
Abstract

We propose methods for reducing the energy consumed by
snoop requests in snoopy bus-based symmetric multiprocessor
(SMP) systems. Observing that a large fraction of snoops do
not find copies in many of the other caches, we introduce JETTY,
a small, cache-like structure. A JETTY is introduced in-between
the bus and the L2 backside of each processor. There it filters
the vast majority of snoops that would not find a locally cached
copy. Energy is reduced as accesses to the much more energy
demanding L2 tag arrays are decreased. No changes in the
existing coherence protocol are required and no performance
loss is experienced. We evaluate our method on a 4-way SMP
server using a set of shared-memory applications. We
demonstrate that a very small JETTY filters 74% (average) of all
snoop-induced tag accesses that would miss. This results in an
average energy reduction of 29% (range: 12% to 40%)
measured as a fraction of the energy required by all L2
accesses (both tag and data arrays).

1  Introduction
The ever-increasing levels of on-chip integration have

enabled phenomenal improvements in computer system perfor-
mance. Unfortunately, the increase in performance has been
accompanied by an increase in power dissipation. High power
dissipation has historically been a concern of mobile system
designers, because it reduces battery life, diminishing the util-
ity of mobile platforms. High power dissipation is now becom-
ing a concern of server designers, because it requires more
expensive packaging and cooling technology, increases cost,
and decreases product reliability [21,24]. The key to continued
proliferation of servers (e.g., for use in networking, telecom-
munication, and enterprise computing) is server cost-effective-
ness and reliability. Accordingly, techniques to reduce power
dissipation in servers are becoming increasingly important.

In state-of-the-art processors, a significant fraction of the
power is dissipated in caches. The primary component of
power dissipation in today’s CMOS circuits is the switching
energy due to charging and discharging of load capacitances
whenever the circuit transistors switch. CMOS memory struc-
tures — such as caches — exhibit high capacitive loads on
their bit lines, dissipating correspondingly large amounts of
switching power [11]. Conventional circuit-level power reduc-
tion techniques — such as voltage scaling and clock gating —
have helped in maintaining low power dissipation levels across
chip generations. However, computer system designers are also

beginning to resort to (micro-)architectural solutions to reduce
power dissipation. Previous research has primarily focused on
reducing bit line power dissipation in uniprocessor memory
hierarchies. Most of these techniques exploit locality to service
a large fraction of accesses using very small caches [3,13] or by
dynamically reducing the cache associativity [1]. 

In symmetric multiprocessor (SMP) servers — the most
popular small- to medium-scale commercial server platforms
— lower cache hierarchy levels (such as L2) dissipate consid-
erable amounts of power. Unlike uniprocessors, in these sys-
tems coherence snoops account for a substantial if not
dominant number of cache accesses and amount of power dis-
sipation in the lower cache hierarchy levels. In SMPs, proces-
sor memory reads/writes may generate either a cache fill
request from memory or a write permission request for an
already cached block copy. In a typical write-invalidate proto-
col, all bus-side cache controllers “snoop” the bus upon a
request, substantially increasing the access frequency to lower-
level caches as compared to uniprocessors. For example, we
have found that for a set of commonly used benchmarks,
snoops double or quadruple L2 accesses on 4-way or 8-way
SMPs respectively. 1

There are optimizations that reduce energy consumption in
L2 such as using a dedicated tag array for snoops or serial tag
and data array accesses (e.g., as in Alpha 21264 [4] and Intel
Xeon [2]). While effective, these optimizations only reduce
energy consumption in the data array and not in the tag array.
In SMPs, however, tag array energy consumption is also high
because SMPs incorporate large L2 caches with high-associa-
tivity (to reduce bus traffic). In such caches, tag lookups
involve reading multiple cache block tags (while data accesses
involve only a single data block) and account for a significant
fraction of the overall energy consumed.

While frequent, coherence snoops typically “miss” (i.e., fail
to find the block of interest) in the tag array, thereby wasting
the energy consumed. For example, using the analytical model
of Kamble and Ghose [11] (in Section 2.1) we estimate that
snoop-miss-induced tag accesses account for about 33% of all
energy consumed by L2 caches for a 4-way SMP with Intel
Xeon-like caches and assuming typical L2 hit and snoop rates
for the applications we studied.

This paper proposes JETTY, a family of energy-efficient
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structures that can filter snoop traffic and reduce energy con-
sumption in all lower-level caches in SMPs. A JETTY resides
between the processor/memory-bus interface at each SMP pro-
cessor node. A bus snoop request first probes the local JETTY.
JETTY either responds and guarantees that no copies exist —
eliminating cache tag accesses and saving energy — or
responds that copies may exit requiring a subsequent snoop to
the cache hierarchy.

We propose a number of possible JETTY variants exploiting
key memory access and sharing patterns. One set of JETTY

designs capitalizes on temporal and spatial locality of sharing
and the resulting induced bus snoops. These designs capture
recently missed snoops — i.e., recording a subset of blocks that
are not cached — in a small, associative structure. Another set
exploits regularity in memory access patterns and block
addresses — encoding a superset of block addresses that are
cached — in a compact random-access structure.

On the average, JETTY reduces energy provided there is a
sufficiently large fraction of snoops that miss in caches. As we
show in Section 4, for the parallel programs we studied JETTY

results in significant energy savings. It is likely that the savings
will be larger when an SMP is used mostly as a throughput-
engine (i.e., running several independent programs) rather than
as a parallel-engine.

While L2 power already represents a sizeable fraction of
overall power (see Section 2.1), a study of potential optimiza-
tions such as those we describe is further justified for the fol-
lowing reasons: (1) As L2 size and associativity increase the
power required for their operation also increases. This is espe-
cially a concern for single-chip multiprocessor systems and for
processors that integrate large on-chip caches. (2) As other
power-optimization techniques are perfected, tag-related opti-
mizations like JETTY will increase in importance. (3) Finally, it
is likely, that similarly to performance optimizations, a plethora
of power-optimizations will be needed at multiple levels (soft-
ware and hardware) and structures to attain a desired overall
power reduction. 

The rest of this paper is organized as follows. In Section 2,

we present the rationale for our approach, together with an
analysis of the relative importance of snoop-miss energy con-
sumption. In Section 3, we discuss JETTY's operation and
present several alternative organizations. We present experi-
mental results in support of our method’s utility in Section 4. In
Section 5, we comment on related work. Finally, in Section 6
we summarize our findings and offer concluding remarks.

2  An Opportunity to Reduce
Snoop-Induced Energy Consumption
To motivate our snoop-filtering approach, we briefly

describe how a conventional SMP handles snoop requests. In
Section 2.1, we argue that snoop-misses constitute a sizeable
fraction of overall power dissipation. Finally, in Section 2.2,
we discuss complexity and latency issues.

Figure 1 illustrates a typical SMP consisting of three proces-
sors with local caches. Shown are a write-buffer (WB) and L1
and L2 data caches per processor. We omit the instruction hier-
archy and any other buffers that may exist between adjacent
levels for presentation clarity. A shared bus connects the pro-
cessors together and to a memory system. A cache-coherence
protocol maintains the data integrity among the processor
cache hierarchies. Processor memory reads and writes to
blocks that are not cached, or writes to blocks that are poten-
tially cached by others result in bus requests and bus snoops
from all other caches on the bus.

Figure 1(a) illustrates bus-snooping for a simple producer/
consumer sharing between CPU1 and CPU2. In this example,
CPU1 (the consumer) reads from address “a” (shown as a
shaded block) which misses in its local memory hierarchy. As a
result, the request appears on the bus (action 1), resulting in
snoops from all other CPUs (action 2). In this paper, we
assume inclusion between L2 and L1, and therefore each bus
snoop (action 2) first probes all the L2 tag arrays and the WBs
(the snoop accesses the L1 tag array only when necessary given
the information provided by the L2 and the type of the
access).2 The snoop transaction completes when CPU2 (the
producer) responds with a copy of “a” (action 3), inhibiting
CPU3 and memory from responding. Because CPU3 does not

Figure 1: (a) Conventional snoopy-coherence, bus-based SMP system: All L2 tag-arrays consume energy for snoops. (b) JETTY

enhanced system: the local JETTY filters snoops that would miss. Only if a hit is likely, the L2 tag-array is probed consuming energy
(and so is the L1 tag-array if necessary). Otherwise, energy consumption is limited to that required by the local JETTY and the
writeback buffer array.
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have a copy of “a”, it incurs a snoop miss and wastes energy.
As the example shows, all L2 tag-arrays in all CPUs con-

sume energy even though not all of them have a copy. Provided
that many of the snoop-induced accesses miss, there is an
opportunity for reducing energy consumption. JETTY capital-
izes on this opportunity by using small structures to identify
most snoop-induced tag probes that miss. A JETTY-enhanced
system is shown in Figure 1(b). As shown, the JETTY in CPU3
determines that no local copies exist avoiding probing the
much larger L2 tag array. JETTY will not filter snoops to the
WB. However, the WB is much smaller than the L2 tag array in
typical systems. 

JETTY relies on the following requirements to be successful: 
1. A large enough fraction of snoop-induced L2 accesses

should result in a miss. 
2. It should be possible to identify most of these (would-be)

misses using a small enough structure. 
3. We should never report a would-be miss while the data is

locally cached.
Fortunately, in the common case most snoops miss in L2. In

throughput-oriented server workloads, processors run distinct
programs and the only L2 misses resulting in a snoop hit are
due to highly infrequent activities such as process migration
among processors [25] or sharing of operating system data
structures. In many parallel scientific/engineering [31] and
commercial applications [12,20] a substantial fraction of L2
misses are to data structures only accessed by a single proces-
sor, resulting in snoop misses in all L2s. Moreover, the most
common form of (either migratory or producer/consumer)
sharing occurs among two processors resulting in snoop misses
in all but a single L2 [12,28]. In Section 4, we use simulation to
demonstrate that rarely a snoop finds copies in any of the L2s
for a set of parallel scientific/engineering applications. 

In the common case of a snoop miss, JETTY reduces energy
consumption, effectively maintaining a lower operating tem-
perature and offering higher reliability. In the infrequent but
worst case, e.g., an access to widely-shared data where all
caches have a read-only copy of a block, JETTY may increase
energy consumption. However, since JETTY is much smaller
than the tag hierarchy it will have a small impact on overall
power dissipation. Moreover, existing processors already
include both temperature monitoring hardware and the mecha-
nisms necessary (e.g., frequency or voltage scaling) to take
action when appropriate [6,8].

2.1  Snoops Consume a Sizeable Fraction of 
Overall Energy 

Ultimately, JETTY’s utility depends on whether snoop-
induced misses contribute significantly to overall energy con-
sumption. Unfortunately, no published data exists on the aver-
age power consumed by L2 caches in servers. To estimate
energy consumption due to snoop misses, we use a three-fold
approach. First, we rely on published data on the peak power
dissipated by L2 caches for a commercial processor. Then, we
present an argument why on the average L2 accesses consume
a sizeable fraction of overall energy. Finally, we use a model to

estimate the fraction of overall L2 energy consumed by snoop-
induced misses. 

The Intel Xeon II processor contains an L2 comprising a set
of external SRAMs [9]. Fortunately, separate power figures
exist for the core and the external L2. These are reported in
Table 1. For the 1Mbyte part, the L2 (data + tags) accounts for
23% of overall peak power. Excluding L2 pad power from the
overall peak power, L2’s contribution rises to 28%.Of course,
average power dissipation depends on how often L2 is
accessed. However, L2 power dissipation is comparable to that
of the L1 data cache which has been the main focus of much
previous work. For the programs we studied about one to 10 in
every 100 processor accesses would not hit in L1. While this
may seem to imply that L1 would consume a lot more power
(by one or two orders of magnitude), this is not true. First, L2 is
typically much larger than L1 (e.g., 10 times or more in SMPs)
and uses higher associativity. Moreover, a large (if not a domi-
nant) fraction of accesses that would otherwise hit in L1 are
typically served by stores pending in the writebuffer [16], or
can be served by the addition of line buffers [29]. Furthermore,
as we explain, the L2 access count is further amplified by
snoops. In particular, as we show in section 4, snoops double
and quadruple the L2 access count on a 4-way and 8-way SMP
respectively.

While L2 power dissipation represents a sizeable fraction of
overall power, JETTY can reduce energy consumption only for
snoop-induced tag lookups. To gauge JETTY’s potential, we
used Kamble and Ghose’s model [11] to estimate energy con-
sumption for the tag and data arrays of a 1Mbyte 4-way set-
associative L2 with either 32-byte or 64-byte blocks. For calcu-
lating the space required by tags, we assumed an IA-32-like
36-bit physical address space in addition to 2 bits for MOSI
stage encoding. Moreover, we used CACTI [30] to determine
the optimal number of banks for a 0.18µm process. We also
made the conservative assumption that the tag and data arrays
are accessed serially to reduce power. Bohwill, et al., estimated

2. In systems that do not maintain inclusion, a snoop also probes the
L1, further increasing snoop-induced power dissipation.
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Table 1: Breakdown of the power dissipated on a commodity
processor used to build glue-less SMP systems (source [6]). In
this processor, L2 is implemented using external, custom SRAM
chips. We report the peak power (MAX) dissipated by the
processor core, and the L2 and the L2 pads. The right-most
columns report L2 power as a fraction of overall power (core +
L2). Under the “L2” column we include the pads into the
overall power. Under the “L2 w/o pads” we exclude pad power
in the overall power to get an estimate of L2 power for a
hypothetical on-chip L2.



the power savings due to this optimization to 10W for the
Alpha 21164 (overall power is at 70W) [4]. Bateman, et al.,
report a 75% reduction in power for Intel’s XEON L2 [2].

The results are shown in Figure 2. The Y axis reports snoop-
induced miss energy consumption as a function (X axis) of
local hit rate. We define local hit rate as the fraction of locally
initiated accesses that hit in L2. We report snoop-induced miss
energy as a fraction over all energy consumed by all accesses to
L2s. We define remote hit rate as the fraction of L2 snoop-
induced accesses that hit. The remote hit rate range shown is
0% (top curve) to 90% in steps of 10%. Note that a local L2
miss results in three remote L2 accesses since this is a 4-way
SMP system. For example, assuming a 50% local miss rate,
one out of two local accesses will result in a snoop. Since there
are four processors, this implies that for every two local
accesses, each L2 cache will also observe three snoops result-
ing from remote L2 misses. Consequently, in this scenario
remote snoops account for the majority of L2 accesses. 

It can be seen that the relative energy consumed by snoop-
induced tag lookups that miss grows as the local and/or remote
hit rate decrease. As the local hit rate decreases, snoops
increase resulting in a 3X increase in remote L2 snoop-induced
accesses. Similarly, as remote hit rates decrease more snoop-
induced tag-lookups result in a miss, hence JETTY’s potential
increases. Snoop-induced miss energy consumption is higher
for the 32-byte block cache compared to the 64-byte block
cache. This is explained by the lower energy required by the
data array. 

We have shown that JETTY’s potential depends on the local
and remote hit rates. For example, assuming a 50% local hit
rate and a 10% remote hit rate, snoop-miss tag lookups account
for 33% of the power dissipated by all L2s (with 32-byte
blocks). In Section 4.4, we will see that JETTY yields significant
energy savings even when all L2 accesses are considered.

2.2  Complexity and Latency Considerations
A key advantage of JETTY is that it is readily-applicable to

existing SMPs and requires no modifications to the coherence
protocol. Coherence protocols can get arbitrarily complex opti-

mizing for various application sharing patterns. Moreover, pro-
tocol finite-state-machines are hard to design, debug, and
verify [7]. To minimize interaction with the protocol the JETTY

designs we propose maintain no coherence state information
other than “presence”; JETTY simply filters snoops to blocks
not present obviating the need to change the existing protocol.
Designs that exploit JETTY’s interaction with the protocol to
further save power are beyond the scope of this paper.

Because JETTY appears in series with the L2, it will increase
response latency for non-filtered snoops. However, we expect
that this increase will be an insignificant fraction of overall
snoop latency. Specifically, JETTY’s latency should be consider-
ably smaller than that of the L2 tag array since JETTY is a much
smaller and fairly straightforward structure. In fact, as we will
see in Section 4, the largest JETTY structure we use is almost
identical to an 8-ported 32 by 32-bit register file. In typical pro-
cessors, the latency of such structures is a fraction of the pro-
cessor cycle (half a cycle in many processors to allow both a
read and a write). In contrast, it takes several (e.g., 12) cycles to
access a reasonably sized L2. Moreover, state-of-the-art
snoopy buses are several (4~10) times slower than processors.

3  Jetty Variants
In this section, we discuss three JETTY variants: (1) the

exclude-JETTY, (2) the include-JETTY, and (3) the hybrid-JETTY.
What differentiates them is the type of information they record.
The exclude-JETTY contains information on recent blocks that
are not present in the local L2. The include-JETTY contains
aggregate information about all blocks currently present in the
local L2 cache. Finally, the hybrid-JETTY combines both
approaches. All variants are speculative in nature: They indi-
cate that a block is either not cached (guarantee) or that it may
be cached in the L2. In effect, they identify a subset of blocks
that are not cached and a superset of blocks that are cached.

3.1  Exclude-Jetty
Exclude-JETTY (EJ) keeps a record of blocks that have been

snooped recently, missed in the local L2 and are still not
cached, i.e., a subset of blocks that are not locally cached. EJ is

Figure 2: Analytical models of energy dissipated by L2 snoop-induced tag lookups that miss as a faction of local L2 hit rate (X
axis) and different remote hit rates (curves). The Y axis reports energy as a fraction of the overall energy consumed by all L2
caches (including misses and hits and both the tag and data arrays). Remote hit rates range from 0% (top) to 90% in 10% steps. 
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a small array containing (TAG, present-bit) pairs. A match in
EJ upon a snoop is a guarantee that the block is not cached
locally. An entry is allocated when a snoop misses in the local
L2. Subsequent accesses to the same block will be successfully
filtered so long as the block is not evicted from EJ. An EJ entry
is evicted (present-bit reset) when a local miss loads in the cor-
responding block. 

EJ exploits locality in the snoop stream. For example, pro-
ducer/consumer sharing often arises among a small number of
processors. In such a scenario, EJ can capture the snoop miss
stream in the rest of the processors’ L2s. Moreover, each con-
sumer read results in a snoop in all consumers’ L2. EJ can also
capture the snoop misses in all the consumers’ caches. Other
examples of common snoop streams EJ captures are migratory
sharing in small critical sections when data migrates from one
processor to another, and conflict traffic in L2s resulting in
temporal locality in snoop requests for a small number of block
addresses. 

A variation of EJ, Vector-Exclusive-JETTY (VEJ) exploits
spatial locality in the snoop stream, and uses a (TAG, present-
vector) pair to encode presence for a chunk of consecutive
blocks. The present-vector (PV) is a n-bit mask indicating
which blocks starting from TAG and ending with (TAG+n - 1)
are currently not in L2. Figure 3(a) illustrates an example
assuming a 40-bit physical address space, 256-byte L2 blocks
and a 4-bit PV. As shown, instead of storing the full 32-bit tag
we store the upper 30 bits only. The lower 2 bits of the TAG are
used to select the appropriate bit from the 4-bit PV. Bit 0 of the
PV corresponds to address TAG+0 while bit 3 corresponds to
address TAG+3. A block is not cached if its TAG matches an
entry in the VEJ and the corresponding present bit is set.

3.2  Include-Jetty
While there are many scenarios that result in locality in the

snoop stream, capturing the snoop streams from all SMP pro-
cessors effectively may require a prohibitively large EJ. An
alternative to recording blocks that are not locally cached (as in
EJ), is to keep information about those that are. Our alternative
JETTY design, Include-JETTY (IJ), contains information that
identifies a superset of the blocks currently cached in L2.
When a snoop misses in IJ, IJ guarantees that a block is not

cached in L2. 
The various IJs we studied are all derived from the basic

organization shown in Figure 3(b). We explain its operation via
an example and by assuming a 40-bit physical address space
and 256-byte L2 blocks. The example IJ consists of four 256-
entry sub-arrays. The relevant 32-bit part of the PA is split into
four 8-bit parts (IDX 0 to IDX 3). These parts are used to
access the four sub-arrays in parallel. Each entry reports a
count (cnt) and a present (p) bit. Let us ignore the cnt fields for
the time being. A p-bit indicates whether there is at least one
cached block whose tag matches the corresponding bit pattern.
For example, in the left-most sub-array, the p-bit of the 1st
entry (entry 0) matches block address of the form 0x00xxxxxxx.
The 256th entry matches block addresses of the form
0xFFxxxxxxx. 

If any of the four p-bits retrieved for a block address are zero
(IJ miss), then no L2 block matches this address. If all of p-bits
are non-zero (IJ hit), then a block may be locally cached. In this
case we have to probe the L2 tag-array to determine whether
the block is actually cached. In effect, each sub-array repre-
sents a superset of all cached blocks (via the non-zero p-bits).
Accordingly, the intersection of all these supersets (one per
sub-array) is also a superset of all cached blocks.3

Because missing in the IJ implies that a block is not in L2, it
is imperative to keep IJ’s information coherent. To do so, we
keep track of the exact number of blocks that match each IJ
entry via the cnt fields. When a block is allocated or de-allo-
cated all corresponding IJ counters are incremented or decre-
mented respectively. At most one counter per sub-array is
updated at any time. Since the p-bit encodes presence, we use a
count value of 0 to report 1 matching block, a value of 1 to
report 2 matching blocks and so on. A p-bit is reset when we
de-allocate a block and the matching counter is zero. A p-bit is
set when a matching block is allocated and the p-bit is zero. For
this method to work it is necessary to communicate the
addresses of replaced L2 blocks to the IJ. This information is
available at replacement time in L2 (no additional accesses are

Figure 3: (a) A vector-exclude-JETTY: it contains information about recent snoops that missed in the local L2. (b) An include-
JETTY: it contains information about the blocks currently cached in the L2. (c) Example showing power-optimized IJ sub-arrays.
Separate p-bit and cnt arrays are used per each 256-entry sub-array of part (b).
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required). A separate tag-sized set of wires can be used to com-
municate this information to the IJ. We do take into account
these IJ updates in our energy consumption analysis (Section
4.4). With this counter-based scheme it is desirable to avoid
saturation. We make the pessimistic assumption that a single IJ
entry may match all L2 blocks (e.g., this can happen with a
fully-associative cache). However, depending on the bits used
to index a sub-array and the cache organization fewer bits may
be required.

In the example of Figure 3(a) we used all relevant PA bits to
index the sub-arrays. We also used non-overlapping, continu-
ous, equal-in-length parts of the PA. None of these are require-
ments. In fact, we found that using partially overlapped indices
results in better accuracy. However, a further investigation of IJ
index generation schemes is beyond the scope of this paper.

It is important to emphasize that when a snoop probes IJ,
only the p-bits are read. The cnt fields are read and updated less
frequently. Accordingly, to reduce energy consumption we can
use an alternative organization where the p-bits and the cnt
fields are stored in separate arrays. Moreover, the p-bit array
can be organized to contain multiple p-bits per entry. For exam-
ple, as shown in Figure 3(c), instead of using a 256-entry by 1-
bit array we could use a 16-entry by 16-bit organization where
part of the index is used to select the entry and the other part to
select the appropriate p-bit. The same principle can be applied
to the cnt arrays as shown in the figure. Note that the largest IJ
we have evaluated, has four p-bit arrays each having 32x32-bits
(similar to a typical four-ported register file).

3.3  Hybrid-Jetty
IJ contains aggregate information about what is cached

locally. However, there are cases where a small set of fre-
quently snooped blocks defies identification by an IJ. At the
same time, EJ is well-suited for keeping track of a small num-
ber of blocks that are not currently cached but exhibit snoop
locality. An obvious alternative is to combine the two methods

to increase accuracy in a Hybrid-JETTY (HJ). HJ uses both an EJ
and an IJ in parallel. When either of the two indicates that no
match is possible, we avoid accessing the L2 tag array.
Because, EJ serves as backup for IJ, entries are allocated in the
EJ only when the IJ fails to filter them. To keep JETTY’s impact
on snoop latency at a minimum (Section 2) HJ accesses both IJ
and EJ components in parallel upon a snoop. As we show in
Section 4, the hybrid method outperforms IJ and EJ both in
accuracy and in energy reduction.

4  Experimental Analysis
In this Section, we evaluate the effectiveness of various

JETTY organizations. In Section 4.1, we discuss our methodol-
ogy including the benchmarks and simulation environment. In
Section 4.2, we demonstrate that a large fraction of snoop-
induced L2 tag accesses results in a miss. In Section 4.3, we
measure the accuracy of various JETTY organizations. In Sec-
tion 4.4, we measure the energy reduction possible for a set of
the better performing JETTY organizations. 

4.1  Methodology
We use a set of shared-memory applications widely used in

SMP design studies. The applications include those from the
SPLASH-2 benchmark suite [31] and two scientific applica-
tions from our previous studies [15]: Em3d, a shared-memory
version of the Split-C benchmark; and Unstructured, a compu-
tational fluid-dynamics application. Table 2 provides additional
information about these applications including the input data
sets, the resulting number of memory accesses (in Millions),
and the amount of main memory allocated (MA column).
Access counts range from about 60 million to 1.7 billion and
memory requirements range from 3.5 Mbytes to as much as 82
Mbytes.

We used the Wisconsin Wind Tunnel 2 (WWT2) [17] to col-
lect snoop activity traces and memory reference statistics.
WWT2 simulates only a single-level direct-mapped data cache
hierarchies.4 We have modified WWT2 to simulate a 2-level

App. Ab Input Parameters
Accesses

in M
MA

Local Hit Rates L2 Snoop
AccessesL1 L2

Barnes ba 16K particles 967.0 57.4 M 97.8% 31.7% 47.1M

Cholesky ch tk15.0 224.4 26.3 M 98.0% 64.2% 9.9M

Em3d em 76K nodes, 15% remote, degree 2 333.4 34.4 M 76.5% 23.3% 252.6M

Fft ff 256K data points 60.2 12.7 M 96.8% 36.3% 7.5M

Fmm fm 16K particles 1,751.2 36.1 M 99.6% 81.2% 8.1M

Lu lu 512x512 matrix, 16x16 blocks 188.7 4.6 M 95.7% 82.5% 6.3M

Ocean oc 258 x 258 ocean 182.8 41.6 M 83.5% 52.2% 90.0M

Radix ra 10M keys 399.4 82.1 M 96.2% 79.4% 42.6M

Raytrace rt car 299.9 69.1 M 98.3% 46.6% 12.3M

Unstructured un mesh 2K 1,693.6 3.5 M 92.4% 78.7% 304.8M

Table 2: Applications used in our studies. In the interest of space, we will refer to the applications using the two letter
abbreviations listed under the “Ab.” column. Reported from left to right are the input parameters, the resulting memory accesses
(Millions), the amount of memory allocated (in Mbytes), the hit rates and finally, the number of snoop-induced L2 accesses. To
measure hit rate, we count all hits and misses in all four processors. The L2 hit rate is measured over those accesses that miss in
the L1 including L1 writebacks. Note a snoop might be necessary even on an L2 hit (i.e., write hit on a shared block). This explains
why in some cases there more snoops than misses.



on-chip hierarchy per processor. Our base configuration is a 4-
way SMP. The memory system is SUN SPARC-like where
each processor has 1Mbyte L2 and 64Kbyte L1 direct-mapped
caches. L1 blocks are 32 bytes long. L2 blocks are 64 bytes
long and consist of two 32-byte subblocks. Coherence is main-
tained at the subblock level using a MOESI protocol. Sub-
blocking is used in many commercial systems to reduce the tag
array size. (We have experimented with a similar configuration
that does not use subblocking and we report a summary of
these results where appropriate.) We used CACTI [30] to deter-
mine the optimal number of banks for a 0.18µm process. 

In Table 2, we report the resulting hit rates for L1 and L2.
The local hit rates we report in Table 3 include only local refer-
ences, i.e., references initiated by the local processor. More-
over, we report aggregate hit rates over all four processors. The
“L2 Snoop Accesses” column reports the number of snoop-
induced L2 accesses. In Section 4.2, we report the combined
snoop and local accesses hit rate. 

To measure energy consumption we have adapted the analyt-
ical model developed by Kamble and Ghose [11]. This model
calculates power for cache structures as a function of their
organization, the number and type of accesses and a set of tech-
nology dependent attributes. While this model is an approxi-
mation, it has been used extensively in previous power studies
for caches, e.g., [1]. In our experiments we have assumed a
0.18µm CMOS technology operating at 1.8V and with the
characteristics reported in [5].

4.2  Snoop Activity
In this section, we present empirical evidence that a large

fraction of snoop-induced L2 tag accesses result in a miss.
Moreover, we present results indicating that snoop accesses
constitute a large fraction of — and often dominate — all L2

accesses. The results are shown in Table 3. Under the “Remote
Cache Hits” columns we report the remote hit count distribu-
tion of snoops: e.g., under column “1” we report the fraction of
snoops that find only one remote cached copy. We define a
remote hit as a snoop transaction that finds at least one cached
copy in a processor other the one that generated the transaction.
With the exception of unstructured, the majority of snoops
(79% on the average) do not find remote cached copies. Very
few snoops find copies in all other caches (1% on the average).
(On a similar configuration where L2 caches were not sub-
locked 68% of all snoop-induced accesses resulted in a miss.)

The final two columns report summary statistics on snoop-
induced L2 tag accesses. Among snoop-induced tag accesses
91% result in a miss. This suggests that there is potential for
JETTY to filter a large fraction of snoop accesses. Moreover,
when measured as a fraction of all L2 accesses (last column),
snoop misses account for about 55% of all accesses. (On a sim-
ilar configuration where L2 caches were not subblocked snoop-
induced misses where 46% of all L2 accesses.) This result sug-
gests that JETTY has the potential for producing significant
energy savings as snoop misses constitute a large fraction of all
L2 accesses. 

4.3  Snoop Miss Coverage
In this section, we evaluate the accuracy of various JETTY

organizations. We define snoop miss coverage, or coverage for
short, as the fraction of snoop-induced L2 tag lookups that miss
that are filtered by JETTY. We use coverage as the key metric to
evaluate JETTY’s ability to filter snoops; we present overall
energy consumption including the JETTY’s energy in section
4.4. We present coverage measurements first for EJ and VEJ,
then for IJ and finally, for HJ organizations.

4.3.1  Exclude-JETTY  
We evaluate six different EJ configurations varying both the

number of sets and the associativity of the storage array. With

Application Remote Cache Hits L2 Snoop Miss Accesses

0 1 2 3 % of Snoop Accesses % of All Accesses

Barnes 47% 28%  15% 10% 71% 48%

Cholesky 92% 5%  3% 0% 95% 59%

Em3d 80% 17% 2% 1% 92% 69%

Fft 93% 7%  0% 0% 98% 73%

Fmm 82% 15% 2% 1% 93% 39%

Lu 73% 26%  1% 0% 91% 39%

Ocean 97% 3% 0% 0% 99% 66%

Radix 100% 0%  0% 0% ~100% 56%

Raytrace 100% 0%  0% 0% ~100% 69%

Unstructured 33% 55% 4% 8% 71% 28%

AVERAGE 79.6% 15.6% 2.6% 1% 91% 55%

Table 3: Snoop hit distribution. The column “Remote Cache Hits” depicts the fraction of snoops that miss in all other caches (0
hits), or hit in 1, 2 or all other 3 caches over all snoops. The column “L2 miss snoops” depicts the fraction of snoop-induced L2
tag accesses that result in a miss; these are snoops that JETTY may eliminate. The final column reports the snoop-induced L2 tag
accesses that miss as a fraction of all L2 tag accesses. We report statistics for two systems. The first (SB columns) uses subblocking
in the L2, while the second (NSB columns) does not.

4. While WWT2 assumes perfect instruction caches, our applications’
instruction footprints are very small, and would have minimal
impact on L2’s performance.



EJ-SxA we refer to an S-set and A-way set associative EJ orga-
nization (S x A total number of entries). We have experimented
with structures having 32, 16, and 8 sets and 2-way and 4-way
associativity. Figure 4(a) reports coverage for these configura-
tions. 

The various EJ organization perform fairly well suggesting
that there is locality in the reference stream as it appears on the
bus. For those applications where there is little or no sharing,
locality is primarily the result of subblocking. Accesses to the
different subblocks within the same L2 block will result in a
miss. When sharing exists, coherence actions may force multi-
ple accesses to the same cache block to appear on the bus (e.g.,
migratory data). As expected using larger EJ organizations or
ones with higher associativity results in increased coverage.
However, the differences are minor (this is not the case in the
system that does not use subblocking where, for example, for
Barnes EJ-32x4’s coverage is 29% while EJ-32x2’s coverage is
16.3%). EJ-32x4 performs the best with 45% coverage on the
average. 

4.3.2  Vector-Exclude-JETTY
We have experimented with VEJ organizations based on the

EJ-32x4 and the EJ-16x4 extended with either 8-bit or 4-bit
presence vectors. With VEJ-SxA-V we refer to an organization
having V-bit presence vectors, S sets and is A-way set-associa-
tive. The results are shown in Figure 4(b). EJ-32x4 and EJ-
16x4 are included for ease of comparison. Using vectors
improves coverage over EJ for most applications, albeit only
slightly. The highest improvements are observed for Unstruc-
tured. Unfortunately, it is possible for coverage to decrease
compared to an EJ with the same number of entries (e.g., Bar-
nes). A VEJ and an EJ with equal number of sets and associa-
tivity will use different parts of the PA to determine the set
index. This may result in increased pressure for some sets and
consequently in thrashing in the VEJ. This also explains why

the 4-bit vector VEJ outperforms its 8-bit counterpart in Bar-
nes.

4.3.3  Include-JETTY
We evaluate five different IJ organizations. We use an IJ-

ExNxS naming scheme where 2E is the number of entries in
each sub-array and N is the number of sub-arrays used. To get
the N, E-bit wide sub-array indexes we start from the least sig-
nificant bit of the PA (excluding the block-offset bits). The first
index is the E least significant bits. To get the next index, we
skip S bits toward the most significant bit. Using S that is less
than E results in partially overlapped indexes. No shifters are
required for extracting the appropriate indexes, this is done by
simply routing the appropriate section of the PA to each sub-
array. 

We evaluate the following organizations: IJ-10x4x7 (four
1K-entry sub-arrays), IJ-9x4x7, IJ-8x4x7, IJ-7x5x6 and IJ-
6x5x6 (five 64-entry sub-arrays). Table 4 reports the space
required by each IJ. Recall that for remote snoops, only the p-
bit section of each sub-array needs to be accessed. Also note
that 14-bits are required (pessimistic assumption) for each cnt-
array entry. The space requirements for the p-bit arrays are
very small.

The results are shown in Figure 5(a). The IJ-10x4x7, which
is the largest IJ evaluated performs the best resulting in 57%
coverage on the average. However, the IJ-9x4x7 (which has
half the storage requirements of IJ-10x4x7) performs fairly
well resulting in about 53% average coverage. For some pro-
grams using a larger number of smaller sub-arrays results in
better coverage. For example, IJ-7x5x7 (five 16x8-bit sub-
arrays) outperforms IJ-8x4x7 (four 16x16-bit sub-arrays) for
Em3d. As all IJ organizations are speculative in nature repre-
senting a superset of all cached blocks, this is possible given an
appropriate snoop and cache block address distributions. 

There is no direct correlation between IJ and EJ behavior.

Figure 4: (a) Exclude-JETTY coverage. Configurations are named as EJ-Sets x Associativity. (b) Vector-Exclude-JETTY coverage.
Configurations are named as VEJ-Sets x Associativity x VectorLength.
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While EJ performs similarly for most programs, IJ appears to
work a lot better for some than others. For example, for ray-
trace, IJ captures virtually all snoops that miss while EJ cap-
tures only about half. This suggests a potential synergy of the
two methods and serves as the motivation for experimenting
with hybrid organizations.

4.3.4  Hybrid-JETTY
As explained in Section 3.3, an HJ contains both an IJ and an

EJ operating in parallel. We experimented with various meth-
ods. Here we report six methods which are derived by combin-
ing various IJ and EJ organizations (VEJ organizations
performed slightly better than EJ ones but the differences
where small). We use an (IJ, EJ) naming scheme. IJ is any of
IJ-10x4x7, IJ-9x4x7 and IJ-8x4x7. EJ is EJ-32x4 or EJ-16x2.
We selected these configurations as they represent a spectrum
of mechanisms with varying storage requirements and cover-
age characteristics. 

Coverage results are shown in Figure 5(b). As expected HJ
results in increased coverage compared to its IJ and EJ constit-
uents. In fact, for some programs, the resulting coverage is
close or even exceeds (i.e., (IJ-8x4x7, EJ-16x2)) the sum of the
coverage possible by the individual IJ or EJ when operating in

isolation. This is because the IJ acts as filter reducing the
blocks that are allocated in the EJ.

Overall, (IJ-10x4x7, EJ-32x4) HJ performs the best resulting
in 75.6% average coverage (using a VEJ-32x4-8 resulted in
77% average coverage). However, even an (IJ-8x4x7, EJ-16x2)
that requires much less storage yields a 65% average coverage.
We have also experimented with an 8-way SMP. Due to space
limitations, we summarize the results. In an 8-way SMP,
snoop-induced misses account for a larger fraction of all L2
accesses, 76.4% on the average vs. 54.5% for the 4-way SMP.
Moreover, average coverage becomes 79%.

The results of this section suggest that we can get high cov-
erage with modestly sized JETTY organizations. We have seen
that for some applications IJ organizations work better than EJ
ones and vice versa. However, combining IJ and EJ mecha-
nisms into an HJ improves coverage over all applications, often
significantly. The best mechanism in terms of coverage is an
(IJ-10x4x7, EJ-32x4) resulting in about 76% average coverage
(on a similar system that does not use subblocking the coverage
for this HJ was 68%). However, much smaller configurations
result in competitive coverage. For example, an (IJ-9x4x7, EJ-
32x4) yields about 74% average coverage.

4.4  Energy Measurements
In this Section, we report results on the energy savings for

various L2 and JETTY organizations. We report energy savings
both as a fraction of all snoop accesses and as a fraction of all
L2 accesses. In this analysis, we take into account JETTY’s
energy dissipation including L2 replacement updates for IJ
components. Moreover, we take into account the actual mix of
reads and writes. 

The energy reduction results are shown in Figure 6. We
model two L2 organizations. The first (parts (a) and (b)) is
energy optimized where the tag and data arrays are accessed

Figure 5: (a) Coverage results for IJ configurations, named as “IJ-Index x Bits x NoOfSubarrays x SkipBits” (see text). (b)
Coverage for HJ configurations named as (IJ, EJ).
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IJ
p-bit Array

cnt array
in bits Org. (bits)

IJ-10x4x7 4 x 1024 4 x 32 x 32 7168 bytes

IJ-9x4x7 4 x 512 4 x 16 x 32 3548 bytes

IJ-8x4x7 4 x 256 4 x 16 x16 1792 bytes

IJ-7x5x6 5 x 128 5 x 8 x16 869 bytes

IJ-6x5x6 5 x 64 5 x 4 x16 448 bytes

Table 4: Storage requirements of various IJ configurations.
Note that on a snoop, only the p-bit array is accessed.



serially, as is done in Alpha 21164 [4] and in Intel Xeon [2].
The second (parts (c) and (d)) assumes that tags and data are
accessed in parallel. We limit our attention to HJ organizations.
We model all accesses to L2 and JETTY including L2 replace-
ment information for updating the cnt-arrays. (Note that some
differences may be observed compared to the analytical model
of Section 2.1. Here we use the actual read/write reference
counts along with writeback traffic.)

In part (a) we report energy reduction over all snoop
accesses. We limit our attention to the HJ organizations we
reported in Figure 5(b). The differences among the various HJ
organizations are relatively small. (IJ-10x4x7, EJ-32x4) per-
forms the best, offering a 56% energy reduction over all snoop
accesses. Using the much smaller (IJ-8x4x7, EJ-32x4) we
observe a 49% energy reduction. In general, energy reductions
are correlated to snoop-miss coverage. However, even when
coverage is close to 100% (e.g., in raytrace) we do not com-
pletely eliminate energy consumption as JETTY itself consumes
energy. In fact, in raytrace where virtually all JETTY organiza-
tions offer the same coverage, we observe energy savings that
are inversely proportional to JETTY’s energy dissipation
(closely related to its size). In the interest of space, in the rest

of this section we restrict our attention to HJ organizations con-
taining the EJ-32x4 only (first 3 bars of part (a)).

In part (b) we report energy reduction as a fraction over all
L2 accesses. (IJ-10x4x7, EJ-32x4) results in a 30% energy
reduction, while (IJ-9x4x7, EJ-32x4) results in a 29% energy
reduction on the average.

Parts (c) and (d) report energy reduction over all snoops and
all L2 accesses respectively. Here we model an L2 where the
tag and data arrays are accessed in parallel (this might be done
for reducing latency). Overall, energy reductions are higher
compared to the serial L2 organization of parts (a) and (b). (IJ-
10x4x7, EJ-32x4) now results in a 63% energy reduction on the
average in the energy required by snoop-induced accesses.
When all access are considered, this HJ organization results in
a 41% energy reduction on the average.

5  Related Work
A number of previous studies have focused on architectural/

microarchitectural techniques to reduce energy dissipation in
the memory hierarchy [1,3,10,13,14,18,19,26,32]. Most of
these techniques directly target reducing power dissipation
induced by processor memory accesses — rather than snoop-
induced accesses which are the focus of this paper. Many of the

Figure 6: Energy reduction with various JETTY organizations. Serially Accessed Tag and Data Arrays: (a) Over all snoop
accesses. (b) Over all L2 accesses. Tag and Data Arrays Accessed in Parallel: (c) Over all snoop accesses. (d) Over all L2
accesses. The HJ methods listed in (a) are the same as in Figure 5(b). Part (a) uses the same HJ configurations as Figure 5(b).
Parts (b), (c) and (d) are for (IJ-10x4x7, EJ-32x4), (IJ-9x4x7, EJ-32x4) and (IJ-8x4x7, EJ-32x4) from left to right.
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techniques propose using tiny energy-efficient devices to cap-
ture small program working sets and filter references to larger
and more power-intensive structures such as L1 caches and
TLBs. Other techniques focus on cache resizing to reduce
energy dissipation (e.g., varying set-associativity [1] or the
number of sets [19]). JETTY may easily co-exist with such opti-
mizations and will still be valuable especially when the appli-
cation requires use of all L2 cache resources.

Techniques that reduce tag array sizes (e.g., CAT [27],
Seznec’s tag indirection [23] and sectored tags [22]) can help
reduce tag lookup power dissipation. While these techniques
reduce the tag array size they also place restrictions on the
block address distribution. Moreover, these techniques may
impact L2 access latency. 

6  Conclusion
In this work, we were motivated by the increasing impor-

tance of power dissipation in computer system design, and in
particular for servers. Accordingly, we have proposed methods
for reducing the power required to perform snoops on snoop-
coherence, bus-based SMP servers. In particular, we intro-
duced JETTY, a small structure placed on the backside (bus-
side) of each L2. The JETTY acts as a filter preventing snoops
that would miss in the L2 from percolating up in the hierarchy.
Our method is speculative in nature (it may fail to filter some
of the snoops that would miss) and reduces power on the aver-
age. In developing JETTY we were motivated by the relatively
large fraction of snoop-induced L2 tag accesses that miss
which we found to be 54% of all L2 accesses for a 4-way SMP
and a set of commonly used shared-memory benchmarks.We
described a number of alternative organizations that either
record a subset of blocks that are not cached in the local L2
and/or a superset of the blocks that are. We have evaluated the
potential of our proposed method and found that a relative
inexpensive organization filters about 76% of all snoops that
would miss on the average. The corresponding energy savings
were 30% measured as a fraction of all L2 accesses (both tag
and data arrays). A hybrid JETTY comprising an IJ with four
512-entry sub-arrays and a 32-set, 4-way set associative EJ
resulted in energy savings of 29%.

Filtering of snoops that would miss is only one type of
power-related optimizations that might be possible. Other pos-
sibilities may exist. Nevertheless, JETTY represents a valuable
first step toward developing power-optimizations for snoop
traffic in SMP systems. Moreover other applications of snoop-
filtering structures such as JETTY might be possible including
performance and cost optimizations.
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Appendix A  - Snoop Miss Energy Model

We present an analytical model for snoop-induced L2 access
energy consumption. We used this model only to evaluate the
relative trends in snoop-induced energy consumption with
varying cache hit rates and sharing degree (in Section 2.1). As
such, we make several simplifying assumptions as compared to

the more detailed model we use in Section 4.4. We denote the
energy required per access to the tag and data arrays by TAG
and DATA respectively. The number of processors Ncpu, the
local hit rate L and the remote hit rate R (defined in Section
2.1). This model ignores L2 writebacks. Moreover, while not
shown, we assumed a 1 to 2 write to read distribution. In our
analysis of Section 4, we include both L2 writebacks and the
actual distribution of reads and writes. The model (for presen-
tation clarity, we omit the read/write terms) is as follows:         

TagSnoopMiss is the energy required by snoop-induced
accesses that miss. A local access will generate a snoop with
probability (1-L), this will result in (Ncpu - 1) remote tag look-
ups, each of which will miss with (1-R) probability. SnoopE is
the energy consumed by all snoop-induced accesses to the tag
array. In addition to TagSnoopMiss it also includes the energy
required by snoop-induced accesses that hit. Data is the energy
required by data array accesses. Every local access eventually
accesses the data array (hits immediately, misses eventually
when the requested data returns), hence the 1 term. Moreover,
the data array is accessed when a snoop-induced access hits
((Ncpu-1) x (1-L) x R term). This is a pessimistic assumption
as a snoop hit may only require changes to the status bits (read
on an exclusive block if the E state exists), or no changes at all
(read to a shared block). TagAll is the energy required by all tag
accesses (local and snoop-induced). Besides the energy
required by snoop-induced accesses, the tag array is accessed
once for local accesses that hit, and once more for every local
miss to update the tag information. Note that this model
ignores changes to the status bits when a snoop-induced access
hits. The last equation expresses the energy required by snoop-
induced accesses that miss as a fraction of all L2 accesses.
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