
Journal of Instruction-Level Parallelism 2 (2000) 1-6 Submitted 2/2000; published 5/2000

DIVA: A Dynamic Approach to Microprocessor Veri�cation

Todd M. Austin taustin@eecs.umich.edu

Advanced Computer Architecture Laboratory

University of Michigan

1301 Beal Avenue

Ann Arbor, MI 48109 USA

Abstract

Building a high-performance microprocessor presents many reliability challenges. De-

signers must verify the correctness of large complex systems and construct implementations

that work reliably in varied (and occasionally adverse) operating conditions. To further

complicate this task, deep submicron fabrication technologies present new reliability chal-

lenges in the form of degraded signal quality and logic failures caused by natural radiation

interference.

In this paper, we introduce dynamic veri�cation, a novel microarchitectural technique

that can signi�cantly reduce the burden of correctness in microprocessor designs. The ap-

proach works by augmenting the commit phase of the processor pipeline with a functional

checker unit. The functional checker veri�es the correctness of the core processor's compu-

tation, permitting only correct results to commit. In the event of an incorrect result, the

checker �xes the error and
ushes any incorrect results from the core using the existing

speculation recovery mechanism. Overall design costs can be dramatically reduced because

designers need only verify the correctness of the checker unit. The core processor need not

be fully correct, only suÆciently correct that its errors do not adversely a�ect performance.

We detail the DIVA checker architecture, a design optimized for simplicity and low cost.

Using detailed timing simulation, we show that even resource-frugal DIVA checkers have

little impact on core processor performance. To make the case for reduced veri�cation costs,

we argue that the DIVA checker should lend itself to functional and electrical veri�cation

better than a complex core processor. Finally, future applications of dynamic veri�cation

are suggested.

1. Introduction

Reliable operation is perhaps the single most important attribute of any computer system,

followed closely by performance and cost. Users need to be able to trust that when the

processor is put to a task the results it renders are correct. If this is not the case, there

can be serious repercussions, ranging from disgruntled users to �nancial damage to loss

of life. There have been a number of high-pro�le examples of faulty processor designs.

Perhaps the most publicized case was the Intel Pentium FDIV bug in which an infrequently

occurring error caused erroneous results in some
oating point divides [1]. More recently, the

MIPS R10000 microprocessor was recalled early in its introduction due to implementation

problems [2]. These faulty parts resulted in bad press, lawsuits, and reduced customer

con�dence. In most cases, the manufacturers replaced the faulty parts with �xed ones, but

only at great expense. For example, Intel made available replacement Pentium processors

Austin

to any customer that had a faulty part and requested a replacement, at an estimated cost

of $475 million [3].

1.1 Designing Correct Processors

To avoid reliability hazards, chip designers spend considerable resources at design and

fabrication time to verify the correct operation of parts. They do this by applying functional

and electrical veri�cation to their designs. 1

Functional Veri�cation Functional veri�cation occurs at design time. The process

strives to guarantee that a design is correct, i.e., for any starting state and inputs, the

design will transition to the correct next state. It is quite diÆcult to make this guarantee

due to the immense size of the test space for modern microprocessors. For example, a

microprocessor with 32 32-bit registers, 8k-byte instruction and data caches, and 300 pins

would have a test space with at least 2132396 starting states and up to 2300 transition edges

emanating from each state. Moreover, much of the behavior in this test space is not fully

de�ned, leaving in question what constitutes a correct design.

Functional veri�cation is often implemented with simulation-based testing. A model of

the processor being designed executes a series of tests and compares the model's results to

the expected results. Tests are constructed to provide good coverage of the processor test

space. Unfortunately, design errors sometimes slip through this testing process due to the

immense size of the test space. To minimize the probability of this happening, designers

employ various techniques to improve the quality of veri�cation including co-simulation [4],

coverage analysis [4], random test generation [5], and model-driven test generation [6].

A recent development called formal veri�cation [7] works to increase test space coverage

by using formal methods to prove that a design is correct. Due to the large number of

states that can be tested with a single proof, the approach can be much more eÆcient

than simulation-based testing. In some cases it is even possible to completely verify a

design. However, this level of success is usually reserved for in-order issue pipelines or

simple out-of-order pipelines with small window sizes. Complete formal veri�cation of

complex modern microprocessors with out-of-order issue, speculation, and large instruction

windows is currently an intractable problem [8, 9].

Electrical Veri�cation Functional veri�cation only veri�es the correctness of a proces-

sor's function at the logic level, it cannot verify the correctness of the logic implementation

in silicon. This task is performed during electrical veri�cation. Electrical veri�cation occurs

at design time and fabrication time (to speed bin parts). Parts are stress-tested at extreme

operating conditions, e.g., low voltage, high temperature, high frequency, and slow process,

until they fail to operate.2 The allowed maximum (or minimum) for each of these operating

conditions is then reduced by a safe operating margin (typically 10-20%) to ensure that

the part provides robust operation at the most extreme operating conditions. If after this

1. Often the term \validation" is used to refer to the process of verifying the correctness of a design. In

this paper we adopt the nomenclature used in the formal veri�cation literature, i.e., veri�cation is the

process of determining if a design is correct, and validation is the process of determining if a design meets

customers' needs. In other words, veri�cation answers the question, \Did we build the chip right?", and

validation answers the question, \Did we build the right chip?".

2. Or fail to meet a critical design constraint such as power dissipation or mean time to failure (MTTF).

2

DIVA: A Dynamic Approach to Microprocessor Verification

process the part fails to meet its operational goals (e.g., frequency or voltage), directed

testing is used to identify the critical paths that are preventing the design from reaching

these targets [10].

Occasionally, implementation errors slip through the electrical veri�cation process. For

example, if an infrequently used critical path is not exercised during electrical veri�cation,

any implementation errors in this circuit will not be detected. Data-dependent implementa-

tion errors are perhaps the most diÆcult to �nd because they require very speci�c directed

testing to locate. Examples of these types of errors include parasitic crosstalk on buses [11],

Miller e�ects on transistors [12], charge sharing in dynamic logic [12], and supply voltage

noise due to dI

dt
spikes [13].

1.2 Deep Submicron Reliability Challenges

To further heighten the importance of high-quality veri�cation, new reliability challenges

are materializing in deep submicron fabrication technologies (i.e., process technologies with

minimum feature sizes below 0.25�m). Finer feature sizes result in an increased likelihood

of noise-related faults, interference from natural radiation sources, and huge veri�cation

burdens brought on by increasingly complex designs. If designers cannot meet these new

reliability challenges, they may not be able to enjoy the cost and speed advantages of these

denser technologies.

Noise-Related Faults Noise related faults are the result of electrical disturbances in the

logic values held in circuits and wires. As process feature sizes shrink, interconnect becomes

increasingly susceptible to noise induced by other wires [11, 14]. This e�ect, often called

crosstalk, is the result of increased capacitance and inductance due to densely packed wires

[15]. At the same time, designs employ lower supply voltages to decrease power dissipation,

resulting in even more susceptibility to noise as voltage margins are decreased.

Natural Radiation Interference There are a number of natural radiation sources that

can a�ect the operation of electronic circuits. The two most prevalent radiation sources are

gamma rays and alpha particles. Gamma rays arrive from space. While most are �ltered

out by the atmosphere, some occasionally reach the surface of the earth, especially at higher

altitudes [16]. Alpha particles are created when atomic impurities (found in all materials)

decay [17]. When these energetic particles strike a very small transistor, they can deposit

or remove suÆcient charge to temporarily turn the device on or o�, possibly creating a logic

error [18, 14]. Energetic particles strikes, sometimes called single-event radiation (SER),

have been a problem for DRAM designs since the late 1970's when DRAM capacitors became

suÆciently small to be a�ected by energetic particles [17].

It is diÆcult to shield against natural radiation sources. Gamma rays that reach the

surface of the earth have suÆciently high momentum that they can only be stopped with

thick, dense materials [16]. Alpha particles can be stopped with thin shields, but any

e�ective shield would have to be free of atomic impurities, otherwise, the shield itself would

be an additional source of natural radiation. Neither shielding approach is cost e�ective

for most system designs. As a result, designers will likely be forced to adopt fault-tolerant

design solutions to protect against SER-related upsets.

3

Austin

IF ID REN R O B CT

in−order
issue

in−order
retirement

EX

out−of−order
execute

IF ID REN R O B CT

in−order
issue

EX

out−of−order
execute

CHK

Traditional Out−of−Order Core DIVA CheckerDIVA Core

nonspec
results

a) b)

instructions
with inputs
and outputs

WT

architected
 state
(regs + mem)

architected
 state
(regs + mem)

in−order
check

Figure 1: Dynamic Veri�cation. Figure a) shows a traditional out-of-order processor core. Figure b)

shows the core augmented with a checker stage (labeled CHK). The shaded components in each

�gure indicate the part of the processor that must be veri�ed correct to ensure correct program

execution.

Increased Complexity With denser feature sizes, there is an opportunity to create

designs with many millions and soon billions of transistors. While many of these transistors

will be invested in simple regular structures like cache and predictor arrays, others will

�nd their way into complex components such as dynamic schedulers, new functional units,

and other yet-to-be-invented gadgets. There is no shortage of testimonials from industry

leaders warning that increasing complexity is perhaps the most pressing problem facing

future microprocessor designs [19, 20, 21, 22]. Without improved veri�cation techniques,

future designs will likely be more costly, take longer to design, and include more undetected

design errors.

1.3 Dynamic Veri�cation

Today, most commercial microprocessor designs employ fault-avoidance techniques to ensure

correct operation. Design faults are avoided by putting parts through extensive functional

veri�cation. To ensure designs are electrically robust, frequency and voltage margins are

inserted into acceptable operating ranges. These techniques, however, are becoming less

attractive for future designs due to increasing complexity, degraded signal integrity, and

natural radiation interference.

Traditional fault-tolerance techniques could address some of the reliability challenges

in future designs, but only at great cost. System-level techniques such as triple modular

redundancy (TMR) [23] can detect and correct a single transient fault in the system at the

expense of three times the hardware plus voting logic. Logic-level fault-tolerant solutions,

such as self-checking circuits [24], often have lower cost (typically only twice as much hard-

ware), but they are still costly and can slow critical circuits. Moreover, these approaches

only address transient errors, i.e., errors which manifest temporarily (such as energetic

particle strikes). They cannot address design errors if the error occurs within each of the

redundant components - the redundant units will simply agree to take the wrong action.

4

DIVA: A Dynamic Approach to Microprocessor Verification

In this paper, we introduce dynamic veri�cation, a novel microarchitecture-based tech-

nique that permits detection and recovery of all functional and electrical faults in the

processor core, both permanent and transient. A Dynamic Implementation Veri�cation

Architecture (DIVA) extends the speculation mechanism of a modern microprocessor to de-

tect errors in the computation of the processor core. As shown in Figure 1, a DIVA processor

is created by splitting a traditional processor design into two parts: the deeply speculative

DIVA core and the functionally and electrically robust DIVA checker. The DIVA core is

composed of the entire microprocessor design except the retirement stage. The core fetches,

decodes, and executes instructions, holding their speculative results in the re-order bu�er

(ROB). When instructions complete, their input operands and results are sent in program

order to the DIVA checker. The DIVA checker contains a functional checker stage (CHK)

that veri�es the correctness of all core computation, permitting only correct results to pass

through to the commit stage (CT) where they are written to architected storage. If any er-

rors are detected in the core computation, the checker �xes the errant computation,
ushes

the processor pipeline, and then restarts the processor at the next instruction.

The DIVA checker detects and correct errors in the core processor by re-executing the

non-speculative instruction stream (observable at core retirement). It does this using a

simple (but complete) pipeline that leverages a stream of high-quality branch predictions,

input value predictions, and cache prefetches from the core processor. Operating in the

wake of the complex core processor eliminates the control and data hazards that would

otherwise slow the simple checker pipeline.

Certain faults, especially those a�ecting core processor control circuitry, can lock up the

core processor or put it into a deadlock or livelock state where no instructions attempt to

retire. For example, if an energetic particle strike changes an input tag in a reservation

station to the result tag of the same instruction, the processor core scheduler will deadlock.

To detect these faults, a watchdog timer (WT) is added. After each instruction commits,

the watchdog timer is reset to the maximum latency for any single instruction to complete.

If the timer expires, the processor core is no longer making forward progress and the core is

restarted. To ensure that the processor core continues making forward progress in the event

of an unrecoverable design fault, the checker is able to complete execution of the current

instruction before restarting the core processor.

On the surface, it may seem super
uous to add hardware to perform a veri�cation

function that is today accomplished at design time. However, there are at least four powerful

advantages of dynamic veri�cation:

� The approach concentrates functional and electrical veri�cation into the checker unit.

As a result, the core processor has no burden of functional or electrical correctness,

and no requirement of forward progress - it need only be correct often enough to meet

performance goals. If the checker design is kept simple, the approach can reduce the

cost and improve the overall quality of processor veri�cation.

� Transistors outside of the checker unit can scale to smaller sizes without fear of natural

radiation interference. If these transistors experience an energetic particle strike and

produce incorrect results, the checker will detect and correct any errant computation.

� The fault-avoidance techniques used to produce electrically robust designs are very

conservative. By leveraging a dynamic veri�cation approach, voltage and timing mar-

5

Austin

gins in the core can be signi�cantly tightened, resulting in faster and cooler imple-

mentations.

� As long as checker fault rates are kept in check, it becomes possible to simplify the

processor by eliminating infrequently used functionality. For example, rarely used

circuits can be eliminated to improve the speed or reduce the size of critical circuit

paths.

In the remainder of this paper, we present and evaluate the DIVA checker architecture.

In Section 2, we detail the architecture and operation of the DIVA checker unit. We also

present arguments why the DIVA checker should be inexpensive to build and lend itself to

functional and electrical veri�cation, more so than the complex core processor it monitors.

In Section 3, we present analyses of the runtime impacts of dynamic veri�cation. Through

detailed timing simulation, we examine the performance impacts of various DIVA checker

architectures. We also study the e�ect of fault rates on core processor performance. Section

4 describes related work, and Section 5 suggests other applications of dynamic veri�cation.

Finally, Section 6 gives conclusions.

2. The DIVA Checker Architecture

The DIVA checker architecture presented in this section makes a number of important

assumptions concerning the underlying microarchitecture. First, it is assumed that all

architected registers and memory employ an appropriate coding technique (e.g., ECC) to

detect and correct any storage-related faults. As a result, any value the DIVA checker

reads or writes to a register or memory will complete without error. Second, it is assumed

that the record of instructions fetched by the DIVA core are correctly communicated to

the DIVA checker. Once again, coding techniques can be used to detect and correct errors

in this communication. (Note that it is not assumed that accesses to instruction or data

storage occurred in the right order or to the correct address, the DIVA checker will verify

these requirements.) Finally, it is assumed that the core and the checker share the same

architected state (register and memory system). Later, we examine the implications this

has on core processor performance.

2.1 The Invariants of Serial Program Semantics

To ensure that the core processor is functioning correctly, the checker unit veri�es four

architectural invariants on the execution of each instruction. These architectural invariants

are:

Correct Computation All operations produce a correct result given their inputs.

Correct Communication The last write of storage is visible by the next read of the same

address.

Correct Control Processor control changes as per the semantics of branch instructions.

Forward Progress The processor is making progress toward completion of the next in-

struction to retire.

6

DIVA: A Dynamic Approach to Microprocessor Verification

C
H
K

R
D

C
T

stage
CHK

ALU/
AGEN/
BR

ST

CT

reg/mem bypass

 WB result
or
 exception

 ST mem
or
 exception

a) b)

<success?>

<success?>

read src1
read src2

check src1
check src2
wait for
 CHKcomp

read addr
read st data

 WB result
or
 exception

LD

RD

E
X’

C
M
P

inst
class

check addr
check mem

read addr
read mem

check addr
check st data

<inst,result>
speculative
computation
from DIVA
core

<inst,result,src1,src2>

<inst,result,src1,src2>

Communication pipeline

Computation pipeline

Figure 2: A Dynamic Implementation Veri�cation Architecture (DIVA). Figure a) illustrates

the DIVA architecture and its interface to the core processor. Figure b) details the DIVA

communication pipeline operation for each instruction class.

If each of these invariants hold for a particular instruction, it may safely retire its result.

This simple approach to veri�cation is possible because the underlying microarchitecture,

although complex and a great challenge to verify directly, implements a relatively simple

interface at the instruction set. In other words, the complexity in the core processor is

primarily the result of architecturally invisible performance optimizations. For example, if

renaming occurs, it does not a�ect whether or not writes to an address are visible to the

next read. This property also serves to strengthen the checkers ability to detect design

errors, since errors in the speci�cation of the microarchitecture cannot a�ect the correctness

of the checker.

2.2 Basic Operation

Figure 2a details the architecture of the DIVA checker. The DIVA core processor sends

completed instructions in program order to the DIVA checker. With each instruction, it

also sends the operands (inputs) and result (output) values as computed by the DIVA core

processor. The checker veri�es the instruction result using two parallel and independent

veri�cation pipelines. The computation pipeline veri�es the integrity of all core processor

computation and control. The communication pipeline ensures that register and memory

communication between core processor instructions occurred without error. If both pipelines

report correct operations (and no earlier instruction declared an error), the core computation

succeeded with the correct inputs. Hence, the instruction result is correct and it can be

safely retired to architected storage in the commit stage (CT) of the pipeline. In the event

forward progress is lost in the core (e.g., due to a deadlock or livelock), the watchdog timer

will expire and restart the checker pipeline with the next instruction.

7

Austin

Computation Pipeline The computation pipeline veri�es the integrity of all functional

unit computation. In the EX' stage of the computation pipeline, the result of the instruction

is re-computed. In the CMP stage, the re-computed result is compared to the functional

unit result delivered by the core processor. If the two results di�er, the DIVA checker

raises an exception which will correct the errant core result with the value computed in

the EX' stage. Control is also checked in this pipeline. Branches compute their actual

target addresses, and compare this to the predicted address from the core (the result of the

branch) - if they do not match, an exception is declared to �x program control.

Because instructions are delivered by the DIVA core to the computation pipeline with

pre-computed inputs and outputs, there are no inter-instruction dependencies to slow pipeline

progress. For example, if a long latency divide enters the checker followed by a dependent

add, the dependent operation may start in same cycle (before completion of the divide) using

the inputs values supplied by the core. As long as instructions are checked in program order,

any incorrect input predictions will be detected and corrected. Core input value predictions

create a tremendous amount of ILP, as a result, checker bypass datapaths are not required

and pipeline control logic is trivial. The resulting checker pipeline is both simple and fast.

It may seem redundant to execute the instruction twice: once in the functional unit

and again in the computation pipeline, however, there is good reason for this approach.

First, the implementation of the computation pipeline can take advantage of a simpler

algorithm to reduce functional unit veri�cation costs. Second, it can be implemented with

large transistors (that carry ample charge) and large timing and voltage margins, making

it resistant to natural radiation interference and noise-related faults.

Communication Pipeline Figure 2b details operation of the communication pipeline

for each instruction class. For the purpose of demonstration, it is assumed that the un-

derlying architecture is a simple load/store instruction set (although this is not required).

In addition, load and store operations are decomposed into two sub-operations: an address

generation operation (AGEN) which adds a register and constant to produce an e�ective

address, and a corresponding load (LD) or store (ST) primitive that accepts the e�ective

address. This decomposition simpli�es the mapping of load and store operations onto the

communication pipeline.

The communication pipeline veri�es that the processor core produced the correct reg-

ister and memory input operands for each instruction. We observe that at retirement, the

correct inputs for an instruction reside in architected registers and memory. By probing

this state just before retirement, it is possible to check if the core processor produced the

correct register and memory inputs. This simple check works independent of the underlying

mechanism used to implement communication in the core processor pipeline, e.g., register

renaming, dependence speculation, or dynamic scheduling will not a�ect this invariant.

As shown in Figure 2b, the communication pipeline re-executes all communication in

program order just prior to instruction retirement. In the RD stage of the communication

pipeline, the register and memory operands of instructions are read from architected storage.

In the CHK stage of the pipeline, these values are compared to the input values delivered

by the core processor. If the operands delivered by the core processor match those read

by the RD stage, the processor core successfully implemented instruction communication

and processing may continue. Otherwise, the DIVA checker raises a register or memory

8

DIVA: A Dynamic Approach to Microprocessor Verification

Exception
Priority

DIVA
Exception

Recovery
Mechanism

CHKcomm
(register value)

Watchdog Timer
Expiration

0 (highest)

1

2CHKcomm
(memory value)

3 (lowest)CHKcomp

How the Exception
is Corrected by DIVA

1) reset DIVA pipes
 with next inst
2) restart DIVA pipes @ PC
3) flush core, restart @ NPC

1) reset DIVA pipes
 with correct register input
2) restart DIVA pipes @ PC
3) flush core, restart @ NPC

1) reset DIVA pipes
 with correct memory input
2) restart DIVA pipes @ PC
3) flush core, restart @ NPC

1) reset DIVA pipes
 with correct register result
2) restart DIVA pipes @ PC
3) flush core, restart @ NPC

Watchdog exception
jumpstarts DIVA checker
and core at next instruction

CHKcomm RD stage register
value (always correct) is injected
into DIVA verification

CHKcomm RD stage memory
value (always correct) is injected
into DIVA verification

CHKcomp EX’ result (correct
if no other exceptions) is
injected into DIVA verification

Figure 3: Fault Handling in the DIVA Checker.

exception which will restore the correct input operand with the operand value read in the

RD stage. A single bypass exists across the CHK stage to handle the case of an instruction

checking an input written by the immediately previous instruction. Since this value is not

visible until the CT stage of the pipeline (when the value is written to architected state), a

single bypass is provided to eliminate any stalls.

It may seem super
uous to re-execute all storage operations in the communication

pipeline, especially given the assumption that all storage is protected from faults using

coding techniques such as ECC. However, coding techniques are insuÆcient to detect all

communication errors. While coding can detect storage values that were damaged by tran-

sient errors, it cannot detect failed or misdirected communication in the processor core. For

example, if the register renamer points an operand to an incorrect physical storage location,

or if the store forward bu�ers miss a communication through aliased virtual memory, coding

techniques will not detect these errors. These errors are, however, detected by the commu-

nication pipeline as it re-executes register and memory communication. Instruction fetch

accesses, on the other hand, do not need to be re-executed because the order of accesses to

this storage is not important (save self-modifying code writes).

2.3 Fault Handling

In the event a fault is detected in the DIVA core computation, the DIVA checker will raise

an exception to correct the errant condition and restart the processor. Figure 3 shows the

DIVA exceptions that can occur, their priority, and the speci�c method used to recover

machine state.

Exceptions are handled in program order at the commit (CT) stage of the pipeline. If

an instruction declares multiple exceptions in the same cycle, the exception with the highest

priority is always handled �rst. When any exception is taken, the DIVA checker �xes the

errant instruction with the correct value (returned by either checker pipelines),
ushes the

processor pipeline, and then restarts the DIVA checker and processor core.

9

Austin

instr # instr % ld % st Base RUU Mem BP

Program Input fwd (M) exec (M) exe exe CPI Occ Util Acc

compress ref.in 0 93 26.7 9.4 0.60 84.2 0.41 90.2

GCC 1stmt.i 100 100 24.6 11.5 0.64 25.5 0.32 85.4

go 2stone9.in 100 100 30.7 8.2 0.61 23.3 0.42 76.1

ijpeg vigo.ppm 100 100 18.5 5.6 0.38 132.0 0.39 88.6

li boyer.lsp 100 100 25.8 15.1 0.47 52.9 0.44 93.1

perl scrabble.pl 100 100 22.7 12.2 0.48 55.0 0.39 93.7

hydro2D hydro2D.in 100 100 20.7 8.7 0.46 106.4 0.37 96.3

tomcatv tomcatv.in 100 100 20.4 8.7 0.42 50.2 0.40 95.6

turbo3D turbo3D.in 100 100 23.6 16.2 0.38 149.7 0.42 94.9

Table 1: Program statistics for the baseline architecture.

It is crucial that the DIVA checker be able to correct whatever condition resulted in

a DIVA exception. If the DIVA checker were not able to correct a particular exception

condition, it would not be able to guarantee program forward progress in the presence of

a permanent core fault (e.g., a design error or stuck-at fault). As shown in Figure 3, all

exception conditions are corrected. In fact, the DIVA checker is suÆciently robust that

it can completely take over execution of the program in the event of a total core failure.

However, its performance would be very poor, especially if it had to rely on the watchdog

timer to expire before starting each instruction.

There is slightly di�erent handling of the watchdog timer exception. When the watchdog

timer expires, the DIVA checker fetches the next instruction to execute and injects it into

the DIVA pipe with zero value inputs and outputs. The checker then restarts the processor.

The checker pipelines will correct these operands and results as incorrect values are detected,

eventually completing execution of the stalled instruction.

2.4 Working Examples

Figure 4 shows two examples of the DIVA checker in operation. In Figure 4a, an AGEN

operation produces an incorrect result that it forwards to a LD operation. The computation

pipeline detects the incorrect result in the CMP stage and then declares an exception which

corrects the result of the AGEN operation, allowing it to retire three cycles later.

Figure 4b shows the operation of the DIVA checker in the event of a catastrophic core

processor failure. In this example the core is not attempting to retire instructions, thus

the DIVA checker must completely execute each instruction. The example starts out with

a watchdog timer reset that forces insertion of the next instruction with zero value inputs

and outputs. The instruction �rst detects in the communication pipeline that its inputs

are incorrect which results in a register value exception that �xes the inputs. Next, the

computation pipeline detects that the result is incorrect which declares an exception that

�xes the result. Finally, the instruction completes without an exception and retires its

results to the architected register �le.

10

DIVA: A Dynamic Approach to Microprocessor Verification

time (in cycles)

add r4,r4,8

agen t1,r4,4

bnz r1,loop

agen t1,r4,4

 EX
<?,8,4>

 RD
<12,8,4>

 EX’
<12,8,4>

 CMP
<12,8,4>

 CHK
<12,8,4>

ld r1,(t1) EX
<?,12>

 EX’
<10,12>

 RD
<10,12>

 CMP
<10,12>

 CHK
<10,12>

 EX
<?,8,8>

 EX’
<16,8,8>

 CMP
<16,8,8>

 RD
<16,8,8>

 CHK
<16,8,8>

in
st

ru
ct

io
ns

 EX
<?,16,4>

 CMP
<12,16,4>

 RD
<12,16,4>

 CHK
<12,16,4>

 EX’
<12,16,4>

 EX’
<20,16,4>

 exception!
<12,16,4>

agen t1,r4,4

in
st

ru
ct

io
ns EX’

<0,0,0>
 CMP
<0,0,0>

 RD
<0,0,0>

 CHK
<0,0,0>

exception!
<0,0,0>

 EX’
<0,8,4>

 RD
<0,8,4>

 CMP
<0,8,4>

 CHK
<0,8,4>

exception!
<0,8,4>

 EX’
<12,8,4>

 RD
<12,8,4>

 CMP
<12,8,4>

 CHK
<12,8,4>

should be 8 and 4, declare
CHKcomm exception

b)

 CT
<12,8,4>

 CT
<10,12>

 CT
<16,8,8>

 CT
<12,8,4>

ld r1,(t1)

 EX
<?,10,0>

 EX’
<1,10,0>

 CMP
<1,10,0>

 CT
<1,10,0>

 RD
<1,10,0>

 CHK
<1,10,0>

pipeline
restarted

 fault
 detected

fault
fixed

should be 12, declare
CHKcomp exception

time (in cycles)

a)

 faulty
computation

watchdog timer
exception

 CMP
<20,16,4>

 CT
<20,16,4>

 RD
<20,16,4>

 CHK
<20,16,4>

 EX
<?,12>

 EX’
<12,12>

 RD
<12,12>

 EX
<?,20>

Figure 4: Example Operation of the DIVA checker. Two working pipeline examples are shown

in Figures a) and b). In the pipeline diagrams, program execution runs from top to bottom,

the instruction executed is shown to the left of the pipeline. Time runs from left to right;

instructions list which pipeline stage they are in for each cycle they are active. Below the

pipeline stage designators are listed the one output and two input values for each instruction.

The vertical bars represent declarations of DIVA checker exceptions.

11

Austin

2.5 Veri�cation of the DIVA Checker

Paramount to the success of dynamic veri�cation is a functionally correct and electrically

robust DIVA checker implementation. It had better work correctly all the time, otherwise,

it may impair correct operation of the processor core. Moreover, the cost of DIVA checker

veri�cation should be lower than the cost of verifying a traditional processor design, oth-

erwise, there is no overall gain to the employing dynamic veri�cation. It is diÆcult to

quantitatively assess the ease (or diÆculty) in building a correct DIVA checker in a paper

design such as this. To accurately assess these costs would require the construction of a real

DIVA checker in VLSI. In lieu of this level of detail, we describe the attributes of the DIVA

checker design that we feel will lend the approach to high-quality and low-cost functional

and electrical veri�cation.

Simple: The DIVA checker is inherently simpler than a traditional processor core. It con-

tains only the mechanisms necessary to check the function of the program, and it lacks all of

the mechanisms used to speed computation, e.g., predictors, renamers, dynamic schedulers,

etc. In addition, the pre-computed inputs and outputs from the core processor eliminate

the inter-instruction dependencies and stall conditions that complicate traditional high-

performance pipeline designs.

Latency-Insensitive: With suÆcient bu�ering of speculative core results, the latency of

the DIVA checker will not impact core processor performance. As a result, wide and deeply

pipelined implementations are possible. These designs will permit checker implementations

with large timing margins and large (and slow) transistors, a�ording the checker high resis-

tance to transient faults and natural radiation interference. Since there are few dependencies

between instructions, widening or lengthening the DIVA pipeline is quite straightforward.

Scalable: The DIVA checker design is more reusable than traditional processor cores,

making it possible to leverage correctness established in previous designs. Since the checker

sits at retirement, new designs need only scale with the retirement bandwidth of the new

core it is checking. Retirement bandwidth scales very slowly from generation to generation,

any additional bandwidth requirements can be accommodated by simply lengthening or

widening the DIVA checker pipelines. Moreover, the design of the checker is independent

of the core microarchitecture (as it checks architectural invariants), as a result, its design

can be completely decoupled from the core design.

In addition to these attributes, we are currently investigating formal veri�cation of the

DIVA checker. The DIVA checker resembles a simple in-order processor with little microar-

chitectural state and few inter-instruction dependencies { properties that simplify formal

veri�cation [8, 9]. We believe the DIVA checker will also lend itself to formal veri�cation,

making it possible to formally verify large complex microarchitectures by only verifying the

correctness of the DIVA checker.

3. Experimental Evaluation

In this section, we examine the impact of dynamic veri�cation on processor core perfor-

mance. Core slowdowns are measured, using detailed timing simulation for DIVA checkers

with varied resource con�gurations, checker latency, and fault rates.

12

DIVA: A Dynamic Approach to Microprocessor Verification

3.1 Methodology

The simulators used in this study are derived from the SimpleScalar/Alpha 3.0 tool set

[25], a suite of functional and timing simulation tools for the Alpha AXP ISA. The timing

simulator executes only user-level instructions, performing a detailed timing simulation of

an aggressive 4-way dynamically scheduled microprocessor with two levels of instruction

and data cache memory. Simulation is execution-driven, including execution down any

speculative path until the detection of a fault, TLB miss, or branch misprediction.

To perform our evaluation, we collected results for nine of the SPEC95 benchmarks

[26]. All programs were compiled on a DEC Alpha AXP-21164 processor using the DEC C

and Fortran compilers under OSF/1 V4.0 operating system using full compiler optimization

(-O4 -ifo). Table 1 shows the data set we used in gathering results for each program, the

number of instructions that were executed (fast forwarded) before actual simulation began,

and the number of instructions simulated for each program (up to 100 million). Also shown

are the percent of dynamic instructions that were loads and stores, the baseline machine

CPI, the average number of entries in the instruction window (RUU), the fraction of time

the memory ports were in use, and the branch predictor accuracy for each program.

3.2 Baseline Architecture

Our baseline simulation con�guration models a future generation out-of-order processor

microarchitecture. We've selected the parameters to capture underlying trends in microar-

chitecture design. The processor has a large window of execution; it can fetch and issue up

to 4 instructions per cycle. It has a 256 entry re-order bu�er with a 64 entry load/store

bu�er. Loads can only execute when all prior store addresses are known. In addition, all

stores are issued in program order with respect to prior stores. There is an 8 cycle minimum

branch misprediction penalty. The processor has 4 integer ALU units, 2-load/store units,

2-FP adders, 1-integer MULT/DIV, and 1-FP MULT/DIV. The latencies are: ALU 1 cycle,

MULT 3 cycles, Integer DIV 12 cycles, FP Adder 2 cycles, FP Mult 4 cycles, and FP DIV

12 cycles. All functional units, except the divide units, are fully pipelined allowing a new

instruction to initiate execution each cycle.

The processor we simulated has a 32k 2-way set-associative instruction and data caches.

Both caches have block sizes of 32 bytes. The data cache is write-back, write-allocate, and

is non-blocking with 2 ports. The data cache access latency is one cycle (for a total load

latency of two cycles). There is a uni�ed second-level 512k 4-way set-associative cache with

32 byte blocks, with a 10 cycle cache hit latency. If there is a second-level cache miss it

takes a total of 60 cycles to make the round trip access to main memory. We model the bus

latency to main memory with a 10 cycle bus occupancy per request. There is a 32 entry

8-way associative instruction TLB and a 32 entry 8-way associative data TLB, each with a

30 cycle miss penalty.

3.3 DIVA Checker Baseline Architecture

The DIVA checker in all experiments is a four instruction wide pipeline that instructions

enter when they have completed and are the oldest instruction in the machine that has not

yet entered the DIVA checker pipeline. Instructions are processed in-order, any instruction

13

Austin

that stalls causes later instructions to also stall. In the baseline con�guration, the compu-

tation pipeline latency is one cycle longer than the functional unit it checks (for the result

comparison). It is assumed that there is a computation pipeline for each of the functional

units, as a result, there are no structural hazards introduced. The baseline communication

pipeline takes two cycles (for RD and CHK) unless there are structural hazards in accessing

register �le and cache ports. In the baseline checker architecture, the RD stage competes

with the core processor for four architected register �le ports and two cache ports, with pri-

ority given to the DIVA checker accesses. The core processor only accesses the architected

register �le when an operand is not found in the physical register �le (i.e., it is not in
ight).

Re-order bu�er entries are not deallocated until instructions exit the commit (CT) stage of

the pipeline, after the DIVA checker veri�es the operation. The watchdog timer countdown

is reset to 60 cycles (the round trip latency to memory) whenever an instruction commits.

3.4 DIVA Checker Impact on Core Processor Performance

In Figure 5, we show the impact of the DIVA checker on core processor performance. All

performance numbers are normalized to the CPI of an unchecked core processor. Results are

shown with varied register and memory storage bandwidth. Experiment (+0) has no extra

register �le or cache ports (compared to the baseline unchecked microarchitecture). Without

dedicated ports into the architected register �le and data cache, the DIVA checker must

compete for bandwidth with the core processor. This competition can create structural

hazards which can slow core processing. Experiment are also shown with with 4 extra

register �le ports dedicated to the DIVA checker (+R), with one extra dedicated memory

port (+M), and with 4 extra register �le ports and one extra memory port (+R+M).

Even without extra storage bandwidth, i.e., experiment (+0), the cost of employing

the DIVA checker is quite low. Average program slowdown was only 3%. In general,

there was a high correlation between pipeline utilization (e.g., branch prediction accuracy,

RUU occupancy, and memory port utilization) and slowdown. When the processor pipeline

is eÆciently utilized, any additional DIVA checker register �le and cache accesses create

structural hazards that slow core processing. Turbo3D had the largest slowdown of 14%

without additional resources. This benchmark is highly eÆcient, it has high branch predictor

accuracy, high RUU occupancy and high memory utilization. GCC and and GO, on the

other hand, have poor branch prediction and thus poor pipeline utilization; additional

DIVA checker resource usage has little impact on the core processor performance of these

programs.

By increasing the bandwidth to the register �le and caches, we can reduce the impact of

structural hazards on core processor performance. Experiment (+R) adds four more read

ports to the architected register �le for use by the DIVA checker communication pipeline.

These additional register ports eliminate most structural hazards into the architected reg-

ister �le. This change had little impact on overall performance (at most an improvement of

0.9% for Hydro2D). Since many of the register accesses are satis�ed by the physical register

�le (which has its own access ports), there appears to be suÆcient bandwidth left into the

architected register �le for DIVA checker accesses.

Experiment (+M) adds one more read port to the data cache for use by the DIVA

checker communication pipeline. This additional cache port eliminates nearly all structural

14

DIVA: A Dynamic Approach to Microprocessor Verification

0.90

0.95

1.00

1.05

1.10

1.15

1.20

co
m

pr
es

s
GCC go

ijp
eg li

pe
rl

hy
dr

o2
D

to
m

ca
tv

tu
rb

o3
D

av
er

ag
e

R
el

at
iv

e
C

P
I

+0 +R +M +R+M

Figure 5: DIVA Checker Impact on Core Processor Performance for Varied Register File

and Cache Bandwidth. All performance numbers are normalized to the CPI of an unchecked

core processor. Results are shown with no extra register �le or cache ports (+0), with 4 extra

register �le ports (+R), with one extra memory port (+M), and with 4 extra register �le ports

and one extra memory port (+R+M).

hazards into the data cache. Adding this port has a noticeable impact on core processor

performance. Most core processor performance impacts are eliminated and overall slowdown

drops to only 0.1%. Finally, in experiment (+R+M), four register ports and two memory

ports are added for DIVA checker use. With an additional memory port, the extra register

�le ports provide little bene�t, and overall slowdown drops to 0.03%.

In addition to structural hazards on architected storage resources, we observed that

retirement delays could slow the core processor. Delays in the retirement of an instruction

increase pressure on core processor speculative storage, e.g., re-order bu�er (ROB) and

load/store queue (LSQ) entries. If these structures become full, they can stall the decode

and issue of instructions in the core processor, resulting in reduced ILP and decreased

program performance. During normal checker pipeline operation, checking only extends the

latency of retirement by a few cycles. But as evidenced by the small slowdowns (especially

when storage hazards were eliminated), these e�ects were minimal. We believe that while

increased speculative storage pressure does stall core progress, it only stalls the issue of

instructions that would likely not retire. In other words, the probability that instructions

that would �ll the speculative state resources would retire is very low due to the large

degree of speculation required to reach these instructions. As a result, increased pressure

on speculative state has little e�ect on overall performance.

Data cache misses in the checker pipeline can greatly extend the latency of instruction

retirement as the checker pipeline completely blocks on data cache misses. These misses

will quickly stop the progress of the core processor pipeline, however, we observed virtually

no data cache misses in the checker pipeline. Since the checker follows in the wake of the

15

Austin

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

co
m

pr
es

s
GCC go

ijp
eg li

pe
rl

hy
dr

o2
D

to
m

ca
tv

tu
rb

o3
D

av
er

ag
e

R
el

at
iv

e
C

P
I

2x 4x

Figure 6: DIVA Checker Impact on Core Processor Performance with Varied DIVA Checker

Latency. All performance numbers are normalized to the CPI of the baseline DIVA checker

con�guration (+0). Results are shown for a checker with two times the latency (2x), and a

checker with four times the latency (4x).

core processor, the core processor serves a prefetch mechanism for the checker pipeline,

eliminating nearly all data cache misses. We are currently developing re�ned DIVA checker

designs that do not delay the release of speculative storage in the core processor pipeline,

virtually eliminating core processor stalls due to instruction checking.

3.5 E�ects of Increased DIVA Checker Latency

In an e�ort to build an electrically robust implementation of the DIVA checker, it may be

necessary to construct it with large timing margins and large transistors (to resist noise and

tolerate natural radiation interference, respectively). The most straightforward approach

to achieve this is to deeply pipeline the DIVA checker. Deeply pipelining the DIVA checker,

however, will increase its latency which can delay retirement of instructions. These delays

may cause congestion in the instruction window, e�ectively reducing the instruction window

size and amount of ILP that can be exploited. Figure 6 shows the impact of DIVA checker

latency of core processor performance. All performance numbers are normalized to the CPI

of a DIVA checker con�guration with no extra register �le or cache port resources, i.e.,

experiment (+0) from Figure 5.3 Results are shown for a checker with two times as many

stages (2x), and a checker with four times as many stages (4x)

Overall, the impact of checker latency on core performance is quite low. At two times the

latency slowdowns increase by 0.7%, and with four times the checker latency, slowdowns only

3. We compare to this con�guration because it was the worst performing DIVA checker con�guration, thus

it will have the most instruction window congestion to start with and be most sensitive to DIVA checker

latency.

16

DIVA: A Dynamic Approach to Microprocessor Verification

increase by 0.8%. Even the programs with high branch predictor accuracy. e.g., Hydro2D,

cannot get suÆciently far ahead of the execution core to keep the instruction window full,

as a result, adding extra checker latency has little impact on core performance.

3.6 E�ects of DIVA Checker Exceptions

In the event that the DIVA checker detects a failed computation or communication, it

will declare a DIVA exception and reset the checker and processor core. The performance

penalty for exception handling is quite large, at least 8 cycles for the experiments simulated,

more if the faulty instruction takes a while to reach retirement. To gauge the performance

impact of DIVA exceptions, we ran experiments with random exceptions injected at random

times but with a �xed exception interval (in core processor cycles). The results are shown

in Figure 7. All performance numbers are normalized to the CPI of the baseline DIVA

checker con�guration (+0). Results are shown on a log scale for exception rates of one

per one million core processor cycles (1M), one per 1000 processor cycles (1k), and one

every processor cycle (1). The experiment labeled (Core Lock) examined the performance

impacts of a catastrophic core failure in which the core is no longer attempting to commit

instructions, consequently, instructions are not fetched until the watchdog timer counter

expires (once every 60 cycles).

At an exception rate of one exception every one million cycles (an average of one excep-

tion every 2 msec on a 500 MHz processor), there was virtually no impact on core processor

performance. At intervals of 1000 cycles (an average of one exception every 2 usec on a

500 MHz processor), impacts were higher but still small, with an overall slowdown of only

2.6%. With an exception every cycle (as would be the case for a catastrophic core processor

failure), performance impacts rise dramatically. Overall, performance is 1
14
th normal speed.

In this experiment, the DIVA checker is completely executing the program. When the core

processor is locked up, performance is quite low, on average 1
120 th the performance of the

unchecked core. In Section 5, we suggest a simple change to detect this case and provide

more graceful degradation in processor performance.

It should be possible to keep fault rates well below the point where they have any

perceivable e�ect on performance. The rate of faults caused by design errors should be

quite low as the core will undergo some level of veri�cation to excise frequently occurring

design errors. The remaining design errors will be those that occur infrequently and thus

are diÆcult to �nd and �x. These infrequent errors should not create performance concerns.

Transient faults such as SER have been shown to be quite infrequent as well. For example,

SER fault rates in adverse conditions (high altitudes) were measured at rates of one every

few hours [18], nothing close to the rates that would be required to a�ect core processor

performance.

3.7 Discussion

Core processor slowdowns (due to structural hazards, checker latency, and exception han-

dling) are not the only costs associated with the DIVA checker, other costs include silicon

area, power consumption, and more. While it is diÆcult to gauge these costs without build-

ing an actual DIVA checker implementation, we feel overall DIVA checker costs should be

low for at least two reasons.

17

Austin

1.031.021.031.041.031.031.031.021.021.03

152 141 136130121 124 120

1

10

100

co
m

pr
es

s
GCC go

ijp
eg li

pe
rl

hy
dr

o2
D

to
m

ca
tv

tu
rb

o3
D

av
er

ag
e

R
el

at
iv

e
C

P
I

1M 1k 1 Core Lock

Figure 7: Performance Impact of Varied Exception Rates. All performance numbers are nor-

malized to the CPI of the baseline DIVA checker con�guration (+0). Results are shown on a

log scale for exception rates of one per one million core processor cycles (1M), 1000 processor

cycles (1k), and every processor cycle (1). The experiment labeled (Core Lock) examines the

performance of a catastrophic core failure in which the core is no longer attempting to commit

instructions. Bar values are shown for the (Core Lock) and (1k) experiments.

First, the DIVA checker only replicates the part of core pertaining to actual function. All

core processing structures related to program performance (e.g., predictors and schedulers)

need not be represented in the DIVA checker. In addition, the DIVA checker design is a

very simple pipeline. It uses in-order instruction processing and has few inter-instruction

dependencies. These advantages make the DIVA checker signi�cantly simpler than the core

processor pipeline, and they should serve to reduce its size and cost.

Second, the computation pipeline can be implemented with simple, area-eÆcient algo-

rithms. For example, if the core uses a carry-select carry-lookahead adder for fast addition,

the DIVA checker can instead use a pipelined ripple carry adder to reduce implementa-

tion costs. The pipeline will be slower, but as shown earlier, core performance is mostly

insensitive to DIVA checker latency, making this a good tradeo�.

Ultimately, a more quantitative assessment of DIVA checker area and power costs will

have to be made, �rst through circuit level simulation and later through an actual silicon

implementation. We are currently working toward these goals.

4. Related Work

The idea of dynamic veri�cation at retirement was inspired by Breach's Multiscalar proces-

sor simulator [27]. During the programming and veri�cation of this very complex simulator,

a functional veri�cation stage was added at retirement. The approach was suÆciently robust

that it could mask functional bugs that were introduced during the simulator's development

18

DIVA: A Dynamic Approach to Microprocessor Verification

permitting its use for performance analysis before it was fully debugged. The DIVA checker

works in precisely the same manner, but for a hardware system.

Rotenberg's AR-SMT processor [28] employs a time-redundant execution technique that

permits an SMT processor to tolerate some transient errors. We borrow on this work;

the DIVA checker leverages the idea of using an unreliable processor's results to speed

the execution of instruction checking. We improve upon Rotenberg's work in a number

of ways. Rotenberg's approach checks all aspects of execution, include program function

and the mechanisms used to optimize program performance. The DIVA checker, on the

other hand, only checks program function, permitting a simpler checker implementation.

While Rotenberg's approach only detects some transient errors, a functionally correct and

electrically robust DIVA checker can recover all permanent and transient core processor

faults.

A number of fault-tolerant processor designs have been proposed and implemented,

in general, they employ redundancy to detect and/or correct transient errors. IBM's G4

processor [29] is a highly reliable processor design similar to the design in this paper in that

it checks all instructions results before committing them to architected state. Checking is

accomplished by fully replicating the processor core. An R-Unit is added to compare all

instruction results, permitting only identical results to commit. If a failure in the processor

is detected, it is addressed at the system level through on-line recon�guration. The ERC32

is a reliable SPARC compatible processor built for space applications [30]. This design

augments the microarchitecture with parity on all register and memory cells, some self-

checking control logic, and control
ow checking. In the event a fault is detected, a software

interrupt is generated and the host program initiates recovery.

Unlike these designs, the DIVA checker can keep costs lower by only checking the func-

tion of the program computation. The G4 and ERC32 designs check both the function of

the program and the mechanisms used to optimize program performance. This results in

more expensive checkers, typically 2 times as much hardware in the core processor. Ad-

ditionally, the DIVA checker can detect design errors. Simple redundant designs cannot

detect design errors if the error is found in each of the redundant components.

Tamir and Tremblay [31] proposed the use of micro rollback to recover microarchitecture

state in the event of a detected fault. The approach uses FIFO queues to checkpoint a few

cycles of microarchitectural state. In this work, we use a similar parallel checking approach,

but employ a global checking strategy to reduce checker cost. In addition, we use the

existing control speculation mechanism to restore correct program state.

5. Other DIVA Applications

The fault-tolerance create by dynamic veri�cation could allow designers to revisit many

of the fundamental assumptions of computer design - assumptions grounded in a fault-

avoidance design methodology. We believe that a transition to a fault-tolerant design style

would break many of these venerable assumptions - creating signi�cant opportunity at all

levels of the design. In this section, we suggest a number of possible optimizations.

19

Austin

5.1 Beta-Release Hardware

Today, when parts are fully veri�ed and released to the �eld, the process of veri�cation

(for the most part) is over. If customers �nd bugs, it may be necessary to implement ex-

pensive recalls of costly components. With dynamic veri�cation, it becomes possible to

safely release \beta" versions of the hardware to customers in the �eld (once the checker

is fully veri�ed). This early release of hardware will enable widespread in-�eld electrical

veri�cation, concurrent with initial deployment of the part. If any core processor errors

occur during this testing phase, the checker will ensure that they only manifest as per-

formance divots. As problems are identi�ed and �xed, steppings of the hardware can be

made without necessitating a replacement of earlier hardware { the new release of the part

will simply be slightly faster because it will experience fewer core processor design errors.

To facilitate this process, e�ective system monitoring mechanisms could be developed that

better identify the source of core design errors, and communicate this information back to

the manufacturer.

5.2 Scalable Low-Cost SER Protection

Single event radiation (SER) poses a signi�cant threat to the reliability of deep submicron

logic implementations. Dynamic veri�cation provides natural protection from these prob-

lems, since SER-induced faults in the core processor will manifest as computation errors

that are �xed by the checker. To prevent SER from a�ecting the checker, it can be made

with larger transistor with ample charge to tolerate strikes, thus providing 100% coverage for

SER by simply addressing the problem in the checker. As fabrication technology continue

to scale to smaller feature sizes, it eventually becomes more area eÆcient to implement two

copies of the checker logic. Since SER upsets are temporally and spatially sparse, it will be

highly improbably that both checkers could be a�ected by SER in the same or subsequent

cycles. Accordingly, if the checkers disagree on the correctness of an instruction one of the

checkers has experienced an SER upset. In this event, the machine can be restarted at

the same instruction and the checkers should once again agree as to the correctness of the

instruction result. This approach is a completely scalable low-cost and low-impact (to the

overall design) solution, and it provides complete coverage of all SER-related faults.

5.3 Self-Tuned Microprocessor Systems

The techniques used to provide reliability in VLSI logic implementations are very con-

servative. Systems are designed with frequency and voltage margins that ensure reliable

operation in even the most adverse environments (e.g., high temperature, high clock skew,

slow transistors). This is one of the reasons why hobbyists can overclock [32] production

parts for more performance. It should be possible to use the DIVA checker to reclaim much

of the power and performance consumed by operating margins.

In a self-tuned system [33], clock frequency and voltage levels are tuned to the system

operating environment, e.g., temperature. The approach minimizes timing and voltage

margins which can improve performance and reduce power consumption. Using the DIVA

checker, a self-tuned system could be constructed by introducing a voltage and frequency

control system into the processor, as shown in Figure 8. The control system decreases volt-

20

DIVA: A Dynamic Approach to Microprocessor Verification

DIVA
Checker

Clock Gen
Voltage Gen

error
rate

Vdd
clk

clk’
Vdd’

DIVA Core

insts to verify
and commit

core temperature

Figure 8: A Self-Tuned Microprocessor System.

age and/or increases frequency while monitoring system temperature and error rates until

the desired system performance-power characteristics are attained. If the control system

over steps the bounds of correct operation in the core, the DIVA checker will correct the

error, reset the core processor, and notify the control system. To ensure correct operation

of the DIVA checker, it is sourced by a �xed voltage and frequency that ensures reliable

operation under all operating conditions (or conversely, it is design to operate reliably under

the varied frequencies and voltages applied to the core processor).

5.4 Complexity-E�ective Microarchitecture Designs

In the work of Palacharla et. al. [34], it was shown how reducing the complexity of a design

could improve its performance by shortening critical circuit paths. We could leverage the

checker to further reduce complexity in the core processor by eliminating any complexity

that did not directly lead to performance improvements. Since the checker covers the

complete semantics of the ISA, we can delete any core functionality to optimize performance,

area, or design convenience. As long as that functionality is infrequently exercised (in

which case the checker will detect an error and reset the pipelines), it will not have a

signi�cant impact on performance. This approach provides designers the option to eliminate

the uncommon case. Consider how this might be used to streamline the design of of the

load/store queue (LSQ):

� eliminate infrequently used support for partial forwards through memory

� eliminate rarely used support for store forwarding through virtual address synonyms

� eliminate the address check on the infrequently changing upper bits of virtual ad-

dresses

Taking this approach to its extreme, it becomes possible to design two machines: the simple

checker pipeline which covers the entire functionality of the machine, and a de-featured core

that implements a performance-oriented subset of the ISA. For an iA32 machine, the checker

would implement all instructions, and the core would implement only the instructions and

their semantics that were expected to achieve good performance, e.g., register-register in-

structions, aligned memory accesses, and no partial register or memory de�nitions.

21

Austin

1

10

100

1000

co
m

pr
es

s
GCC go

ijp
eg li

pe
rl

hy
dr

o2
D

to
m

ca
tv

tu
rb

o3
D

av
er

ag
e

R
el

at
iv

e
C

P
I

Core Lock GD

Figure 9: Graceful Degradation in the Presence of a Catastrophic Core Processor Failure.

All performance numbers are normalized to the CPI of an unchecked core processor. Results

are shown on a log scale for the baseline DIVA checker with a locked core (Core Lock), and for

a DIVA checker with graceful degradation (GD).

5.5 Highly Available Microprocessor Designs

As shown earlier, if the core processor completely fails and no longer attempts to retire

instructions, processor performance will be severely impacted. Without any instruction

retiring, the DIVA checker will have to wait for the watchdog timer to timeout before an

instruction can be retired and the next instruction fetched. As a result, one instruction will

complete for each interval of the watchdog timer, one per 60 clock cycles in the experiments

presented.

It would be relatively straightforward to detect the case where the core processor was

no longer contributing to the program execution. For example, a counter could record

the number of watchdog timer exceptions with no intervening instruction retirements. If a

suitable threshold was reached, it could be assumed that the core processor has failed and

the DIVA checker could take over execution of the program. A simple change to the DIVA

design would permit it to fetch and execute instruction much quicker, simply by permitting

it to execute the next instruction without having to wait for the watchdog timer to expire.

As shown in experiment (GD) in Figure 9, this graceful degradation approach improves

processor performance considerably in the event of a catastrophic core processor failure.

Program performance degrades to only 1
10
th the performance of the original working core

processor. This is a marked improvement over the (Core Lock) experiment, in which the core

processor locks and instructions proceed at watchdog timer exceptions, an average of 1
120

th

the speed of the working core processor. The graceful degradation mode also outperforms a

core processor that is still retiring instructions but always incorrect results, i.e., experiment

(1) from Figure 7, with an overall performance of 1
14
th the speed of the working core. In

22

DIVA: A Dynamic Approach to Microprocessor Verification

this case, the DIVA checker bene�ts from not having to wait for the core processor pipeline

to �rst execute the instruction incorrectly.

In addition, the availability of a system using the DIVA checker could be further im-

proved by replicating the DIVA checker to detect errors within its own circuitry, or by

applying triple modular redundancy (TMR) [23] to detect and correct permanent faults in

the DIVA checker.

5.6 Dynamic Simulator Veri�cation

Not only is dynamic veri�cation an e�ective technique to lower the cost of hardware veri�-

cation, it is also an e�ective technique to lower the cost of simulator software veri�cation. A

detailed execution-driven simulator that incorporates dynamic veri�cation (i.e., a functional

checker at retirement) will permit architects to quickly explore design tradeo�s without im-

pairing the correctness of the microarchitectural simulator. The simulator can report a

coverage metric indicating what fraction of the time the simulator retired correct results,

giving the architect a clear indication of the accuracy of their modi�cations.

6. Conclusions

Many reliability challenges confront modern microprocessor designs. Functional design er-

rors and electrical faults can impair the function of a part, rendering it useless. While

functional and electrical veri�cation can �nd most of the design errors, there are many ex-

amples of non-trivial bugs that �nd their way into the �eld. Concerns for reliability grow in

deep submicron fabrication technologies due to increased noise-related failure mechanisms,

natural radiation interference, and more challenging veri�cation due to increased design

complexity.

To counter these reliability challenges, we introduced dynamic veri�cation, a technique

that adds a functional checker to the retirement phase of a processor pipeline. The functional

checker ensures that all core processor computation is correct, and if not, the checker �xes

the errant computation, and restarts the core processor using the processor's speculation

recovery mechanism. Dynamic veri�cation focuses the veri�cation e�ort into the checker

unit, whose simple and
exible design lends itself to functional and electrical veri�cation.

Using this approach, the core processor carries no burden of correctness or any requirement

for forward progress. The DIVA checker architecture was presented as a checker design

optimized for simplicity and low cost.

We showed through detailed timing simulation that the simple checker is also very

fast. The design achieves high throughput because the core processor eliminates most

of the control and data hazards that might otherwise slow its progress. Control hazards

are completely resolved in the fault-tolerant core processor; the checker need only verify

that the program counter is updated as per branch results. Data hazards, caused by long

latency operations and long latency communications, are virtually eliminated. Long latency

operations execute independent of each other using the high-quality input value predictions

delivered by the core processor. And long latency communication delays (the result of data

cache misses) are virtually non-existent as the core processor serves as a prefetcher for the

checker, warming up its caches in advance of instruction checks.

23

Austin

Overall, we have found that even resource-frugal checker designs have little impact on

core processor performance. For SPEC95, overall simulated slowdown for a modern pipeline

was less than 3%, with most of the slowdown attributed to
oating point codes that made

very eÆcient use of all pipeline resources. With the addition of a single memory port for

use by the DIVA checker, slowdowns were negligible. Also, increased DIVA checker latency

had only a small impact on core processor performance. The DIVA checker can tolerate

very high fault rates without signi�cantly impacting processor core performance. At rates

of one fault per 1000 processor cycles, the core processor only slowed by 2.6%; at intervals

of 1M cycles, performance impacts were negligible.

Finally, other applications of dynamic veri�cation were proposed. A self-tuned clock and

voltage scheme was proposed in which dynamic veri�cation is used to reclaim frequency and

voltage margins. A highly available checker design was also proposed. The design provides

more graceful degradation in system performance in the event of a total core processor

failure. Applications to improve the quality and complexity of future designs were also

suggested.

We feel that dynamic veri�cation holds signi�cant promise as a means to address the

cost and quality of veri�cation for future microprocessors, while at the same time creating

opportunities for faster, cooler, and simpler designs. The next step in this work is to better

quantify the bene�ts and costs of dynamic veri�cation, re�ne our initial design to further

decrease core processor performance impacts, and further develop applications of the fault

tolerant processor core.

References

[1] \Statistical analysis of
oating point
aw in the Pentium processor." Intel Corporation,

Nov. 1994.

[2] M. Kane, \SGI stock falls following downgrade, recall announcement." PC Week, Sept.

1996.

[3] A. Wolfe, \For Intel, it's a case of FPU all over again." EE Times, May 1997.

[4] P. Bose, T. Conte, and T. Austin, \Challenges in processor modeling and validation,"

IEEE Micro, pp. 2{7, June 1999.

[5] A. Aharon, \Test program generation for functional veri�cation of PowerPC proces-

sors in IBM," in Proceedings of the 32nd ACM/IEEE Design Automation Conference,

pp. 279{285, June 1995.

[6] R. Grinwald, \User de�ned coverage { a tool supported methodology for design veri�ca-

tion," in Proceedings of the 35nd ACM/IEEE Design Automation Conference, pp. 1{6,

June 1998.

[7] W. Hunt, \Microprocessor design veri�cation," Journal of Automated Reasoning, vol. 5,

pp. 429{460, Dec. 1989.

[8] J. Burch and D. Dill, \Automatic veri�cation of pipelined microprocessors control,"

Computer Aided Veri�cation, pp. 68{80, 1994.

24

DIVA: A Dynamic Approach to Microprocessor Verification

[9] J. Sawada, \A table based approach for pipelined microprocessor veri�cation," in Pro-

ceedings of the 9th International Conference on Computer Aided Veri�cation, June

1997.

[10] J. Bockhaus, R. Bhatia, M. Ramsey, J. Butler, and D. Ljung, \Electrical veri�cation

of the HP PA-8000 processor." Hewlett-Packard Journal, Aug. 1997.

[11] M. Bohr, \Interconnect scaling { the real limiter to high-performance ULSI," in Pro-

ceedings of the International Electron Devices Meeting, pp. 241{244, Dec. 1995.

[12] N. Weste and K. Eshragian, Principles of Cmos VLSI Design: A Systems Perspective.

Addison-Wesley Publishing Co., 1982.

[13] K. Seshan, T. Maloney, and K. Wu, \The quality and reliability of Intel's quarter

micron process." Intel Technology Journal, Sept. 1998.

[14] P. Rubinfeld, \Managing problems at high speed," IEEE Computer, pp. 47{48, Jan.

1998.

[15] R. Anglada and A. Rubio, \An approach to crosstalk e�ect analyses and avoidance

techniques in digital CMOS VLSI circuits," International Journal of Electronics, vol. 6,

no. 5, pp. 9{17, 1988.

[16] J. Ziegler, \Terrestrial cosmic rays," IBM Journal of Research and Development,

vol. 40, pp. 19{39, Jan. 1996.

[17] T. May and M. Woods, \Alpha-particle-induced soft errors in dynamic memories,"

IEEE Transactions on Electronic Devices, vol. 26, no. 2, 1979.

[18] J. Z. et al, \IBM experiments in soft fails in computer electronics," IBM Journal of

Research and Development, vol. 40, pp. 3{18, Jan. 1996.

[19] P. Bose and T. Conte, \Performance analysis and its impact on design," IEEE Com-

puter, vol. 31, pp. 41{49, May 1998.

[20] M. Tremblay, \Increasing work, pushing the clock," IEEE Computer, pp. 47{48, Jan.

1998.

[21] G. Grohoski, \Reining in complexity," IEEE Computer, pp. 47{48, Jan. 1998.

[22] B. Colwell, \Maintaining a leading position," IEEE Computer, pp. 47{48, Jan. 1998.

[23] D. Siewiorek and R. Swarz, The Theory and Practice of Reliable System Design. Digital

Press, 1982.

[24] W. J, Self-Checking Circuits and Applications. New York: North{Holland, 1978.

[25] D. C. Burger and T. M. Austin, \The SimpleScalar tool set, version 2.0," Technical

Report CS-TR-97-1342, University of Wisconsin, Madison, June 1997.

[26] \SPEC newsletter," Fairfax, Virginia, Sept. 1995.

25

Austin

[27] S. Breach, Design and Evaluation of a Multiscalar Processor. PhD thesis, University

of Wisconsin, Madison, 1999.

[28] E. Rotenberg, \AR-SMT: A microarchitectural approach to fault tolerance in micro-

processors," in Proceedings of the 29th Fault-Tolerant Computing Symposium, June

1999.

[29] L. Spainhower and T. Gregg, \G4: A fault-tolerant CMOS mainframe," in Proceedings

of the 28th Fault-Tolerant Computing Symposium, June 1998.

[30] J. Gaisler, \Evaluation of a 32-bit microprocessor with built-in concurrent error detec-

tion," in Proceedings of the 27th Fault-Tolerant Computing Symposium, June 1997.

[31] Y. Tamir and M. Tremblay, \High-performance fault tolerant VLSI systems using micro

rollback," IEEE Transactions on Computers, vol. 39, no. 4, pp. 548{554, 1990.

[32] B. Machrone, \You too can be an overclocker," PC Magazine, 1999.

[33] T. Kehl, \Hardware self-tuning and circuit performance monitoring," in Proceedings of

International Conference on Computer Design, 1993.

[34] S. Palacharla, N. P. Jouppi, and J. E. Smith, \Complexity-e�ective superscalar pro-

cessors," in Proceedings of the 24th Annual International Symposium on Computer

Architecture, pp. 206{218, June 1997.

26

