are known as stereo cameras. In our case, a more

accurate identi�cation of our camera would be a binocular stereo camera, since it provides

two views of the scene. Typically for human beings the baseline of the eyes is about 6.5

cm, and this separation allows us to determine the distance to objects in our �eld of view.

The baseline of our stereo camera is approximately 16 cm. This system acquires data in

real-time from two CMOS sensors at a resolution of 640× 480 pixels. The image processing

tasks involved will be discussed in Section 3.3. Initially, a low-speed video-acquisition system

was developed for initial proof-of-concept; this system performs standard video-acquisition
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Figure 3.10: Timing diagram of the Bilinear Interpolation Module

Figure 3.11: Timing diagram of the SRM

at 30 fps. The ultimate goal of the system is to achieve high frame-rates, and thus a second,

high-speed video-acquisition system was developed, achieving performances up to 200 fps.

The data produced by the video-acquisition system is sent to the FPGA on the Amirix

AP1100 Platform (see Section 3.5) via the high-speed PCI Mezzanine Card slot as seen in

Figure 3.22. The following sections describe the architecture of the two video-acquisition

systems.
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3.4.1 30 fps Video-acquisition

The �rst generation of the video-acquisition system operates at speeds of 30 fps. The inter-

connection of the video-acquisition system is composed of a stereo camera, also known as

the Stereo Frame Grabber v.1 (SFGv1), the Amirix Daughter Card, and the Amirix AP1100

Platform (see Section 3.5).

Figure 3.12: 30 fps Stereo Frame Grabber (front)

The SFGv1 and the Amirix Daughter Card were developed by Kirischian et al. [44] and

can be seen in Figures 3.12, 3.13 and 3.14, respectively. The Amirix Daughter Card provides

Figure 3.13: 30 fps Stereo Frame Grabber (back)

as a channel through which the data from the SFGv1 can be sent to the FPGA. This is

possible since the Amirix Daughter Card has a PCI Mezzanine Card slot which plugs directly
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into the Amirix AP1100 Platform.

Figure 3.13 shows the back view of the SGFv1 which contains a 20-pin port for interfacing

with the Amirix Daughter Card, using a standard ribbon cable. The Amirix Daughter Card

redirects the data coming from the SFGv1 through an on-board LVDS di�erential bu�er to

the PCI Mezzanine Card slot, which allows sending the SFGv1 data at high-speeds to the

Amirix AP1100 Platform.

Figure 3.14: Amirix Daughter Board - front & back views

The architecture of the system includes three modules; the Image Capture Module (ICM),

Video Processing Module (VPM) and the VGA Output Module. A high-level block diagram

of the system is shown in Figure 3.15.

The Image Capture Module is composed of two CMOS image sensors, a Complex Pro-

grammable Logic Device (CPLD), a microcontroller, a Universal Serial Bus (USB) controller

and user control buttons. The image sensors are used for capturing the scene, however they

are set to operate in slave mode which allows them to operate synchronously with each other.

Selecting the image sensors to operate in slave mode allows the designer to control when data

should be captured via external clock and control signals. The CMOS sensors generate colour

pixel data in a Bayer pattern format [45]. Full colour images usually consist of a pixel that

contains at least three components, most typically red, green and blue. Raw images based

on Bayer patterns have only one of the three colour components at each pixel location. The
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Bayer pattern was created by Bryce Bayer and �lters only one colour onto any given pixel

in a square grid of photosensors. Figure 3.16 shows an example of the Bayer pattern array.

It can be noticed that 50% of the array is assigned with green �lters, while 25% is assigned

to each of the red and blue �lters. Bayer developed the array with a larger proportion of

green �lters to mimic the human eye's greater sensitivity to green light. The green elements

in the array are known as luminance-sensitive, while the red and blue elements are known as

chrominance-sensitive. The challenge has to do with the reconstruction of the two missing

components at each pixel location. There are many algorithms which are used to obtain the

missing colours, however a simple and e�ective approach is through nearest-neighbour ap-

proximation, which uses a 3×3 window of pixels to average the missing colours. This task is

performed on the FPGA. Adjustments to the settings of the image sensors can be controlled

by a user, by manipulating the user control buttons. The buttons allow for adjustments to

the image sensors' global gain values, and gain values for each color channel - Red, Green

and Blue (RGB). The changes are received by the embedded microcontroller which then

passes the values through to the Complex Programmable Logic Device (CPLD). The CPLD

is the controller of the two image sensors as it provides the sensors with the master clock,

and other control signals to synchronize the image capture. The CPLD is also responsible for

directing the captured output from the image sensors through high-speed LVDS di�erential

bu�er to the FPGA on the Amirix AP1100 platform.

The VPM is implemented on the FPGA found on the Amirix AP1100 Platform (see

Section 3.5). It uses the data captured by the ICM, separates the data related to each video

channel and stores it into the dedicated memory space. The VPM is composed of a Static

RAM (SRAM) main controller, SRAM read controller and SRAM write controller. Essen-

tially, the SRAM main controller produces the signals needed to read and write from the two

external SRAM banks found on the Amirix AP1100 Platform. The SRAM write controller

is used for sending the data and the write address to the SRAM main controller. The SRAM

read controller is used for generating the read address for retrieving the pixels previously
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Figure 3.15: Block diagram of 30 fps video-acquisition system [46]

Figure 3.16: Bayer pattern array

saved in SRAM. Furthermore, it bu�ers the corresponding pixels from the previous scanline

in order to interpolate RGB values for each pixel. The computation of the correct pixel

colour intensity is sent as an output, along with the horizontal and vertical synchronization

signals (HSYNC, VSYNC) for visualization via the VGA Output Module.

The VGA Output Module is a simple digital-to-analog converter (DAC) which is used

to drive standard VGA analog inputs along with a VGA controller core. The VGA Output

Module also contains a switch which is used to visualize the data captured from either the

left or right camera of the ICM, to a standard VGA display. For additional details on the

design and implementation of the 30 fps video-acquisition module, please refer to [46].
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3.4.2 200 fps Video-acquisition

The second generation of the video-acquisition system operates at speeds up to 200 fps. This

acquisition system can capture objects with faster motion and shorter exposure time than

the 30 fps system. A comparison of the 30 fps and the 200 fps video-acquisition system can

be made with a simple example. Imagine a computer cooling fan with dark blades. Suppose

we were to paint one of the blades white and then start the fan. Next, let's capture images

of the fan in operation using both the 30 fps and 200 fps video-acquisition systems. What

would we notice? The images from the low-frame rate system would show the fan in motion,

however we would not be able to distinguish the white blade apart from the rest of the blades

due to motion blur. The motion blur is a function of the exposure time, while the higher

capture rate allows measuring the motion in smaller increments. With the visualization of

the high frame-rate system, we would be able to view the motion of the fan in slow motion.

Subsequently, we would be able to distinguish the white blade apart from the others while

the fan is rotating.

The second generation of the stereo camera is known as the Stereo Frame Grabber v.2

(SFGv2) developed by Chun et al. [47]. A number of changes have been made to this revision

of the video-acquisition system. The most signi�cant change is enhanced performance due

to the change in the image sensors. The sensors contain TrueSNAP technology [48] which

use electronic shutters that stop even the fastest motion with crystal clear accuracy. It

was created for use in high-speed applications that allow for all pixels to be simultaneously

exposed. The CMOS image sensors used are capable of operating at frame-rates reaching 400

frames per second, however at reduced resolutions. For the standard resolution of 640× 480

pixels, the system operates at 200 fps. Two VGA Output ports are integrated onto the

SFGv2, allowing the user to debug and verify any image processing done within the system.

As an example, the two VGA Output ports can be used to display the recti�ed images of

each view which places points (features) on the same scanline. Another important change

made to the module is the direct interface to the Amirix AP1100 Platform (see Section 3.5)
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using on-board PCI Mezzanine Card slots. This modi�cation removes any cables that might

have been present in the previous version. Furthermore, it allows the system to operate

stand-alone independent of a personal computer (PC), by utilizing a CompactFlash card

which loads designs on to the FPGA during power up. Typically, the PC-dependent Amirix

AP1100 Platforms are enclosed within the desktop casing and this prevents the system being

portable. The system becomes independent of a PC when it is powered by the Amirix PCI

Adapter Board which provides enough current to operate the Amirix AP1100 Platform.

Illustrations of the SFGv2 and Amirix PCI Adapter Board are shown in Figures 3.17 and

3.18, respectively.

Figure 3.17: Front and back views of the Stereo Frame Grabber v.2

Figure 3.18: Amirix PCI Adapter Board

The main components of the SFGv2 are highlighted in Figure 3.17. They include the left

and right high-speed CMOS image sensors, two FPGAs for control of the two CMOS image

sensors, two VGA output ports, a microcontroller, a USB controller, and PCI Mezzanine

Card slots. A block diagram of the SFGv2 is shown in Figure 3.19. The block diagram

shows the interconnections between the di�erent components on the SFGv2 and how it in-

terfaces with the Amirix AP1100 Platform. It can be seen that the interconnection between
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the SFGv2 and the Amirix AP1100 Platform occurs through the high-speed PCI Mezzanine

Card (PMC) interface. The USB interface provides information from the FastTrack Image

Grabber, which is the Graphical User Interface (GUI) used to adjust the image sensor pa-

rameters, such as the total gain, and gain values for three colour channels - Red, Green,

Blue. More information on the GUI will be discussed shortly. Other parameters include

the reference voltages supplied to the sensors. The adjustments are then sent to the image

sensors via the microcontroller and FPGAs. The FPGAs have a dual-purpose in the design

of the SFGv2; aside from changing the parameters of the image sensors, the FPGAs are used

to interpolate the Bayer patten information received from the CMOS image sensors into the

standard RGB pixel information.

Figure 3.19: Stereo Frame Grabber v.2 Block Diagram

This section provides an overview of the features of the FastTrack Image Grabber. A

screen capture of the GUI is shown in Figure 3.20. The FastTrack Image Grabber allows

controls of the image sensors; all control registers described in [48] are found in the applica-
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tion. Besides changing the settings of the image sensors, the GUI has buttons which initiate

capturing a new frame or a stream of frames for visualization purposes. Other buttons found

in the GUI initiate continuous capturing of the scene and downloading a pair of images. The

hardware image download is a useful feature for capturing stereo images, which are needed

to perform camera calibration to extract camera parameters. This is also useful for verifying

the operation of the di�erent modules in the system. As an example, this feature can be used

to download disparity maps produced by the FPGA for comparison purposes with ground

truth disparity maps. Another useful feature is interval capturing and download, which cap-

tures and downloads N images, where N is the number from the Number of Captures �eld.

The numbering of the images begins with the number associated in the Starting # �eld, this

number increments after each download. The pair of images downloaded are stored in �les

< left_imageN.bmp > and < right_imageN.bmp >.

Figure 3.20: Screen Capture of FastTrack Image Grabber

We return back to the block diagram of the SFGv2. We have not yet discussed the

interconnection of the SRAM banks and the VGA outputs. The SRAM banks are used in
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the system to save any processed information. The 3-channel pixel image is an example of

something that can be stored in SRAM. An addressing scheme is needed to simplify how

the image is read back for display. Usually, row and column values for each pixel are used

for this scheme. Data is written into the SRAM banks when a new frame is captured using

the GUI. The information from each SRAM bank is then read using an embedded VGA

controller, and the data is passed over the PCI Mezzanine Card interface to the VGA output

ports on the SFGv2. Each SRAM bank contains the information which is displayed to each

VGA output port.

3.5 Amirix AP1100 Platform

The �exibility of programmable logic, speci�cally FPGAs, allows rapid design implementa-

tions. This allows the user to explore many di�erent design paths in a quest to �nd the most

suitable solution and enables proof-of-concept without incurring the time of chip fabrication

[49]. A reduction in cost also appears in designs for Intellectual Property (IP) and complete

systems by utilizing FPGAs when compared against Application Speci�c Integrated Circuit

fabrication. This statement is true when a limited number of units is produced for the de-

sign. When a large volume of production is required, it is often more economical to develop

the IP or system as an ASIC [19].

The Amirix AP1100 PCI Platform FPGA Development Board allows developers to ex-

plore embedded system architectures in areas such as image and video processing, commu-

nications, digital signal processing, networking, industrial controls, instrumentation, testing

and measurement. The platform is equipped with the following:

• Xilinx Virtex-II Pro XC2VP100 FPGA with two IBM PowerPC (PPC405) cores

• Xilinx SystemACE with CompactFlash con�guration card supporting FPGA con�gu-
ration
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• Two banks of 64 Megabyte (MB) Double Data Rate Synchronous Dynamic Random
Access Memory

• Two banks of 2 MB Static Random Access Memory

• 16 MB Program Flash

• 16 MB Con�guration Flash

• 64-bit/66MHz PCI

• IEEE-P1386.1 32-bit/66MHz PCI Mezzanine Card slot for third party I/O cards

• Two 10/100/1000 BASE-T Ethernet PHYs and 10/100 Ethernet Controller

• Two RS-232D Serial Ports

• Multi-Gigabit Transceivers (aka Rocket I/O)

• Access to user switches and LEDs

A block diagram of the Amirix AP1100 PCI Platform is shown in Figure 3.21. It should

be noted that this illustration shows only one IBM PowerPC (PPC405) core, however, in

reality there are two. Figure 3.22 shows an image of the platform to be used.

Figure 3.21: Amirix AP1100 PCI Platform block diagram
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The Xilinx Virtex-II Pro FPGA included in the platform is the largest device in the

Virtex-II Pro family. It contains 2 PowerPC processor blocks which are hard processors,

99216 logic cells, 44096 slices, 1378 Kb distributed RAM, 444 18×18 multiplier blocks, 444

18Kb block RAMs and 12 digital clock managers (DCMs) [50]. The device also supports

loading the 32-bit MicroBlaze processor core which is a soft processor, created out of the

con�gurable logic found on the FPGA. One special feature that is available on this particular

device is know as partial recon�guration (PR). Partial recon�guration is useful for applica-

tions that require di�erent designs to be loaded into the same area of a chip, or applications

that require the ability to change portions of a design without having to reset or recon�gure

the entire chip. Partial recon�guration can be accomplished in either slave selectMAP mode

or boundary-scan mode. Instead of resetting the device and doing a full con�guration, new

data is loaded into a speci�ed area of the chip, while the rest of the chip remains in operation.

More details on this FPGA can be found from the data sheets provided on [51].

Figure 3.22: Amirix AP1100 FPGA Development Board
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3.6 System Integration and Veri�cation

One of the most daunting and time consuming tasks involved in system design is the stage

of integration. The major challenge for the system integration was to create interfaces

that allowed the data �ow between di�erent modules to be scheduled. Another challenge

was to meet the critical timing constraints of the stereo vision system on the FPGA. A

�nal challenge was to boost the performance of the Stereo Extraction Module. Section

3.6.1 discusses the interfacing of the video-acquisition system with the video pre-processor.

Initially, an attempt was made to integrate the full system, including Stereo Extraction and

Object Tracking algorithms, into the design with the 30 fps video-acquisition system. It

was soon realized that timing and performance issues existed between the di�erent stages

in the system. The system was also limited in its debugging capabilities. Downloading

the hardware outputs at di�erent stages in the system was time consuming. In the end,

we decided to make improvements to the algorithms and spend more time integrating the

high-speed, �nal version of the system. This is overviewed in Section 3.6.2.

Collaborative research was done in liaison with the Vision & Image Dynamics Lab at the

University of Toronto for the joint implementation of the Stereo Extraction Module. Before

the joint work took place, the performance of the Stereo Extraction Module was approxi-

mately 39 fps. Improvements to the module were required to increase the performance and

to ultimately meet the goals of the system (i.e., operational at 200 fps). The modi�cations

made to the Stereo Extraction Module in collaboration with Vision & Image Dynamics Lab

will be discussed in Section 3.6.3. The modi�cations allow it to operate at 123 fps, meaning

that two cores of the Stereo Extraction Module operating in parallel can process the 200 fps

data produced by the video pre-processor. It should be mentioned that the Stereo Extraction

Module follows the DPML stereo algorithm developed by Cox et al. [1] and is overviewed in

Chapter 2. Veri�cation of the di�erent stages of the system was required to assure correct

functionality. Di�erent tools were utilized for each stage of testing and verifying. A list of

these tools can be found in Table 3.5.
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Table 3.5: Testing and debugging methods
Tool Purpose

Chipscope Pro Logic Analyzer To monitor the status of internal FPGA signals

ModelSim XE Simulator To test and verify the operation of HDL for a component or system

HP Logic Analyzer To view the status of signals from pins external of the FPGA

SRAM Frame Download To verify the correct functionality of di�erent stages in the system

3.6.1 Hardware Interfacing

The interfacing portion of the system integration required developing the video pre-processor

in a Task-to-architecture design manner. The system was developed based on how often

the data and control signals were produced by the video-acquisition system. The video-

acquisition system's data rate was analyzed by inserting a Chipscope Pro Logic Analyzer

IP-core into its design, this allowed us to verify that pixel and address information appeared

every two clock cycles for the left and right camera, simultaneously. Figure 3.23 shows

the interfacing of the video-acquisition system and the video pre-processor. The address

information consists of the row and column values, each row and column value is represented

with a 12-bit vector, while the data represents the 8-bit grayscale pixel intensity.

Figure 3.23: Interfacing of the video-acquisition system and video pre-processor

The video pre-processor output was veri�ed using the SRAM Frame Download feature

available on the FastTrack Image Grabber GUI. This allowed us to compare the left and

right recti�ed images side by side, to verify corresponding points (features) appear on the

same scanlines. Furthermore, another method for verifying the VPP output, although in a

naïve manner, was by displaying the recti�ed images using the VGA Output feature found

on the SFGv2.
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An issue of concern was noticed during this stage, as the output of the recti�ed right

image was skewed vertically. The reason this occurred was related to the locations of the

I/O pads for the components used in the system thus far. As the system required computing

at a high performance, long delay paths between components did not meet the system

timing requirements of an 8 ns clock period. The issue was resolved by adding global timing

constraints to the system design, which places additional restrictions to the design tool for

placing routes. The addition of the constraint minimized the delay paths and routes, at the

cost of longer mapping and place-and-route times. Figure 3.24 shows a comparison of the

recti�ed right image with and without global timing constraints. A di�erence in the scene

is noticed as the images were captured at di�erent times.

(a) global timing constraints (b) no timing constraints

Figure 3.24: Comparison of recti�ed right image with timing constraints

3.6.2 Software Integration

This stage in the integration process involved utilizing the Stereo Extraction IP-core pro-

vided by the Vision & Image Dynamics Lab from the University of Toronto. The objective

here was to utilize the existing hardware interface between the video-acquisition system and

video pre-processor to further expand the system by integrating the Stereo Extraction Mod-

ule (SEM). This allows the system to be capable of capturing stereo images, transforming

the captured images to have points (features) placed on the same scanline and extracting

disparity information.
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The modi�cations made to the SEM allows it to process information at higher frame-

rates. It should be mentioned that I assisted S. Sabihuddin to make the modi�cations.

Initially, the maximum achievable clock frequency of the system was 50 MHz and resulted

in a performance of 39 fps. After the modi�cations were made to the SEM, the maximum

achievable clock frequency increased to 83.3 MHz and the performance improved to 123 fps.

A discussion of the changes made to improve the performance of the SEM will be talked

about in Section 3.6.3.

To allow for a simple and robust integration of the system, a reduction was made to the

system clock frequency. A 62.5 MHz clock frequency was applied to the system, as it would

be di�cult to generate and operate the SFGv2 with a 83.3 MHz supply. The reduced clock

frequency was guaranteed to allow correct functionality of all components in the system as

global timing constraints were incorporated into this design. The implementation of the

SEM allows processing di�erent ranges of disparity. The disparity ranges generated by the

SEM fall between 16 and 128 pixels. This is set via parameters in the design using VHDL

code. The image resolution is another parameter that can be adjusted.

The integration of the SEM with the existing VPP system required an interface to provide

temporary storage of a common scanline for the left and right recti�ed pixels from the VPP

output. The temporary storage is needed as the SEM processes one scanline at a time and

accesses the data much faster than the VPP produces it. Having this type of temporary

memory allows each module to read and write data as they desire without any type of access

hazard. The interface, known as the Stereo Controller, contains two internal BRAMs. It

operates as follows: for any scanline, one of the BRAMs is set to be in read mode, which

allows the SEM access to left and right view pixel information. While the other BRAM is set

to be in write mode, this allows new recti�ed pixels for the left and right views to be saved.

As the scanline �nishes, the two BRAMs switch their modes, so that pixels previously used

by the SEM are replaced with more recent data produced by the VPP. This double bu�ering

approach occurs every scanline thereafter. The Stereo Controller has a dual purpose in the
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interface, aside from providing temporary storage for pixels, it also provides control signals

which are necessary to read computed disparity values from the SEM's disparity bu�er.

The control signals provide the disparity read assertion (read) signal and the disparity read

address (xaddr) to the SEM. The symbols of the Stereo Controller and SEM are shown in

Figure 3.25. A timeout signal was incorporated into the design of the SEM in order to

synchronize the operation of the video pre-processor with the Stereo Extraction Module.

Figure 3.25: Symbols of the Stereo Controller and Stereo Extraction Module

This was required since the computation time for the SEM is based on an optimal matching

path taken for each scanline. The time taken to traverse this path is variable. The timeout

is designed to occur at periodic intervals, which interrupts the operation of the SEM if it

has not yet �nished processing.

The system was �rst tested by removing the video-acquisition system from the design

and loading the memory components in the Stereo Controller with static scanline pairs,

from a known test set, to mimic a stereo-pair from the camera. This allowed us to verify

the operation of the Stereo Controller's design as it interacted with the SEM. This test also

allowed us to verify the operation of the SEM with the data set used, by comparing the

disparity output versus a hardware simulation for the same data set. The data used as the

static scanline is a standard data set (from Tsukuba University) used for disparity algorithm

69



testing by Scharstein et al. [2]. Following this, the video-acquisition system was inserted

into the design and veri�ed for correct functionality with the SRAM Frame download and

VGA Output tools. The block diagram of the system is shown in Figure 3.26.

Figure 3.26: Block diagram of integrated stereo vision system

During the integration phase of the SEM a few obstacles were noticed. First, an issue

arose in the displaying of the disparity information to the VGA output. The image result-

ing on the display appeared as though the disparity information was overlapped with the

background image of the scene, see Figure 3.27. It was quickly realized that this occurred

due to a problem with the timing of the SRAM module. The SEM produces a new disparity

value every clock cycle (i.e., 1 c.c./data), the SRAM on the other hand writes information

every two clock cycles (i.e., 2 c.c./data). This problem was resolved by doubling the clock

frequency to the SRAM controller and SRAM chip (i.e., 125 MHz). The resulting change

allowed the disparity information to show as seen in Figure 3.28. Another problem which

was relatively simple, but caused a great deal of headaches, occurred in the output of the

SRAM Frame download. The information represented in the image did not correctly rep-

resent the disparity information produced in the hardware simulation. The problem was

resolved by scaling the disparity values between 0 - 255 (i.e., an 8-bit intensity). The value

of the scaling factor depends on the maximum disparity, Dmax. For example, the scaling

factors for Dmax = 16 and Dmax = 32 would be 16 and 8, respectively.
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Figure 3.27: Hardware download of disparity meshed with the scene

Figure 3.28: Hardware download of correct disparity information

3.6.3 Stereo Extraction Module Modi�cations

The development of the Stereo Extraction Module was done in an iterative process in a liaison

between research groups at the University of Toronto and Ryerson University. The initial

development phase of the system achieved frame-rates of approximately 39 fps on a 50MHz

clock frequency. However, to meet the goals of this system, changes to the architecture of the

SEM were necessary to allow processing of higher frame-rates at increased clock frequencies.
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A number of problems were noticed in the initial design of the SEM. A major problem

in the design was the large amount of logic resources utilized to structure the match matrix

memory. The memory used for the initial design consisted of distributed RAM, which is

composed of the logical blocks on the FPGA. The Virtex-II Pro FPGA, however, comes

equipped with a large volume of customized memory blocks (i.e., BRAMs) for such purposes.

Thus, replacing the match matrix memory with BRAMs would make valuable resources on

the chip free for other purposes. Furthermore, this change decreased the implementation

time for the design into a bitstream �le. On the downside, changes to the memory structure

required modi�cations to be made to the hardware used for determining the optimal path.

The initial implementation accessed the match matrix memory with asynchronous reads.

With the replacement of the distributed RAM to the BRAM, asynchronous reads were no

longer possible, as BRAMs are fully synchronous memory devices. The solution to this

problem is described in the following section. Another problem was that the operational

frequency of the SEM was limited by longest combinational logic path. This path was used

for the computation of the non-occlusion cost and selection of the minimum cost value.

This problem was solved by introducing pipelining, which inserts registers in between the

combinational logic and allows using a higher clock frequency. Additional speedups to the

SEM could be achieved by interleaving the forward-pass and backward-pass phases of the

SEM. These modi�cations also resulted in changes to the state machine of the SEM. A �nal

modi�cation was required to the SEM to allow the data provided by the video pre-processor

to e�ect the outcome of the cost computation (i.e., if the pixel was marked Out-of-Range).

These problems and modi�cations will be discussed in more detail in the following sections.

3.6.3.1 Backward-pass Hardware Re-design

As the match matrix memory has been replaced with BRAMs to save valuable logic re-

sources, the issue of reading memory synchronously required design changes. The prior

design, which used distributed RAM, could access the match matrix memory (MBUF) dur-
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ing the backward-pass phase at will (asynchronously). The new synchronous design requires

a one clock cycle delay to retrieve data from the match matrix memory. To overcome this

problem, additional states were added to the state machine in order to pre-fetch data from

the match matrix memory. More details on the implementation of the pre-fetch hardware

can be found in [16].

3.6.3.2 Pipelining of the Forward-pass

In order to reduce the combinational delay within the longest chain of logic, pipelining was

used to register data within the chain. The longest path computes the non-occlusion cost

and selects the minimum cost value corresponding to the pixels compared. The process of

pipelining allows increasing the throughput of a system, similar to an automobile assembly

line with a small initial delay to �ll the pipe. A logical register, PBUF, was inserted into

the forward-pass of the SEM to disassemble the long chain of logic into two synchronous

blocks. The PBUF component contains registers to temporarily bu�er data and control

signals, which normally would be passed through each block simultaneously. Figure 3.29

shows the modi�ed forward-pass of the SEM. The addition of the PBUF component was

instrumental in improving the performance and increasing the operational frequency of the

SEM at the cost of some logic resources for its implementation. The forward-pass was tested

using ModelSim XE to verify that the cost values computed in the pipelined SEM matched

the cost values computed for the un-pipelined SEM using the same data set. For further

information about the design of the SEM please refer to [16].

3.6.3.3 Interleaving the SEM

Achieving high performance is often related to the amount of time saved to perform tasks

in an application. Further improving the performance of the SEM was made possible by

interleaving between the forward- and backward-pass phases of the SEM. The initial design

performed the forward-pass, which writes data into the cost and match matrix memories,
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Figure 3.29: Pipelined forward-pass hardware

followed by the backward-pass which only reads data from the match memory. During the

operation of the backward-pass, the hardware implemented for the forward-pass was idle and

unused. Modifying the design of the SEM to have the forward- and backward-pass operating

at the same time achieved the goal of interleaving. This modi�cation required duplicating

the match matrix memory, MBUF for the purpose of double bu�ering. The backward-pass

reads previous match memory data, while the forward-pass writes current match data. An

additional multiplexer is needed to alternate between the two match matrix memories to

allow proper interleaving. Figure A.5 (see Appendix A) shows the schematic of the SEM

after the changes for interleaving were made.

3.6.3.4 Modi�cations to the SEM State Machine

The modi�cations made to the Stereo Extraction Module for incorporating all the changes

described previously also e�ected the design of its state machine. An illustration of the SEM

state machine is shown in Figure 3.30. It should be mentioned that the circles within each

state are shaded di�erently to distinguish between the forward- and backward-pass phases.

The circles with a lighter shade represent the forward-pass, while the darker shade represents

the backward-pass.
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Figure 3.30: State machine of the Stereo Extraction Module

3.6.3.5 Modi�cation to PMIN Component for OOR

As described in Section 3.3.5, the Out-of-Range �ag is set high when the warped pixel is

invalid (i.e., it does not exist in the standard 640×480 image). Invalid pixels do not represent

any meaningful information within the scene and thus should be set to a maximum cost when

compared with pixels in the other view. To realize this in the SEM, one extra multiplexer

was added to the PMIN component, which sets the cost for matching to an Out-of-Range

pixel to be extremely high, thus having no correspondence.

3.7 Summary

In this chapter, we began by introducing the architecture of the video pre-processor, which

places points (features) on the same scanlines using warping transformations. The homog-

raphy matrices used to transform the original images were converted into 1st-order Taylor

Series approximations, thus avoiding performing divisions, which are expensive to realize on

FPGAs. Performing the warping transformations required storing portions of the original

images in temporary bu�ers. The 200 fps version of the video pre-processor utilized dual-

ported BRAMs for this temporary memory. This allows saving multiple scanlines into each

BRAM, which increases the e�ciency of the design compared to the 30 fps version. Follow-

ing this, the 30 fps and 200 fps versions of the video-acquisition system were explored. The
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200 fps video-acquisition system was designed to make debugging and veri�cation within the

system easy. For example, it included two VGA output ports for visualizing the captured

or recti�ed images. It also included a hardware image download feature, which allowed

analyzing the processed data in the form of a bitmap image. This was useful for many rea-

sons, one important reason being analyzing the error between the hardware produced output

and a known, ground truth, output. Next, we explored the features of the Amirix AP1100

Platform, which provides the basis for our implementation.

The integration of the complete system involved the video-acquisition system, the video

pre-processor and the Stereo Extraction Module. Ideally, two complete versions of the sys-

tem were to be developed. The �rst system was to be a low performance, 30 fps stereo vision

system. The second system a high performance, 200 fps stereo vision system. The initial

version presented many subtle issues that made it di�cult to integrate and test the func-

tionality of the system. The high performance, 200 fps stereo vision system was integrated

using the high throughput video-acquisition system (SFGv2), video pre-processor (SRM)

and Stereo Extraction Module (SEM).

Key modi�cations to the Stereo Extraction Module were then presented. A signi�cant

change in the memory structure of the match matrix allowed a vast amount of logic resources

to be saved. The result of replacing the memory structure required modifying the hardware

used in the backward-pass, to synchronously read the match memory and compute the

correct disparity value. A prefetching system was developed and implemented to assist with

the change to BRAMs. Another signi�cant change made by pipelining the forward-pass of

the design allows a higher clock frequency to be used with the system. An increase of the

clock frequency itself then allows the performance of the system to increase. Finally, an

additional step was used to further increase the performance of the design: by interleaving

the forward- and backward-pass phases of the design, useful time is saved and this allows a

higher throughput to be achieved. The modi�cations made to the Stereo Extraction Module

were vital to meeting the performance goals of the complete system.
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Chapter 4

Evaluation of Results

4.1 Introduction

In this chapter we investigate our design based on a set of metrics which include quality

of output, resource utilization, clock frequency and power consumption. In Section 4.2, we

evaluate the performance of the 30 fps and 200 fps Stereo Recti�cation Modules. Following

that we evaluate the di�erent implementations of the Stereo Extraction Module in Section

4.3. In Section 4.4, we evaluate the performance and resources utilized for the integration

of the high frame-rate stereo vision system. Finally, Section 4.5 summarizes the chapter's

contents.

4.2 Stereo Recti�cation Module

The Stereo Recti�cation Module was designed and implemented in order to transform the

images acquired from the video-acquisition system so that each point (feature) is placed on

the same scanline in the two views. The following sections evaluate the performance of the

30 fps and 200 fps implementations of the video pre-processor. The target device used for

realizing the SRM was the Xilinx Virtex-II Pro XC2VP100 FPGA.

The video pre-processor is analyzed in a number of di�erent categories. Important aspects
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for the design of this module include resource utilization, performance, power consumption,

precision of �xed point operators and the quality of the produced output. Each aspect is

further analyzed in each of the following sections.

4.2.1 Resource Utilization

The resources of the Xilinx FPGA are broken down into slices, 4-input LUTs, PowerPCs,

block RAMs, multipliers (MULT18×18) and global clocks. Furthermore, the 4-input LUTs

can be divided as logic, route-through and shift registers. Table 4.1 lists the resources utilized

for the initial SRM version interfaced with the 30 fps video-acquisition system. Table 4.2 lists

the resources utilized for the second SRM version interfaced with the 200 fps video-acquisition

system. It should be mentioned that the numbers are obtained from the Xilinx ISE Project

Navigator design summary. It can be seen from Tables 4.1 and 4.2, that signi�cant resource

Table 4.1: Resource utilization for the 30 fps SRM
Resource Used Available Percentage

Slices 4,985 44,096 11%
4-input LUTs 6,835 88,192 7%

BRAMs 24 444 5%
Multipliers 96 444 21%

Global Clocks 3 16 18%

Table 4.2: Resource utilization for the 200 fps SRM
Resource Used Available Percentage

Slices 1,845 44,096 4%
4-input LUTs 2,030 88,192 2%

BRAMs 20 444 4%
Multipliers 23 444 5%

Global Clocks 2 16 12%

savings have been attained with the 200 fps SRM design. The 200 fps SRM design was

made more e�cient than the 30 fps SRM design by utilizing dual-ported block RAMs. A

comparison of the block RAM utilization between the two designs shows as very similar.
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However, the 200 fps SRM was designed to bu�er more scanlines before processing began

than the 30 fps SRM. This was due to the camera parameters which measured the relative

placement of the image sensors and lens housing. If both video-acquisition systems had the

same camera parameters, the design of the 30 fps SRM would have utilized many more block

RAM instances than the 200 fps version.

Generally, the amount of resources used to implement the SRM is quite reasonable. The

most expensive hardware blocks found on the FPGA are the slice logic, multipliers and block

RAMs. These three resources are used to under 10% of their total capacity in the 200 fps

SRM design. This is economical and a good path for integrating the other components of

the system as mentioned in Chapter 3.

4.2.2 Performance

Each version of the Stereo Recti�cation Module was designed based on the characteristics of

the video-acquisition system. The 30 fps SRM design was �xed to utilize a 62.5 MHz clock

frequency. This performance of the SRM is determined by the formula in Equation 4.1,

where P, N, M, R, L, and Fclk represent the performance [fps], number of pixels per scanline[
pixels

scanline

]
, number of scanlines [scanlines], pixel time

[
clock cycles

pixel

]
, latency [clock cycles] and

operational frequency [MHz], respectively. The 30 fps SRM uses a 992× 480 image, 4 clock

cycles/pixel, 17 clock cycle latency, and 62.5 MHz system clock which provides a performance

of 32.8 fps.

P =

[
(NMR + L)

Fclk

]−1

(4.1)

The 200 fps video-acquisition system was designed to utilize a 125 MHz clock signal. In

order to keep up with the high frame-rate data capture, the 200 fps SRM was also designed

to use this clock signal. The performance of this version of the video pre-processor was

also computed using Equation 4.1. The 200 fps SRM uses a 640 × 480 image, 2 clock
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cycles/pixel, 17 clock cycle latency, and 125 MHz system clock. An advantage of the high

frame-rate video-acquisition system allows the performance to be changed via system clock

parameters. Table 4.3 shows the performance of the SRM using the di�erent system clock

frequencies.

Table 4.3: Performances of the high frame-rate SRM
System Clock (MHz) Performance (fps)

125 203.4
62.5 101.7
31.25 50.8
15.625 25.4

4.2.3 Power Consumption

The power consumed by FPGAs can be broken down into two components, dynamic and

static (quiescent) power. The dynamic power consumption of a digital design is a function

related to the supply voltage, capacitance and switching activity [52]. For FPGAs, the

power consumption is also dependent on the amount of time the resource is being utilized.

Equation 4.2 shows the FPGA power as a function of capacitance C, supply voltage VDD,

resource utilization U, and switching activity f. Now for each architectural resource i, the

total switch capacitance is the product of the e�ective capacitance Ceff−i, the number of

instances utilized in the design Ui, and the average switching frequency across all instances

fi. Unused elements found on the FPGA have a base rate of power consumption identi�ed

by the static power.

P = V 2
DD

N∑
i=0

Ceff−iUifi (4.2)

The power consumed by the Stereo Recti�cation Module was estimated using XPower, which

is a utility available with the Xilinx ISE package. XPower uses gate level simulations of the

design to estimate the average switching activity of the resources and power consumption
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over time. The simulations allow XPower to estimate the dynamic power consumption.

The Stereo Recti�cation Module operating at 30 fps utilizes the resources seen in Table

4.1 and utilizes the power shown in Table 4.4. This same table indicates the amount of power

consumed by the 200 fps Stereo Recti�cation Module, and its resources are shown in Table

4.2. The e�ciency in the design of the later SRM utilized less resources on the FPGA and

also played a major factor in decreasing the power consumption. It can be seen from Table

4.4 that the later SRM required less power in all three categories.

Table 4.4: Power consumption of the SRM
Total Power Dynamic Power Static Power

30 fps SRM 463.16 mW 258.79 mW 204.38 mW
200 fps SRM 432.94 mW 232.07 mW 200.87 mW

4.2.4 Fixed-point Precision

The use of �xed-point operators versus �oating-point operators was chosen due to the fact

that they perform arithmetic operations faster and consume less area for their implementa-

tions. The precision of the �xed-point operator is based on the number of bits used for the

fractional portion of the operator. For our implementation of the �xed point operator, we

required 1-bit for the sign, 10-bits for the magnitude and n-bits for the fraction. The value

of n is decided by evaluating the amount of resources required and precision of the operator.

Since the operations of addition and multiplication use dedicated arithmetic blocks on the

FPGA, the total size of the �xed-point number would have an impact on the amount of

resources (area) required for its implementation. Table 4.5 shows the resources required for

the implementation of one �xed-point multiplier and obtained using Xilinx Project Naviga-

tor. The resources for each x -bit operator, where x = 1 + 10 + n, are broken down into

MULT18×18s, slices, slice �ip-�ops (FFs) and 4-input LUTs. The table also indicates the

precision of the x -bit �xed-point multiplier with its associated percentage error. The error

computed indicates the amount of error for the fractional portion of the �xed-point value.
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The Figure 4.1 shows a plot of the precision vs. area for the �xed-point operators. The

plot shows the comparison of the precision with area for the multiplication operation, as the

accuracy of this operation is more vital than for addition.

Table 4.5: Resources used by x -bit �xed-point multipliers
x MULT18×18s Slices Slice FFs 4-input LUTs % Error

32 4 137 160 120 0.01
30 4 126 150 108 0.01
28 4 114 140 95 0.01
26 4 103 130 81 0.01
24 4 91 120 67 0.01
22 3 79 110 54 0.01
20 3 69 100 44 0.13
18 1 52 90 18 0.16
16 1 46 80 16 1.91
14 1 40 70 14 11.4
12 1 34 60 12 50.0

In Figure 4.1, the precision of the �xed-point operator is indicated by the dashed line,

while the resources utilized is indicated by the solid line. The �gure shows that as the number

of bits for the �xed-point operator increases, the precision of the operator also increases

(i.e., less error). However, when the operator exceeds a certain amount of bits it can be

noticed that the precision reaches a threshold and begins to stabilize. Thus, we chose 18-bit

�xed-point operators for our implementation of adders and multipliers, as they provided

computations with reasonably low errors and very low consumption of logical resources. It

should be pointed out that a �spike� appears in the plot of the resource utilization, this

occurs due to the jump from 1 MULT18×18 to 3 MULT18×18s which requires additional

glue logic.

4.2.5 Quality: Hardware vs. Software

The veri�cation of the Stereo Recti�cation Module operating at 30 fps was di�cult. The

system did not have the means to download the produced output into a readable manner.

One naïve way to verify the output of the 30 fps SRM was by displaying the images onto
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Figure 4.1: Plot of Precision vs. Area for the �xed-point operator

the VGA monitor. We were able to visually inspect that corresponding points from the two

views were placed on the same scanline using a switch on the VGA output module. The

information displayed on the VGA monitor was only capable of sending 2-bits of information

for each colour channel due to the amount of I/O pads available from the Amirix Daughter

Board. Normally, 8-bits of information are displayed for each channel. This accounted

for some degradation in the images displayed. Figure 4.2 shows the left and right view

recti�cation output as seen on the VGA monitor. It can be noticed that a green bar appears

to be going down the left side of the each image. The green bar represents pixels which were

computed to be Out-of-Range.

The design of the 200 fps video-acquisition system made verifying the operation of the

high frame-rate Stereo Recti�cation Module much more convenient. The hardware download

and visualization features developed for the video-acquisition system allowed the two recti�ed

images to be saved as bitmap �les and viewed simultaneously on two VGA monitors. Figure

4.3 shows the raw (original) images captured by the 200 fps video-acquisition system. By

visually inspecting these images, one can notice that points in left image are slightly higher
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(a) left view (b) right view

Figure 4.2: 30 fps SRM outputs displayed on a VGA monitor

than in the right image, while the artifacts that appear are due to the Bayer pattern and

high regions of saturation. Figure 4.4 shows the left and right view recti�cation outputs

produced by the high frame-rate SRM. The images produced by the high frame-rate SRM

produces, and displays, a higher quality image than the previous version (i.e., 30 fps SRM).

The monochrome information uses 8-bits to represent 256 di�erent shades. A comparison of

the recti�ed images produced by the hardware can be compared pixel by pixel against the

software simulation. Figure 4.5 shows the left and right view recti�cation outputs produced

in software.

An analysis of the hardware and software implementations for stereo image recti�ca-

tion can be made using intensity histograms. Intensity histograms are used to tabulate

and display the frequency of occurrence for each level of brightness. They are also used

to determine if certain images can be enhanced, compressed or segmented. On the other

hand, error histograms show the error distribution of the hardware output as compared to

a reference implementation in software. The error histograms can be described as follows:

E(x, y) = P FPGA
rect (x, y)− P SW

rect (x, y), where E(x, y) is the error, P FPGA
rect (x, y) and P SW

rect (x, y)

represent the pixel intensity of the recti�ed hardware (FPGA) and software images, respec-

tively, at a particular pixel location (x, y). Figure 4.6a shows the error histogram for the left

recti�ed image of Figures 4.4a and 4.5a. Similarly, Figure 4.6b shows the intensity histogram

for the right recti�ed image of Figures 4.4b and 4.5b. The cause of the errors are due to
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boundary e�ects. The boundary e�ects are caused by the

(a) left view (b) right view

Figure 4.3: Original images captured by the Stereo Frame Grabber v.2

(a) left view (b) right view

Figure 4.4: Outputs of the 200 fps Stereo Recti�cation Module

(a) left view (b) right view

Figure 4.5: Outputs generated by software
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limited precision of the �xed-point operators in the calculations of the Image Warp and

Bilinear Interpolation modules. The root mean squared error (RMSE) of the error histograms

are computed using Equation 4.3 and the results are shown in Table 4.6.

(a) left image (b) right image

Figure 4.6: Error histograms

RMSE =

√√√√ N∑
(x,y)

E2(x, y)

N
(4.3)

Table 4.6: RMSE of the error histograms
Error Histogram RMSE

Left 6.8381
Right 7.5596

4.3 Stereo Extraction Module

The Stereo Extraction Module is designed to obtain depth information from the scene in

view. It uses the data provided by the Stereo Recti�cation Module as input to perform a 1-

D search for pixel correspondence. The Stereo Extraction Module's performance is measured

in a number of di�erent categories. Important metrics for this module include performance
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in frames per second, which is further analyzed in Section 4.3.1, resource utilization discussed

in Section 4.3.2 and the quality of the output, found in Section 4.3.3. The target device used

for realizing this module is the Xilinx Virtex-II Pro XC2VP100 FPGA.

4.3.1 Performance

The initial implementation of the Stereo Extraction Module provided low-speed performance.

The throughput of this implementation was calculated with Equation 4.4. The total perfor-

mance achieved using Dmax = 128 pixels, an image resolution of 640×480 and Fclk = 50 MHz,

produced a frame rate of 39.38 fps [17, 42]. This performance was too slow to meet the end

requirements of the system, thus modi�cations were carried out to improve the performance.

The changes to the initial implementation consisted of pipelining and interleaving.

Pipelining the Stereo Extraction Module allowed breaking down the longest combina-

tional path for the computation of the non-occlusion cost and selecting the minimum cost

into smaller blocks. This resulted in the operational frequency, F clk, increasing to 83.3

MHz. Furthermore, with the same maximum disparity and image resolution, the frame rate

increased to 65.60 fps.

FPS =

[
(4N +

Dmax

2
− 1)

M

Fclk

]−1

(4.4)

A further modi�cation was made to allow the interleaving of the forward- and backward-

pass phases of the SEM. This allowed additional boosts to the module's performance. The

performance of the interleaved SEM is measured using Equation 4.5. The total performance

achieved using Dmax = 128 pixels, 640× 480 image and Fclk= 83.3 MHz, produced a frame

rate of 124.49 fps. Table 4.7 shows the performance of the interleaved SEM using 640× 480

images at di�erent disparity levels.

FPS =

[
2N + (2N + Dmax

2
− 1)M

Fclk

]−1

(4.5)

87



Table 4.7: SEM performance with varying disparity levels on 640× 480 images
Pixels of Disparity Performance (fps)

16 134.39
32 133.29
64 131.14
128 124.49

It it worth mentioning that the performance of the SEM can be further improved given

an FPGA device with more block RAM resources. The performance increase would be

achieved, hypothetically, by duplicating the current hardware so that two parallel SEMs

process subsequent scanlines. This would enable us to meet and exceed the goal of computing

disparity maps at 200 fps.

4.3.2 Resource Utilization

In this section, the amount of logic resources used for the di�erent implementations of the

Stereo Extraction Module will be investigated. First, a comparison of the resources utilized

for the distributed RAM and block RAM versions of the initial 39 fps SEM implementation

will be analyzed. Following this, the interleaved SEM will be investigated for images of

640× 480 resolution, at disparity ranges of 16, 32, 64 and 128 pixels.

4.3.2.1 Distributed RAM vs. Block RAM Implementation

In order to develop a complete system consisting of a chain of modules, it is absolutely

necessary that the design of each module is e�cient with respect to resources needed to

implement them. Two implementations of the initial Stereo Extraction Module processing

Dmax = 128 pixels on 640 × 480 images are evaluated. The �rst implementation uses dis-

tributed RAM (composed of logic resources on the FPGA) to create the match matrix bu�er

(MBUF), while the second implementation uses dedicated memory resources on the FPGA,

known as block RAM, to create MBUF. Table 4.8 shows the amount of slices, 4-input LUTs,

BRAMs and MULT18×18s required for each implementation, obtained from Xilinx Project
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Navigator. From the table it can be seen that the number of slices and 4-input LUTs used

in the BRAM implementation decreases by approximately 20% compared to the distributed

RAM version. On the other hand, the amount of BRAMs needed increases by 60%. This

increase in the BRAM resource is acceptable, as it reduces the complexity of the routing and

also allows a small increase in the operating frequency of the module.

Table 4.8: Resources utilized by the distributed and block RAM implementations (Dmax =
128) of the 39 fps SEM

Slices 4-input LUTs BRAMs MULT18×18s
Distributed RAM 22047 (49%) 44049 (49%) 0 65 (14%)

Block RAM 12956 (29%) 25911 (29%) 269 (60%) 65 (14%)

4.3.2.2 Interleaved Implementation

Table 4.9 shows the amount of resources required for each implementation of the Stereo

Extraction Module. The resources are categorized into slices, 4-input LUTs, BRAMs and

MULT18×18s and obtained via Xilinx Project Navigator. The Stereo Extraction Module

operates on 640 × 480 resolution images to produce depth estimates by �rst estimating

disparity. From Table 4.9 it is obvious that as the Stereo Extraction Module processes

higher disparity ranges, the amount of resources needed for the implementation on the Xilinx

XC2VP100 also increases. Looking at the Dmax = 128 pixel version, it can be noticed that

the amount of BRAMs is over mapped. Thus, it would be impossible to have a working

implementation on the current FPGA. Having a larger FPGA with larger BRAM capacities

would allow disparities of 128 pixels to be achieved. Plots of the data presented in Table

4.9 are shown in Figure 4.7. The plots show that the amount of resources required increases

roughly linearly with the disparity range.

4.3.3 Quality: Hardware vs. Software

In this section, the quality of the results produced by the Stereo Extraction Module will be

evaluated. First, the simulated hardware implementations of the distributed and block RAM
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Table 4.9: Interleaved SEM resource utilization for varying disparity levels on 640 × 480
resolution images
Pixels of Disparity Slices 4-input LUTs BRAMs MULT18×18s

16 2209 (5%) 3249 (3%) 72 (16%) 9 (2%)
32 3857 (8%) 6313 (7%) 136 (30%) 17 (3%)
64 7000 (15%) 10576 (11%) 264 (59%) 33 (7%)
128 14488 (32%) 23027 (26%) 520 (117%) 65 (14%)

(a) Resources: Slices and BRAMs (b) Resources: 4-input LUTs and Mult18x18s

Figure 4.7: Plots of Resources vs. Pixels of Disparity

versions of the module will be compared to a reference implementation in software, for Dmax

= 128 pixels on 640 × 480 images. Next, the hardware implementation of the interleaved

version of the Stereo Extraction Module will be compared with the software implementation.

For this the hardware and software implementations will be analyzed for disparity ranges of

16, 32, 64 and 128 pixels.

4.3.3.1 Distributed RAM vs. Block RAM Implementation

Figure 4.8 shows the comparison of the outputs produced by the distributed and block RAM

versions of the Stereo Extraction Module operating on 640 × 480 images at 128 pixels of

disparity. The Tsukuba data set is used as the basis for this comparison, as it is widely

used in the computer vision community and has ground truth disparity and occlusion maps.

Our results are compared with published results based on quality metrics including RMSE
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and percent bad matching pixels, metric proposed by Scharstein et al. [2, 53]. The results

produced by the distributed RAM version are compared to the block RAM version using

root mean squared error (RMSE) and percent

RMSE =

√√√√ 1

K

K∑
(x,y)

(Dest(x, y)−Dtrue(x, y))2 (4.6)

bad matching pixels. The RMSE is computed using Equation 4.6, while the percentage of

bad matching pixels is computed using the Heaviside step function seen in Equation 4.7. In

these equations, Dest(x, y) and Dtrue(x, y) represent the estimated and true disparity values

at a particular pixel location (x, y), respectively. Furthermore, K represents the number of

pixels in the image.

BAD =
1

K

K∑
(x,y)

H(|Dest(x, y)−Dtrue(x, y)| − δD) (4.7)

These metrics are used to measure stereo correspondence results by the computer vision

community. Table 4.10 indicates the amount of error of the block and distributed RAM

outputs when compared against Figures 4.12b and 4.12d, the software generated outputs.

The block RAM implementation gives slightly di�erent results due to the inability to initialize

the memory's contents on the �y. As a

Table 4.10: Accuracy of the distributed RAM and block RAM outputs
RMS Error % Bad Pixel Match

Distributed RAM 0.0183 0.0080
Block RAM 0.0255 0.0080

result, the backward-pass may initially traverse along a di�erent minimum cost path,

however, this path eventually converges to the same path as the distributed RAM imple-

mentation.
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(a) distributed RAM: disparity
map

(b) block RAM: disparity map

(c) distributed RAM: occlusion
map

(d) block RAM: occlusion map

Figure 4.8: Outputs of the distributed and block RAM versions of the SEM

4.3.3.2 Interleaved Implementation: Hardware vs. Software

The results produced in the hardware and software implementations of the interleaved Stereo

Extraction Module are compared in Figures 4.9, 4.10, 4.11, 4.12 for disparity ranges of 16,

32, 64 and 128 pixels, respectively. The Middlebury Stereo Vision Page [54] contains data

sets that have di�erent disparity ranges. The Tsukuba, Venus and Teddy data sets were

used. Table 4.11 indicates the amount of error for each stereo correspondence.

Table 4.11: Accuracy of the interleaved SEM
Dmax RMS Error % Bad Pixel Match

16 0.1747 0.1613
32 0.2043 0.1762
64 0.2401 0.1849
128 0.2787 0.1977
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(a) hardware disparity map (b) software disparity map

(c) hardware occlusion map (d) software occlusion map

Figure 4.9: Tsukuba: results of the interleaved SEM, Dmax = 16 pixels

(a) hardware disparity map (b) software disparity map

(c) hardware occlusion map (d) software occlusion map

Figure 4.10: Results of the interleaved SEM, Dmax= 32 pixels
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(a) hardware disparity map (b) software disparity map

(c) hardware occlusion map (d) software occlusion map

Figure 4.11: Results of the interleaved SEM, Dmax = 64 pixels

(a) hardware disparity map (b) software disparity map

(c) hardware occlusion map (d) software occlusion map

Figure 4.12: Results of the interleaved SEM, Dmax = 128 pixels
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4.4 System Integration

This section discusses di�erent metrics used for evaluating the integrated stereo vision sys-

tem. As mentioned in Chapter 3, to perform a simple and robust system integration it was

necessary to reduce the clock frequency of the system to 62.5 MHz. The parameters of the

system now consist of capturing and rectifying scene data at 100 fps, for images of 640×480

resolution. The performance of the full resolution interleaved SEM (Dmax = 64 pixels) was

degraded likewise due to the decrease in the system clock. It achieved a frame rate of 98.39

fps. This was computed using Equation 4.5.

The resources required for the fully integrated system were obtained from Xilinx Project

Navigator and are shown in Table 4.12. From this it can be seen that the largest occupied

resource on the FPGA is the block RAM. Approximately 36% of the BRAM instances are un-

used on the FPGA, of which approximately 30% would be consumed by the �nal component

of the system, the Object Tracking module [55]. It is often problematic when the block RAM

usage reaches close to 90% capacity, as it is di�cult for the place-and-route engine to route

the design. A similar approach as in Section 4.3.3 was taken to evaluate the accuracy of the

Table 4.12: Resource utilization for the integrated stereo vision system
Resource Used Available Percentage

Slices 8717 44,096 19%
4-input LUTs 17433 88,192 19%

BRAMs 286 444 64%
Multipliers 47 444 10%

Global Clocks 4 16 25%

high frame-rate stereo vision system. Figure 4.13 shows the results obtained from the FPGA

and the hardware simulation. The outputs are generated using a stereo image pair that was

captured using the 100 fps video-acquisition system. The results from software simulation

served as the ground truth for results produced by the FPGA and hardware simulation. Ta-

ble 4.13 shows the accuracy of the FPGA and hardware simulation results. From this table

and through visual inspection of the occlusion maps it can be noticed that some errors exist.
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A major contributor to the errors can be associated with the timing delays within the FPGA.

Due to the large design, the length of many routes exceed the requirement and cause devi-

ated results. As an experiment, the design was testing using a more recent and faster device.

The FPGA chosen was the Xilinx Virtex-5 XC5VLX330T. The synthesis results indicated

that the clock period would decrease from 20.525ns to 13.105ns, which would ensure that all

routes would meet the timing requirements. The synthesis results were obtained from Xilinx

Project Navigator's synthesis report �le. Another possible reason for the di�erence can be

due to Bayer interpolation. Some issues that arose during the integration and which may

(a) FPGA disparity map (b) hardware simulation disparity map

(c) FPGA occlusion map (d) hardware simulation occlusion map

Figure 4.13: Results of the integrated stereo vision system, Dmax = 64 pixels

have lead to slightly poorer results include connection problems on the PCI Mezzanine Card

slot which added signal interference to the input image. Another issue was the movement of

the �xed-focal length lenses which caused the camera parameters to change and hence alter
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the correctness of the recti�cation. Further necessary improvements to the fully integrated

stereo vision system include interpolating the Bayer pattern for the raw (original) image

and using C-mount lenses, which would provide improved stability and durability over the

current �xed-focal length lenses. In comparison to the stereo vision systems introduced in

Table 4.13: Quality of the hardware simulation and FPGA hardware download
RMS Error % Bad Pixel Match

hardware simulation 0.2091 0.0153
FPGA download 1.0688 4.1008

Section 2.6.3, this system is the only stereo solution that uses an algorithm that gives a

per-scanline global optimization of the cost function. Furthermore, the existing systems do

not have additional constraints like the ordering constraint. Also, it should be mentioned

that this is only stereo system that has published results based on the standard test sets

from [54].

4.5 Summary

In Chapter 4, we began by measuring the performance, area, power consumption and accu-

racy of the two versions of the Stereo Recti�cation Module. We observed that the 200 fps

SRM performed faster, used less resources on the FPGA and also consumed less power than

the original 30 fps SRM. A comparison was performed to select the appropriate number of

fractional-bits needed for the �xed-point operators. In the end, 18-bit �xed-point operators

proved as the best choice with respect to precision and logic utilization. Furthermore, the

improvements made to the SFGv2 allowed analyzing the warped images, by downloading

them using the SRAM frame download feature, to estimate their accuracy.

Next, we evaluated the di�erent implementations of the Stereo Extraction Module. The

metrics used for the evaluation included performance, resource utilization and quality. The

comparisons demonstrated that the interleaved hardware implementation of the Stereo Ex-

traction Module vastly out-performed the initial and intermediate versions of the Stereo
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Extraction Module with respect to speed, while producing results with comparable accuracy

to the best existing stereo correspondence algorithms on standard stereo data sets [16].

Finally, the fully integrated high frame-rate stereo vision system was presented. The

limitations of the block RAM resources on the Xilinx XC2VP100 FPGA did not allow SEM

implementations over Dmax = 64 for images of 640 × 480 resolution. Improvements to the

results would be achieved by performing Bayer interpolation on the un-processed input image,

and also by utilizing an FPGA with larger block RAM resources.
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Chapter 5

Conclusion and Future Work

This thesis presents the implementation of a high frame-rate stereo vision system, which

includes a high frame-rate stereo camera (video-acquisition system), a stereo image recti-

�cation module (video pre-processor) and a stereo extraction module. The novelty of this

system, compared to other state-of-the-art systems, is noticed in its high frame-rate and

quality of output. The implementation demonstrates that high frame-rate disparity esti-

mations can be obtained while maintaining a high degree of accuracy. It is the only stereo

system that has published results based on the standard test sets from [54]. An evaluation

of this system indicates that disparity estimations are produced at frame-rates of 98.39 fps

on 640× 480 resolution images with a maximum disparity range of 64 pixels. These �gures

can easily be extended to 200 fps on 640× 480 resolution images with a maximum disparity

range of 128 pixels, but utilizing an FPGA with larger resources. Existing solutions perform

well at video rate (i.e., 30 fps), while others with higher performances are compromised by

their accuracy.

The implementation of the system includes a stereo image recti�cation module which

places corresponding points (features) in the two views on the same scanline, via a collineation

computed from the estimated epipolar geometry based on camera calibration. This collineation

allows for an easier correspondence search between pixels in the left and right images, for
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the task of triangulation. The hardware design of the stereo image recti�cation module is

parallelized in such a manner that both the left and right view pixels are produced simulta-

neously, to maximize the throughput. The design of the stereo extraction module exploits

massive parallelization of functional units in order to achieve high frame-rate performance.

The hardware implementation of the DPML stereo algorithm in [17, 3] was modi�ed by in-

troducing pipelining in two phases of the unit to decrease long combinational logic chains and

to accommodate reading synchronous memories. The integration of the stereo vision system

required creating an interface between the video-acquisition system and the stereo image

recti�cation module. A second interface was required between the stereo image recti�cation

module and the stereo extraction module.

Future Work

The initial goal of this system was to track and follow objects at high-speeds, equivalent to

200 fps, however resource limitations on the Xilinx Virtex-II Pro FPGA allowed for speeds

closer to 100 fps. It should be mentioned that the object tracking module has been developed

by Belshaw [55], and is currently in the process of being integrated with the existing system.

The system has shown successes in many di�erent aspects compared to other state-of-the-

art hardware stereo systems. However, further improvements can be made to achieve and

exceed the target speed of 200 fps. The �rst issue at hand, to make this possible, is to

select an FPGA with larger resources. Speci�cally, one with a greater density of internal

memories such as BRAMs, as this was the bottleneck in the implementation of the DPML

stereo matching algorithm. The selection of a larger FPGA will allow replicating the stereo

extraction module, in order to perform operations on two successive scanlines in parallel, thus

achieving and exceeding the targeted 200 fps throughput. At the same time, the use of a

larger FPGA will also help in improving the quality of the results. It will allow implementing

the stereo extraction module with a 128 pixel disparity range on a 640×480 resolution image.

Additionally, the quality of the results can be improved by performing Bayer interpolation
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to obtain a better estimation of the pixel intensities. This change will help improve pixel

matching for the estimation of depth in the scene. A �nal improvement to the system involves

replacing the current �xed-focal length lenses, which are susceptible to moving, with rigid

C-mount lenses which have an enclosure with more support and stability. This will make

the camera more rigid and thus the validity of the camera calibration will improve.
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Appendix A

Figure A.1: Response of cells to di�erent binocular disparities [6]
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Figure A.2: Selection of the four extreme corners of the checkerboard pattern
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Figure A.3: Extracted corners of the checkerboard pattern

Figure A.4: A Xilinx logic cell
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Figure A.5: Schematic of the interleaved Stereo Extraction Module

106



Appendix B

Algorithm 1 Forward-pass phase for DPML stereo correspondence formulation developed
by Cox et al. [1]

% I n i t i a l i z e match and co s t ma t r i c i e s
for c = 1 to N do

MM(c , 1 : c ) = 2 ;
MM( c , ( c+1):N) = 1 ;
CM( c :N, c ) = ( ( ( c−1):(N−1))∗OC) ;
CM( c , c :N) = ( ( ( c−1):(N−1))∗OC) ;

end for ;
% For each p i x e l in a row compute NOC
for l = 2 to N do

for r = l to ( l−Dmax) do
min1 = CM( r−1, l −1) + NOC;
min2 = CM( r−1, l ) + OC;
min3 = CM( r , l −1) + OC;
CM( r , l ) = min(min1 , min2 , min3 ) = cmin ;
i f min1 == cmin then

MM( r , l ) = 0 ; %No occ l u s i on
else i f min2 == cmin then

MM( r , l ) = 1 ; %Right o c c l u s i on
else i f min3 == cmin then

MM( r , l ) = 1 ; %Le f t o c c l u s i on
end i f

end for
end for
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Algorithm 2 Backward-pass phase for DPML stereo correspondence formulation developed
by Cox et al. [1]

p = N; q = N;
while p != 1 and q != 1 do

i f MM(p , q ) == 0 then
DISP(q ) = abs (p−q ) ;
OCC(q ) = 0 ;
p −−;
q −−;

else i f MM(p , q ) == 1 then
OCC(q ) = 1 ;
p −−;

else i f MM(p , q ) == 2 then
OCC(q ) = 1 ;
q −−;

end i f
end while
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Glossary

ASIC Application Speci�c Integrated Circuit

BRAM Block selectRAM

CLB Con�gurable Logic Block

CMOS Complementary Metal-Oxide Semiconductor

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DCM Digital Clock Manager

DPML Dynamic Programming Maximum Likelihood

DSP Digital Signal Processor

FF Flip-Flop

FIFO First In, First Out

FPGA Field Programmable Gate Array

FPS Frames Per Second

GUI Graphical User Interface
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I/O Input/Output

IC Integrated Circuit

ICM Image Capture Module

IP Intellectual Property

LCS Longest Common Subsequence

LED Light-Emitting Diode

LiDAR Light Detection and Ranging

LUT Look-up Table

LVDS Low-Voltage Di�erential Signaling

MAC Multiply-Accumulate

MB Megabyte

MHz MegaHertz

MSB Most Signi�cant Bit

NCC Normalized Cross-Correlation

OOR Out-of-Range

PC Personal Computer

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

PR Partial Recon�guration

RAM Random Access Memory
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RGB Red-Green-Blue

RMSE Root Mean Squared Error

RTOS Real-Time Operating System

SAD Sum of Absolute Di�erence

SEM Stereo Extraction Module

SFGv1 Stereo Frame Grabber v.1

SFGv2 Stereo Frame Grabber v.2

SRAM Static RAM

SRM Stereo Recti�cation Module

SSD Sum of Squared Di�erence

SVD Singular Value Decomposition

TSP Taylor Series Polynomial

USB Universal Serial Bus

VGA Video Graphics Array

VHDL Very High Speed Integrated Circuit Hardware Description Language

VPM Video Processing Module

VPP Video Pre-processor
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