
Abstract: We identify that typical programs exhibit highly
regular read-after-read (RAR) memory dependence streams.
We exploit this regularity by introducing read-after-read (RAR)
memory dependence prediction. We also present two RAR
memory dependence prediction-based memory latency
reduction techniques. In the first technique, a load can obtain
a value by simply naming a preceding load with which a RAR
dependence is predicted. The second technique speculatively
converts a series of LOAD1-USE1,...,LOADN-USEN chains into a

single LOAD1-USE1...USEN producer/consumer graph. Our

techniques can be implemented as surgical extensions to the
recently proposed read-after-write (RAW) dependence
prediction based speculative memory cloaking and speculative
memory bypassing. On average, our techniques provide
correct values for an additional 20% (integer codes) and 30%
(floating-point codes) of all loads. Moreover, a combined
RAW- and RAR-based cloaking/bypassing mechanism
improves performance by 6.44% (integer) and 4.66%
(floating-point) even when naive memory dependence
speculation is used. The original RAW-based cloaking/
bypassing mechanism yields improvements of 4.28% (integer)
and 3.20% (floating-point).

1 Introduction
Modern high-performance processors exploit regularities in

“typical” program behavior. Extensively studied examples
include caching, branch prediction and value prediction. This
experience points to a possible direction for further perfor-
mance improvements: identifying currently unknown regulari-
ties in program behavior and exploiting these regularities to
our advantage. Following this rationale, we identify that typi-
cal programs exhibit highly regular “read-after-read” (RAR)
memory dependence streams. A RAR dependence exists
between two loads if both access the same address and no
intervening store writes to the same address. We have found
that if at some point two loads are RAR dependent, then with
high probability these loads will be RAR dependent again
soon even though they may be accessing a different address.

To exploit this regularity we present: (1) history-based RAR
memory dependence prediction, and (2) two techniques that
use this prediction to reduce memory latency. In RAR memory
dependence prediction an earlier detection of a RAR depen-
dence is used to predict the dependence the next time the same
loads are encountered. We use this prediction to create a new
name space through which loads can get speculative values. In
our technique, a load can get a value by identifying a preced-
ing load that also reads it (i.e., a RAR dependence exists with
that load). Using PC-based prediction this identification takes
place early in the pipeline without actual knowledge of mem-
ory addresses. We further reduce load latency by transforming

a number of LOAD1-USE1,...,LOADN-USEN chains into a single,
yet speculative LOAD1-USE1...USEN producer/consumer graph.
Consequently, the first load can propagate its value to the con-
sumers of all its RAR dependent loads.

An advantage of our techniques is that they can be imple-
mented as surgical extensions to the recently proposed specu-
lative memory cloaking (cloaking) and speculative memory
bypassing (bypassing) respectively [15]. Figure 1 provides an
overview of these techniques. Part (a) shows the original
RAW-prediction-based cloaking and bypassing, while part (b)
shows our RAR-prediction-based techniques. Our RAR-pre-
diction-based cloaking and bypassing complement their RAW
counterparts by predicting loads that the original cloaking and
bypassing cannot. These are loads that do not experience RAW
dependences. However, the utility of our techniques extends
also to loads that have RAW dependences with distant stores.
While RAW-based cloaking and bypassing is theoretically
possible for such loads, practical considerations may prevent
us from detecting the corresponding RAW dependences. As
we explain in detail at the end of Section 3.1, this is the result
of the limited scope of the underlying dependence detection
mechanisms.

Our contributions are: (1) we demonstrate that regularity
exists in the RAR memory dependence stream of typical pro-
grams, (2) we introduce history-based RAR memory depen-
dence prediction, (3) we propose applications of this
prediction, and (4) we compare the accuracy of our techniques
and of load value prediction [12] and show that the two
approaches are complementary.

The rest of this paper is organized as follows: in Section 2
we demonstrate that programs exhibit regular RAR memory
dependence streams. In Section 3 we discuss the rationale for
our RAR memory dependence prediction based methods and
how they can be implemented as extensions to RAW-based
cloaking (Section 3.1) and RAW-based bypassing (Section
3.2). In Section 4 we review related work. In Section 5 we

Figure 1: Speculative Memory Cloaking and Bypassing. (a)
Original proposal: Exploiting RAW dependences. (b) Our
techniques: Exploiting RAR dependences.

LD RY

USE RY

Cloaking

B
yp

as
si

ng

Memory

LD RZ

USE RY

USE RZ

Cloaking

B
yp

as
si

ng

DEF RX
LD RY

register address direct speculative link

ST RX

(a) RAW-based (b) RAR-based

 Read-After-Read Memory Dependence Prediction
Andreas Moshovos

Electrical and Computer Engineering Department
Northwestern University
moshovos@ece.nwu.edu

Gurindar S. Sohi
Computer Sciences Department

University of Wisconsin-Madison
sohi@cs.wisc.edu

 Read-After-Read Memory Dependence Prediction
Andreas Moshovos

Electrical and Computer Engineering Department
Northwestern University
moshovos@ece.nwu.edu

Gurindar S. Sohi
Computer Sciences Department

University of Wisconsin-Madison
sohi@cs.wisc.edu

evaluate the accuracy and performance of our techniques.
Finally, in Section 6 we summarize our findings. For clarity we
use the terms dependence and memory dependence inter-
changeably.

2 Quantifying RAR Memory Dependence Stream
Regularity

In this section, we demonstrate that the RAR dependence
stream of the SPEC95 programs is regular (our methodology
and benchmarks are described in Section 5.1). We show that
most loads exhibit temporal locality in their RAR-dependence
stream. That is, once a load experiences a RAR dependence,
chances are that it will experience the same RAR dependence
again soon. Moreover, we demonstrate that the working set of
RAR-dependences per load is relatively small. These proper-
ties enable history-based prediction of RAR dependences.

We represent RAR dependences as (PC1, PC2) pairs where
PC1 and PC2 are instruction addresses of RAR-dependent loads.
Generally, given a set of loads that access the same memory
address, RAR dependences exist between any pair of loads in
program order (provided of course that no intervening store
writes to the same address). We restrict our attention to RAR
dependences between the earliest in program order load
(source) and any of the subsequent loads (sinks). For example,
given the sequence LD1 A, LD2 A, LD3 A, we will account for the
(LD1 A, LD2 A) and (LD1 A, LD3 A) dependences only and not for
the (LD2 A, LD3 A) dependence. This definition is convenient
for RAR dependence prediction and for its applications we
present in Section 3 as it allows us to keep track of a single
RAR dependence per executed load (ignoring data granularity).

To show that RAR-dependence streams are regular we mea-
sure the memory dependence locality of loads with RAR
dependences. We define memory-dependence-locality(n) as the
probability that the same RAR dependence has been encoun-
tered within the last n unique RAR dependences experienced
by preceding executions of the same static load. Memory-
dependence-locality(1) is the probability that the same RAR
dependence is experienced in two consecutive executions of
this load. A high value of memory-dependence-locality(1) sug-
gests that a simple, “last RAR dependence encountered”-based
predictor will be highly accurate. For values of n greater than 1,
memory-dependence-locality(n) is a metric of the working set
of RAR memory dependences per static load. Of course, a
small working set does not imply regularity.

Figure 2, part (a) shows locality results for sink loads. Given
a (source, sink) RAR dependence we define the source to be
the earliest in program order load. From our definition of RAR
dependences it follows that sink loads will typically have a sin-
gle source load. The locality range (value of n) shown is 1 to 4
(left to right). The Y axis reports fractions over all sink loads

executed. Locality is high for all programs. More than 70% of
all loads experience a dependence among the four most
recently encountered RAR dependences.

We also measured how locality would change had we placed
a restriction on how far back we could search to find the earli-
est source load. Such a restriction is interesting from the per-
spective of history-based prediction as we need a mechanism to
detect RAR dependences. To be of practical use this mecha-
nism will have to be of finite size. Accordingly, we include
locality measurements for an address window of 4K. We define
an address window of size s to be the maximum number of
unique addresses that can be accessed between a source and a
sink load. The intuition behind this metric is a table tracking
the s most recent addresses accessed can be used to detect
memory dependences. As seen by the results of Figure 2, part
(b), locality is high, in some cases higher than it was when all
accesses were considered (shorter dependences seem to be
more regular that distant ones).

3 Reducing Memory Latency via RAR Memory
Dependence Prediction

We start by reviewing the RAW-based cloaking and bypass-
ing techniques. We then explain how our RAR-based tech-
niques fit under the same framework.

 Memory can be viewed as an interface that programs use to
express desired actions. Viewing memory as an interface
allows us to separate specification from implementation: just
because we have chosen to express an action via memory we
do not have to implement it the exact same way. The recently
proposed cloaking and bypassing methods approached memory
as way of specifying inter-operation communication, that is of
passing values from stores to dependent loads [15]. This speci-
fication is implicit and it introduces overheads which are not
inherent to communication: address calculation and disambig-
uation. Unfortunately, caching, the current method of choice to
speeding-up memory communication, cannot reduce these
overheads. Moreover, these overheads may increase as pipe-
lines grow deeper and as windows get wider. Fortunately, we
can eliminate these overheards if we express memory commu-
nication explicitly. In an explicit specification the load and the
store are given knowledge of the communication that has to
occur so that they can locate each other directly. Cloaking uses
RAW memory dependence prediction to create this representa-
tion on-the-fly in a program transparent way. Moreover, depen-
dent stores and loads do not change the communicated value
(ignoring sign-extension and data-type issues). They are simply
used simply to pass a value that some other instruction (pro-
ducer) creates to some other instruction(s) that consumes it.
Bypassing extends cloaking by linking actual producers and
their consuming instructions directly.

Figure 2: Memory Dependence Locality of RAR dependences (range: 1 to 4). Address window size: (a) Infinite, (b) 4K entry.

40%
50%
60%
70%
80%
90%

100%

go
m

88 gc
c

co
m li ijp pe
r

vo
r

to
m

sw
m

su
2

hy
d

m
gd ap

l
trb ap
s fp
*

w
av

(a)

40%
50%
60%
70%
80%
90%

100%

(b)

go
m

88 gc
c

co
m li ijp pe
r

vo
r

to
m

sw
m

su
2

hy
d

m
gd ap

l
trb ap
s

fp
*

w
av

Following a similar line of thinking, we observe that another
common use of memory is data-sharing, that is to hold data
that is read repeatedly. Data-sharing is also expressed implic-
itly and similar overheads are introduced. This can be seen
using the example of Figure 3. In part (a) two load instructions,
LOAD and LOAD’, are shown which at run-time access the same
memory location. Part (b) shows a possible sequence of events.
Initially LOAD is fetched, its address is calculated and a value is
read from memory. Later on, LD’ is encountered. At this point
both loads have been encountered and the value is available.
Yet, LD’ has to calculate its address and go to memory to read
the same value. Moreover, depending on whether memory
dependence speculation is used, accessing the memory value
may be further delayed to establish that no intervening store
accesses the same memory location. It is important to note that
while LD and LD’ are accessing a common address every time
they are encountered, this address may be different every time.
For example, this is the case in the example of part (c) of Fig-
ure 3 where each of the elements of list “l” is accessed twice
from within different functions.

As with memory communication, an explicit representation
of data-sharing can eliminate the aforementioned overheads. In
the preceding example, LD’ could obtain a value by just naming
LD. Creating an explicit representation of data-sharing is the
goal of our RAR dependence prediction based methods.
Observing that data-sharing gives rise to RAR dependences we
propose PC, history-based RAR memory dependence predic-
tion and use it to explicitly represent data-sharing. We also
observe that similarly to inter-operation communication, loads
that access a common memory location do not change the
value they read. Accordingly we propose a RAR extension to
bypassing in which consumers of loads with RAR dependences
are linked directly to the earliest possible load that is predicted
to access the common memory location. The effect of our RAR
extensions is illustrated in Figure 1, part (b).

3.1 RAR-Based Speculative Memory Cloaking
In this section we explain how we use RAR memory depen-

dence prediction to streamline data-sharing. Our method works

as follows: the first time a RAR dependence is encountered, the
identities of the dependent loads are recorded and a new name
is assigned to them (i.e., with their PCs). The next time these
instructions are encountered, the previously assigned name can
be used to propagate a value from the first in program order
load to the second. We illustrate the exact process with the
example of Figure 4 where we show how an earlier detection of
a RAR dependence between LOAD and LOAD’ is used the sec-
ond time these instructions are encountered to provide a specu-
lative value for LOAD’. The first step is detecting the RAR
dependence. This is done via the use of a Dependence Detec-
tion Table (DDT) [15]. The DDT is an address indexed cache
the records the PC of a load or a store that accessed the corre-
sponding address. When the first instance of LOAD calculates
its address it also creates a new entry in the DDT (action (a)).
Later, LOAD’ may access the DDT using the same address
(action b) where it will locate the entry for LOAD. At this point
we have detected a RAR dependence between the two instruc-
tions. As a result, an association of the two loads with a prefer-
ably unique name, a synonym, is created in the Dependence
Prediction and Naming Table (DPNT) (action 1). This is a PC-
indexed table and two entries are created one for LOAD and one
for LD’. When a later instance of LD is encountered (part (b)),
its PC is used to access the DPNT predicting whether a RAR
dependence will be observed (action 2). Provided that the
dependence is predicted, storage for the synonym is allocated
in the Synonym File (SF) (action 3). The SF is a synonym-
indexed structure. Initially, the SF entry is marked as empty as
no value is yet available. When LD’s memory access completes,
the value read is also written into the SF marking the entry as
full (action 4). When LD’ is encountered, its PC is used to
access the DPNT and predict the RAR dependence (action 5).
Using the DPNT provided synonym LD’ can access the SF and
obtain a speculative value (action 6). This value can be propa-
gated to dependent instructions (action 7). Eventually, when
LD’ calculates its address and completes its memory access, the
value read from memory can be used to verify whether specu-
lative value was correct (action 8). If it was, speculation was
successful. If not, value misspeculation occurs. While we
assumed that LD’s memory access completes before LD’ is
encountered, this technique is useful even when this is not so.

We have deliberately used the same support structures as in
the original RAW-based cloaking. In fact, the two techniques
are virtually identical provided that we treat the first load in a
RAR dependence as the producer of the memory value. How-
ever, while in RAW-based cloaking the value becomes avail-
able as soon as the store receives it from the instruction that
produces it, in RAR-based cloaking the value has to be fetched
from memory by the first load. These observations suggest that
our RAR-based cloaking technique can be implemented as a
surgical extension to RAW-based cloaking. For this purpose we
need to record loads in the DDT. Moreover, we need to mark
loads as producers in the DPNT. For this we use two predictors
per entry, one for consumer prediction and one for producer
prediction. In the DDT we chose to record loads only when no
preceding store has been recorded for the same address. More-
over, we record a load in the DDT only when no other load has
been recorded for the same address. This is done to annotate

Figure 3: An example of data-sharing. (a) Trace with two
loads accessing the same memory location. (b) Time-line of
execution. (c) Code with RAR dependences.

while (l)
foo (l)
bar (l)
l = l->next

foo (list l)
t += l->data
...

bar (list l)
if (l->data = KEY) ...

LD

LD’

(c)

LD

ST

LD’

P
ro

gr
am

 O
rd

er

LD
LD ADDRESS
LD DATA

LD’
LD’ ADDRESS

ST ADDRESS

explicit

implicit

Execution Time line
(a)

(b)

LD’ DATA

RAR
dependence

the earliest in program order load as the producer of a value for
cloaking purposes.

At this point we can explain why our RAR-based method
can be used to predict some of the loads that have RAW depen-
dences with distant stores. The size of the DDT limits how far
we can search to locate the source instruction for both RAW
and RAR dependences. When a load has a dependence with a
distant store it is likely that the latter will be evicted from the
DDT long before the load is encountered. Consequently, the
RAW dependence will go undetected and RAW-based cloaking
will not be performed. However, if the load has RAR depen-
dences with not so distant loads, these dependences may be
detected and subsequently used to predict the load’s value
using RAR-based cloaking.

3.2 RAR-Based Speculative Memory Bypassing
The process of RAW-based bypassing is shown in part (a) of

Figure 1. As shown, bypassing speculatively converts a DEF-
STORE-LOAD-USE dependence chain into a DEF-USE one, in
effect bypassing the store and load instructions. Consequently,
the value can flow directly from the producer (DEF RX) to the
consumer (USE RY). The goal of our RAR-based extension to
bypassing is shown in part (b) of Figure 1. We assume that a
RAR dependence exists between “LOAD RY” and “LOAD RZ”.
While RAR cloaking will allow “LOAD RZ” to obtain a specula-
tive value by naming “LOAD RY”, its consumer, “USE RZ”, will
have to wait until “LOAD RY” propagates this value. With our
method, “USE RZ” is speculatively linked directly to “LOAD RY”.
As with cloaking, the proposed method can be implemented as
an extension to the RAW-based bypassing. This can be done by
treating the oldest in program order load of a RAR dependence
similarly to a store of a RAW dependence. The only difference
is that this “producing” load cannot be eliminated. Figure 4,
part (b) illustrates how the cloaking provided synonym is used
to propagate the target register tag (TAG1) of “LD RY” to “USE

RZ”.

4 Related Work
An obvious alternative to cloaking is register allocation

which eliminates load and store instructions altogether. How-
ever, register allocation is not always possible for numerous

reasons ranging from fundamental limitations (e.g., address-
ability) to practical considerations (e.g., register file size, pro-
gramming conventions and legacy codes). Cloaking and
bypassing are architecturally invisible. As such, we may deploy
them only when justified by the underlying technological
tradeoffs. Moreover, they may capture dynamic dependence
behavior.

Numerous software and hardware address-prediction tech-
niques have been used to reduce load access latency, e.g.,
[1,2,6,9,18,4,3]. Cloaking is orthogonal to address-prediction-
based techniques as it does not require a predictable access pat-
tern. A technique closely related to cloaking is load value pre-
diction [12], a special case of value prediction [11,7]. Cloaking
does not directly predict the loaded value, rather it predicts its
producer or another load that also accessed the same location.
This property may be invaluable for programs with large data
sets.

Moshovos, Breach, Vijaykumar and Sohi introduced RAW
memory dependence prediction for scheduling loads [14].
Tyson and Austin [20] and Moshovos and Sohi [15,16] intro-
duced RAW-based cloaking. The memory renaming proposal
of Tyson and Austin combines cloaking with value prediction.
Lipasti’s Alias prediction [10] is also similar to cloaking.
Moshovos and Sohi proposed RAW-based speculative memory
bypassing [15]. Jourdan, Ronen, Bekerman, Shomar and Yoaz
proposed a similar method [8] where address information and
prediction is used to eliminate loads and to increase coverage.
Reinman, Calder, Tullsen, Tyson and Austin investigated a
software-guided cloaking approach [17].

5 Evaluation
This section is organized as follows: In Section 5.1 we

describe our methodology. The first step in using cloaking is
building dependence history. Accordingly, in Section 5.2 we
measure the fraction of memory dependences observed as a
function of DDT size. In Section 5.3 we investigate an aggres-
sive cloaking mechanism and study its accuracy. In Sections
5.4 through 5.5 we present a characterization of the speculated
loads by considering their address and value locality character-
istics. In Section 5.6, we measure the performance impact of a
combined cloaking and bypassing mechanism.

5.1 Methodology
We have used the SPEC’95 programs which we compiled for

the MIPS-I architecture using GNU’s gcc compiler version
2.7.2 (flags: -O2 -funroll-loops -finline-functions). We con-
verted FORTRAN codes first to C using AT&T’s f2c compiler.
To attain reasonable simulation times we modified the standard
train or test inputs, and we used sampling for some programs.
Table 5.1 reports the dynamic instruction count, the fraction of
loads and stores and the sampling ratio per program. We note
that when we simulated our cloaking/bypassing mechanisms
using unmodified input data sets from the SPEC95 suite the
resulting accuracy was close, often better than that observed
with the modified input data sets. We used sampling only for
the timing experiments of section 5.6. We did not use sampling
for 099.go, 126.gcc, 130.li, 132.ijpeg, 147.vortex, 107.mgrid
and 141.apsi. For the rest of the benchmarks we chose sam-
pling ratios that resulted in roughly 100M instructions being
simulated in timing mode. The observation size is 50,000

Figure 4: RAR-based speculative memory cloaking (part (a))
and bypassing (part (b)).

LD

LD’

LD

LD’

MEMORY

address 1

value

SF

DPNT

 LD’ synonym

 LD synonym
1

2

3

address 2
4

4

5

7
8

6

TIME

address 1 LD

DDT
a

b

LOAD RY
USE RY

1 2

 r2 TAG1 TAG2

3

LOAD RZ
USE RZr1 TAG1 synonym

(a)

(b)

instructions. We report sampling ratios under the “SR” col-
umns as “timing:functional” ratios. For example, an 1:2 sam-
pling ratio amounts to simulating 50,000 instructions in timing
mode and then switching to functional simulation for the next
100,000 instructions. During functional simulation the I-cache,
D-cache, and branch predictors are simulated. Even when sam-
pling was used, the accuracy of all evaluated techniques was
very close, often identical to that measured when the whole
program was simulated using functional simulation. In our
evaluation we will use the abbreviations shown under the “Ab.”
column of Table 5.1.

The simulators we used are modified versions of the Multi-
scalar timing simulator. Our base processor is capable of exe-
cuting up to 8 instructions per cycle and is equipped with a
128-entry instruction window. It takes 5 cycles for an instruc-
tion to be fetched, decoded and placed into the re-order buffer
for scheduling. It takes one cycle for an instruction to read its
input operands from the register file once issued. Integer func-
tional unit latencies are 1 cycle except for multiplication (4
cycles) and division (12 cycles). Floating-point functional unit
latencies are as follows: 2 cycles for addition/subtraction and
comparison (single and double precision or SP/DP), 4 cycles
SP multiplication, 5 cycles DP multiplication, 12 cycles SP
division, 15 cycles DP division. An 128-entry load/store sched-
uler (load/store queue) capable of scheduling up to 4 loads and
stores per cycle is used to schedule load/store execution. It
takes at least one cycle after a load has calculated its address to
go through the load/store scheduler which implements naive
memory dependence speculation [14]. That is: (1) a load may
access memory even preceding store addresses are unknown,
(2) a load will wait for preceding stores that are known to write
to the same address, (3) stores post their address even when
their data is not yet available, and (4) stores may post their data
or address out-of-order. We have found that for our centralized
window processor model this speculation policy offers perfor-

mance very close to that possible with ideal speculation [13].
The base memory system comprises: (1) a 128-entry write
buffer, (3) a non-blocking 32Kbyte/16 byte block/4-way inter-
leaved/2-way set associative L1 data cache with 2 cycle hit
latency, (4) a 64K/16 byte block/8-way interleaved/2-way set
associative L1 instruction cache with 2 cycle hit latency, (5) a
unified 4Mbyte/8-way set associative/128 byte block L2 cache
with a 10 cycle hit latency, and (6) an infinite main memory
with 50 cycles miss latency. Miss latencies are for the first
word accessed. Write buffers of 32 blocks each are included
between L1 and L2, and between L2 and main memory. Addi-
tional words incur a latency of 1 cycle (L2) or 2 cycles (main
memory). All write buffers perform write combining and hits
on miss are simulated for loads and stores. For branch predic-
tion we use a 64-entry call stack and a 64k-entry combined pre-
dictor that uses a 2-bit counter selector to choose among a 2-bit
counter-based and a GSHARE predictors.

In all experiments we used a level of indirection (i.e., syn-
onym) to track multiple RAW and RAR dependences per load
and store. This is necessary, as some loads experience different
dependences through different control paths. Instead of using
the full merge algorithm assumed by Moshovos and Sohi [15],
we used the incremental algorithm Chrysos and Emer proposed
in the context of memory dependence speculation/synchroniza-
tion [5]. These methods attack scenarios where a dependence is
detected between loads or stores that have different synonyms
already assigned. For example, consider the following
sequence: ST1 A, LD1 A, ST2 B, LD2 B, ST1 C, LD2 C. Initially ST1
and LD1 will be assigned a synonym, say X, because they both
access address A. Then ST2 and LD2 will be assigned a different
synonym, say Y, because they access address B. When the
(ST1,LD2) dependence is encountered the two instructions have
different synonyms already assigned to them. We have found
that in such cases and if we are to use a common policy for all
loads, it is best to always merge all dependences into the same
communication group rather than never doing so. In the origi-
nal cloaking proposal, one of the two synonyms is selected
(e.g., X) and all instances of the second one (e.g., Y) are
replaced in the DPNT. This action requires an associative
lookup/update in the DPNT. Chrysos and Emer proposed just
replacing the synonym of largest value and only for the corre-
sponding instruction (e.g., if X > Y, then ST1’s synonym will be
replaced with Y). Because of the bias in the synonym selection,
eventually all relevant instructions will be given the same syn-
onym. No noticeable difference in accuracy was observed
between the two methods. Finally, we did not provide explicit
support for dependences between instructions that access dif-
ferent data types as such dependences are rare in the SPEC95
benchmarks. This might not be the case for other programs.
The original RAW-based cloaking and bypassing proposal dis-
cusses potential support for such dependences [15].

5.2 Memory Dependence Detection
In this section, we measure the fraction of memory depen-

dences that is visible with various DDT sizes. These measure-
ments provide a first indication of the fraction of loads that can
obtain a speculative value via cloaking. Figure 5 reports the
fraction of dynamic (committed) loads with detectable RAW or
RAR dependences as a function of DDT size (range is 32 to 2K

Program Ab. IC Loads Stores SR
SPECint’95

099.go go 133.8 20.9% 7.3% N/A

124.m88ksim m88 196.3 18.8% 9.6% 1:1
126.gcc gcc 316.9 24.3% 17.5% N/A

129.compress com 153.8 21.7% 13.5% 1:2

130.li li 206.5 29.6% 17.6% N/A

132.ijpeg ijp 129.6 17.7% 8.7% N/A

134.perl per 176.8 25.6% 16.6% 1:1

147.vortex vor 376.9 26.3% 27.3% N/A
SPECfp’95

101.tomcatv tom 329.1 31.9% 8.8% 1:2

102.swim swm 188.8 27.0% 6.6% 1:2

103.su2cor su2 279.9 33.8% 10.1% 1:3

104.hydro2d hyd 1,128.9 29.7% 8.2% 1:10

107.mgrid mgd 95.0 46.6% 3.0% N/A
110.applu apl 168.9 31.4% 7.9% 1:1

125.turb3d trb 1,666.6 21.3% 14.6% 1:10

141.apsi aps 125.9 31.4% 13.4% N/A

145.fpppp fp* 214.2 48.8% 17.5% 1:2

146.wave5 wav 290.8 30.2% 13.0% 1:2

Table 5.1: Benchmark Execution Characteristics. Instruction
counts (“IC” columns) are in millions.

entries and we use LRU replacement policy). Shown is the total
number of loads with dependences (grey shaded area) and a
breakdown in terms of the dependence type (RAW or RAR).

The averaged results (upper right) show that a large fraction
of loads get their value via a dependence that is visible even
with the smaller DDTs. Overall, dependences are more fre-
quent for the integer codes. The relative fractions of RAR and
RAW dependences are dissimilar for the two classes of pro-
grams. In integer codes and for the smaller DDT sizes, RAW
dependences are almost twice as frequent as RAR dependences
are. In the floating point codes the roles are almost reversed. It
seems that Fortran codes are dominated by a large number of
variables with long lifetimes that are not register allocated. As
we move toward larger DDT sizes, more RAW dependence are
detected. While RAR dependence frequency also increases for
up to DDTs of 512 entries, virtually no increase is observed for
larger DDTs. We even observe a decrease in RAR dependence
frequency between 1K and 2K DDTs for some floating-point
codes. The increased frequency of RAW dependences is the
cause: some of the RAR dependences are among loads that
also have a RAW dependence with a distant store. When
smaller DDTs are used the store is evicted from the DDT due
to limited space.

The results of this section suggest that a DDT of moderate
size (e.g., 128 entries) can capture dependences for a large
fraction of loads (roughly 70% and 60% for the integer and
floating-point programs respectively). Moreover, a significant
fraction of loads have a visible RAR dependence but no visible
RAW dependence (e.g., 25% (integer) and 40% (floating-
point) of all loads for the 128-entry DDT). For the rest of the
evaluation we focus on configurations that use a 128-entry
DDT. We have found that this table yields accuracy close of
often better to that achieved with larger DDTs.

5.3 Cloaking Coverage And Misspeculation Rates
In this section, we measure the accuracy of two cloaking

predictors. We use two metrics: coverage and misspeculation
rate both measured as a fraction over all executed loads. Cover-
age is the fraction of loads that get a correct value via cloaking.
The complement of coverage, the fraction of loads that get an
incorrect value, is the misspeculation rate. For the purposes of
this study we assume infinite DPNTs and evaluate predictors
with the following two confidence mechanisms: (1) non-adap-
tive 1-bit, and (2) a 2-bit automaton. The second confidence

mechanism enables cloaking as soon as a dependence is
detected. However, once a misprediction is encountered it
requires two correct predictions before allowing a predicted
value to be used again. We include results for the non-adaptive
predictor as it provides a rough upper bound on coverage.

Figure 6 reports cloaking coverage (part (a)) and mispredic-
tion rates (part (b)). Two bars are shown, one for each confi-
dence mechanism: the left one is for the 1-bit non-adaptive,
while the right one is for the aforementioned 2-bit automaton.
A breakdown in RAW (grey) and RAR (white) dependences is
also shown. We observe that on the average RAR dependences
offer roughly an additional 20% (integer) and 30% (floating-
point) of correctly speculated loads. We also observe that only
a minor loss in coverage is incurred when the adaptive predic-
tor is in place. As the results on misspeculation rates (part (b))
show, this loss comes at the benefit of a drastic reduction in
misspeculations. We can observe that for the integer codes
RAR misspeculations are frequent and in some cases even
more frequent than RAW dependences. For the floating point
programs, RAR dependences are either the sole source of mis-
speculations or they cause as many misspeculations as RAW
dependences do. However, it should be noted that for most
floating point programs RAR dependences are also responsible
for most of the loads that are correctly predictor. On average
the adaptive predictor reduces misspeculations by almost an
order of magnitude compared to the non-adaptive predictor.
The misspeculation rates are 2%, 0.35% and 1.01% for the
integer, floating and all program respectively. From that 1.1%,
0.17% and 0.54% (percentage of loads) comes from RAW
dependences. In the rest of the evaluation we restrict our atten-
tion to the adaptive predictor.

5.4 Address Locality Measurements
We next measure the address locality of the loads that get a

correct value via cloaking. We define address locality as the
probability that a load instruction accesses the same address in
two consecutive executions. We present these measurements to
offer additional insight on the type of loads that are correctly
handled by cloaking. The results are shown in Figure 7, part
(a). The left bar represents the fraction of all loads that exhibit
locality while the right bar represents the fraction of loads that
get a correct value via cloaking. We breakdown the left bar into
three categories depending on whether a RAW, a RAR or no
dependence is detected by our 128-entry DDT. We can observe

Figure 5: Fraction of loads with RAW or RAR dependences as a function of DDT size. Range is 32 to 2K in power of 2 steps.

go m88 gcc com li ijp per vor

 RAR

tom swm su2 hyd mgd apl trb aps fp* wav

 RAW

 RAR+RAW

SpecINT SpecFP Overall0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

that many loads covered by cloaking do not exhibit address
locality. We can also observe that with the exception of
145.fpppp, there are very few loads that exhibit address locality
but have no dependence (145.fpppp exhibits similar behavior if
a larger DDT is used).

5.5 Value Locality/Prediction Measurements
In this section, we measure the value locality of loads and its

correlation to cloaking coverage. We do so as value prediction
can also be used to predict a load value, possibly earlier than
cloaking would allow. Figure 7, part (b) reports the fraction of
loads that exhibit value locality alongside with a breakdown of
loads that get a correct value via cloaking. As in the previous
section we provide a breakdown of the loads that exhibit value
locality based on whether they have a dependence detected. For
most programs, cloaking coverage is higher than value locality.
Value locality is higher only for 132.ijpeg, 104.hydro2d,
110.applu and 125.turb3d. Moreover, cloaking predicts more of
the loads with dependences.

To better understand how value prediction and cloaking/
bypassing relate, we measured the fraction of loads that get a
correct value from cloaking/bypassing but not from value pre-
diction and vice versa. For this experiment we simulated a
fully-associative last-value predictor with 16K entries. The
cloaking mechanism we use has a 16K DPNT, a 128-entry
DDT and a 2K set associative synonym file. All structures are
assumed to be fully-associative. The results are shown in Table
5.1. We also present a breakdown of the values obtained via
cloaking/bypassing in terms of the dependence type. We can
observe that for most programs, value prediction captures some
loads that cloaking/bypassing does not and vice versa. More-
over, for most programs the fraction of loads correctly pre-

dicted only via cloaking/bypassing is higher than the fraction
of loads correctly predicted only via the value predictor. While
context-based value predictors could be used to increase load
value prediction coverage, cloaking offers a concise way of
representing information for prediction purposes for a large
fraction of loads. These observations suggest a potential syn-
ergy of the two techniques.

Figure 6: Breakdown of cloaking accuracy per dependence type: (a) coverage, and (b) misprediction rates (logarithmic Y axis).
Two predictors are shown per program (see text). Percentages are over all loads.

Figure 7: (a) Address Locality breakdown. (b) Value Locality breakdown.

0.25%

1%

5%
10%
25%
50%

100%
(b)

0%

20%

40%

60%

80%

100%

0.10%

(a)

go
m

88 gc
c

co
m

li ijp pe
r

vo
r

to
m

sw
m su
2

hy
d

m
gd ap

l
trb ap
s fp
*

w
av go

m
88 gc

c
co

m
li ijp pe
r

vo
r

to
m

sw
m

su
2

hy
d

m
gd ap

l
trb ap
s fp
*

w
av

 RAW RAR RAW+RAR RAR RAW

 RAR No Dependence RAW RAW
Address Locality/ Left Bar

0%

20%

40%

60%

80%

100%

 RAR

Cloaking Coverage/ Right Bar

go
m

88 gc
c

co
m li ijp pe
r

vo
r

to
m

sw
m

su
2

hy
d

m
gd ap

l
trb ap
s

fp
*

w
av

0%

20%

40%

60%

80%

100%

 RAR
 No Dependence RAW RAW

Value Locality/ Left Bar

 RAR

Cloaking Coverage/ Right Bar
go

m
88 gc

c
co

m li ijp pe
r

vo
r

to
m

sw
m

su
2

hy
d

m
gd ap

l
trb ap

s
fp

*
w

av

(a) (b)

Cloaking/Bypassing
VP

RAW RAR Total
go 23.43% 5.75% 29.18% 5.29%

m88 14.23% 10.62% 24.85% 1.88%

gcc 18.15% 5.89% 24.04% 8.01%

com 41.18% 0.99% 42.18% 0.22%

li 31.08% 1.08% 32.17% 6.14%

ijp 8.67% 5.25% 13.93% 11.24%

per 21.72% 1.57% 23.29% 7.82%

vor 29.52% 3.33% 32.85% 5.03%

tom 10.22% 15.35% 25.58% 0.24%

swm 6.43% 19.98% 26.41% 0.37%

su2 7.18% 25.89% 33.08% 2.67%

hyd 3.02% 1.29% 4.31% 49.94%

mgd 2.34% 0.43% 2.77% 2.60%

apl 3.18% 8.29% 11.46% 12.60%

trb 2.27% 0.55% 2.82% 41.94%

aps 8.85% 4.47% 13.34% 9.67%

fp* 22.46% 17.87% 40.34% 18.17%

wav 10.08% 12.84% 22.92% 5.94%

Table 5.1: Fraction of loads that get a correct value from
cloaking/bypassing and not from a value predictor (“Cloaking/
Bypassing” columns) and vice versa (“VP” columns).

5.6 Performance Impact
In this section, we evaluate the performance impact of a

combined cloaking and bypassing mechanism. The rest of this
section is organized as follows: In Section 5.6.1 we describe
the cloaking/bypassing mechanism we simulated. In Section
5.6.2 we measure how performance varies when cloaking/
bypassing is used for two misspeculation handling models. We
also measure the improvements obtained by augmenting cloak-
ing/bypassing with our RAR dependence based techniques. In
Section 5.6.2, we measure the performance impact of our tech-
niques.

5.6.1 Configuration

The cloaking/bypassing mechanism we used comprises: (1)
a 128-entry fully-associative DDT with word granularity, (2)
an 8K, 2-way set-associative DPNT, and finally, (3) an 1K, 2-
way set associative synonym file. Figure 8 illustrates how the
various components of the cloaking/bypassing mechanism are
integrated in the processor’s pipeline. Detection of depen-
dences occurs when loads or stores commit via the DDT. Syn-
onym file updates and DPNT updates also occur at commit
time. Dependence predictions are initiated as soon as instruc-
tions enter the decode stage. For bypassing, loads and stores
that are predicted as producers associate the actual producer of
the desired value with their synonym via synonym rename table
(SRT) entry. That is, SRT entries associate synonyms with
physical registers. Loads that are predicted as consumers
inspect the SRT and the SF in parallel to determine the current
location of the their synonym. If an SRT entry is found, the
synonym resides in the physical register file as the correspond-
ing load or store has yet to commit. Otherwise, the synonym is
in the SF. At most 8 predictions can be made per cycle and at
most 8 instructions can be scheduled for cloaking or bypassing
per cycle.

Misspeculations are signalled only when an instruction has
actually read an incorrectly speculated value. We have experi-
mented with two misspeculation recovery mechanisms. The
first is selective invalidation. This mechanism re-executes only
those instructions that used incorrect data. The second is
squash invalidation and works by invalidating all instructions
starting from the one that was mispeculated. These instructions
have to be re-fetched from scratch. We also experimented with
an oracle mechanism that does not speculate when this would
result in misspeculation. We found that selective invalidation
offers performance similar to such a mechanism.

A challenge shared by most value speculative techniques is
data speculation resolution, that is how quickly we can estab-
lish that speculative values are correct. Moreover, care must be
taken to avoid destructive interference with branch prediction

[19]. We assumed the ability to resolve all speculation in a reg-
ister dependence chain as soon as its input values are resolved.
Whether such a mechanism is practical is still an open ques-
tion. Finally, we disallow control resolution on branches with
value speculative inputs.

5.6.2 Performance with a Cloaking/Bypassing Mechanism

Figure 9 we measure how performance varies when cloak-
ing/bypassing is used. Reported is the speedup or slowdown
with respect to the base processor that uses no cloaking/bypass-
ing. Four bars are shown. The two on the left are with selective
invalidation. The dark bar is for the original RAW-based tech-
niques while the grey bar is for our extended mechanism. The
other two bars report performance with squash invalidation
(grey for RAW-based and white for RAW+RAR-based cloak-
ing). Using squash invalidation rarely results in performance
improvements. In contrast, speedups are observed for all pro-
grams when selective invalidation is used. Comparing RAW-
based cloaking/bypassing with our proposed RAW+RAR-
based mechanism we observe that for most programs further
improvements are attained. In some cases the improvements
are significant in absolute terms. In relative terms the addi-
tional improvements are considerable especially when we take
into account that they come at a small cost over the original
RAW-based cloaking/bypassing. On the average performance
improvements are up to 6.44% (integer) and 4.66% (floating-
point) from 4.28% and 3.20% respectively. An anomaly is
observed for two cases where our extended mechanism results
in somewhat lower performance. This is because we use a com-
mon DDT for both RAW and RAR dependences. As a result
some RAW dependences are not detected because stores get
evicted by loads to different addresses. Using separate DDTs
one for stores and one for loads eliminates this anomaly.

In Figure 10 we report speedups for a processor that does not
speculate on memory dependences (i.e., loads wait for all pre-
ceding stores to calculate their address). We do so for com-
pleteness and as most studies in value speculative techniques
assume such a configuration. It can be seen that in most cases
speedups are significantly higher (often double) compared to
Figure 9 were the base processor uses memory dependence
speculation (see Section 5.1). There are cases where the speed-
ups are smaller. This is the result of having loads wait for the

Figure 8: Integrating cloaking/bypassing into a pipeline.

Fetch
Decode

&
Rename

Schedule Execute Commit

DPNT

PC

SF DDT

Verify

predict

update

SRT

update

Figure 9: Performance of RAW and RAW+RAR cloaking/
bypassing with two misspeculation handling mechanisms.

 Squash Squash Selective

go
m

88 gc
c

co
m li ijp pe
r

vo
r

to
m

sw
m

su
2

hy
d

m
gd ap

l
trb ap

s
fp

*
w

av

 Selective
 RAW RAW+RAR RAW RAW+RAR

RAW + RAR: INT 6.44%, FP: 4.66%, ALL: 5.44%
HM Selective RAW: INT: 4.28%, FP: 3.20%, ALL: 3.68%

-15%

-10%

-5%

0%

5%

10%

15%

addresses of all preceding stores. This results in a longer criti-
cal path comprised mostly of loads which cloaking/bypassing
cannot attack.

6 Conclusion
We have identified that typical programs exhibit highly regu-

lar RAR memory dependence streams and exploited this prop-
erty by introducing history-based RAR memory dependence
prediction. For most programs more than 80% of all loads with
a RAR dependence experienced the same RAR dependence as
the last time they were executed. We used this prediction to
develop two memory latency reduction techniques: RAR-based
cloaking and bypassing. We showed how these techniques can
be implemented as surgical extensions to the recently proposed
RAW-based cloaking and bypassing.

On the average, our RAR extensions provide correct specu-
lative values for an additional 20% (integer codes) and 30%
(floating-point codes) of all loads. This increase is significant
compared to the 45% (integer codes) and 15% (floating-point
codes) of loads that get a correct speculative value via the orig-
inal, RAW-dependence-based cloaking and bypassing. We
studied the performance of the resulting mechanism and its
interaction with two misspeculation handling techniques and
found that selective invalidation is necessary for the given pre-
dictor. We observed average speedups of 6.44% (integer) and
4.66% (floating point). For the same configuration the speed-
ups of the original RAW-based cloaking/bypassing are 4.28%
and 3.20% respectively. These improvements come at virtually
no cost. When we used a base configuration that does not use
memory dependence speculation our techniques yield speedups
of 9.8% (integer) and 6.1% (floating-point). We also found that
the combined RAW- and RAR-dependence-based cloaking/
bypassing mechanism offers in most cases superior accuracy
compared to last-value load value prediction.
Acknowledgments

This work was supported in part by NSF Grant MIP-
9505853 and by an equipment donation from Intel Corpora-
tion.
References
[1] T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi. Fast address cal-

culation. In Proc. International Symposium on Computer Architec-
ture-22, June 1995.

[2] T. M. Austin and G. S. Sohi. Zero-cycle loads: Microarchitecture
support for reducing load latency. In Proc. Annual International
Symposium on Microarchitecture-28, Nov. 1995.

[3] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim,
L. Rappoport, A. Yoaz, and U. Weiser. Correlated load-address
predictors. In Proc. International Symposium on Computer Archi-
tecture-26, May 1999.

[4] B.-C. Cheng, D. A. Connors, and W.-M. Hwu. Compiler-directed
early load-address generation. In Proc. Annual International Sym-
posium on Microarchitecture-31, Dec. 1998.

[5] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using
store sets. In Proc. International Symposium on Computer Archi-
tecture-25, June 1998.

[6] R. J. Eickemeyer and S. Vassiliadis. A load-instruction unit for
pipelined processors. In IBM journal on research and develop-
ment, 37(4), July 1993.

[7] F. Gabbay and A. Medelson. Speculative Execution Based on Value
Prediction. Technical report, TR-1080, EE Dept., Technion-Israel
Institute of Technology, Nov. 1996.

[8] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. A
novel renaming scheme to exploit value temporal locality through
physical register reuse and unification. In Proc. Annual Interna-
tional Symposium on Microarchitecture-31, Dec. 1998.

[9] J. Gonzalez and A. Gonzalez. Speculative execution via address
prediction and data prefetching. In Proc. International Conference
on Supercomputing-11, July 1997.

[10] M. H. Lipasti. Value Locality and Speculative Execution. Ph.D.
thesis, Carnegie Mellon University, Pitsburgh, PA 15213, Apr.
1997.

[11] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via val-
ue prediction. In Proc. on Annual International Symposium on Mi-
croarchitecture-29, Dec. 1996.

[12] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and
load value prediction. In Proc. International Conference on Archi-
tectural Support for Programming Languages and Operating Sys-
tems-VII, Oct. 1996.

[13] A. Moshovos. Memory Dependence Prediction. Ph.D. thesis, Uni-
versity of Wisconsin-Madison, Madison, WI 53706, Dec. 1998.

[14] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dynamic
speculation and synchronization of data dependences. In Proc. In-
ternational Symposium on Computer Architecture-24, June 1997.

[15] A. Moshovos and G. Sohi. Streamlining inter-operation communi-
cation via data dependence prediction. In Proc. Annual Interna-
tional Symposium on Microarchitecture-30, Dec. 1997.

[16] A. Moshovos and G. S. Sohi. Speculative memory cloaking and
bypassing. International Journal of Parallel Programming, Oct.
1999.

[17] G. Reinman, B. Calder, D. Tullsen, G. Tyson, and T. Austin. Pro-
file guided load marking for memory renaming. Technical Report
CS98-593, University of California, San Diego, July 1998.

[18] Y. Sazeides and J. E. Smith. The Predictability of Data Values. In
Proc. Annual International Symposium on Microarchitecture-30,
Dec. 1997.

[19] A. Sodani and G. S. Sohi. Understanding the Differences Between
Value Prediction and Instruction Reuse. In Proc. Annual Interna-
tional Symposium on Microarchitecture-31, Dec. 1998.

[20] G. S. Tyson and T. M. Austin. Improving the Accuracy and Perfor-
mance of Memory Communication Through Renaming. In Proc.
Annual International Symposium on Microarchitecture-30, Dec.
1997.

Figure 10: Speedup when no memory dependence speculation
is used. Left bar: RAW-based. Right bar: RAW+RAR-based.

0%

5%

10%

15%

20%

25%

g
o

m
8
8

g
cc

co
m li ijp p
e
r

vo
r

to
m

sw
m

su
2

h
yd

m
g
d

a
p
l

tr
b

a
p
s

fp
*

w
a
v

