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RegionTracker: A Case for Dual-Grain Tracking in the 
Memory System

Abstract

This work proposes area, power and latency efficient
implementations of memory hierarchy lookup structures
aimed primarily at higher-level, relatively large on-chip
caches. The mechanisms proposed provide location
information for a large fraction of cache references
eliminating the corresponding accesses to a much larger,
slower and power demanding conventional tag array. The
key contribution of this work is dual-grain tracking where
a two-level, two-grain approach is used to dynamically
focus a set of few tracking resources on high-payoff
memory areas. At the first level, a coarse-grain structure
tracks which large regions of memory have blocks
currently cached and uses this information to detect
newly accessed regions. A second-level fine-grain
mechanism tracks the location of all the blocks within a
few newly accessed regions as these are identified by the
first level. We demonstrate that our dual-grain tracking
significantly outperforms the conventional, demand-
based allocation of tracking resources and propose
RegionTracker, an implementation of dual-grain
tracking. RegionTracker is simple, can be easily
partitioned for optimizing its power and latency, does not
use cascaded lookups and does not impose any
restrictions on cache placement. RegionTracker can
capture a large fraction of memory references for various
unified L2 caches. For example, we show that a
RegionTracker that uses just 5% of the storage used by a
conventional tag array and that can track just 128 8Kbyte
regions, is able to capture 56% of all memory references
in a 4Mbyte L2 cache and reduce L2 lookup power by
38% on the average. We also demonstrate that
RegionTracker can outperform and complement
conventional, demand-driven tag set buffers.

1  Introduction
Multiple semiconductor technology and application

trends support two observations which motivate this
work: (1) the number of accesses seen by higher-level
(level two or higher) caches will increase, and (2) the size
of these caches will also increase. These two observations

suggest that the power and latency of higher-level caches
will increase both in absolute and relative terms and so
will the demand for lookup bandwidth. To mitigate the
effects of the aforementioned observations this work
proposes area, power and latency efficient
implementations of memory hierarchy lookup structures
aimed primarily at high-level, relatively large, on-chip
caches.

Historically, application memory footprints and
working sets have been increasing as “typical”
applications evolve (i.e., new applications are introduced
or the functionality of existing applications is enhanced).
Moreover, processing speeds have also being increasing.
Main memory speeds, however, have been increasing at a
much lower rate resulting in an increasing speed gap
between on-chip processing rates and main memory
latencies. Using larger level one caches would be a
straightforward remedy. Unfortunately, increasing level
one cache size beyond a certain point is typically not
possible without hurting performance; while
semiconductor technology improvements facilitate faster
transistors, the amount of SRAM storage that can be
accessed within a reasonable number of cycles (e.g., one
to three) remains limited because processing speeds also
increase. It is for these reasons that additional, larger
caches have been introduced over the years, and there is
strong evidence to suggest that the trend towards larger
higher-level caches will continue. In addition to increased
program references two other factors contribute to
increased demand for on-chip, higher-level cache lookup
bandwidth: First, as main memory speeds lag behind,
prefetching becomes increasingly important for
maintaining performance improvements. Prefetching
produces additional references, thus increasing demand
for on-chip lookup bandwidth. Second, as more
processing cores are incorporated onto the same die,
coherence related traffic increases, creating even more
demand for cache lookup bandwidth more so for snoop-
coherence-based implementations.

To offset the effects of these trends, we seek to
complement conventional tag arrays with small, faster,
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more power-efficient structures which can provide
location information for a large fraction of cache
references. The key contribution of this work is the
concept of dual-grain tracking, or DGT for short. In DGT
two levels inter-operate to achieve high coverage. A first,
coarse-grain tracking level identifies newly touched
regions of memory (where a region is a continuous,
aligned area of memory whose size is a power of two).
Once a new region is touched by the program, the second-
level takes over and tracks the location of individual
cache blocks within the region. An important result of
this work is that using the first-level, coarse-grain
tracking performs significantly better than a
conventional, demand-driven policy. We also propose
RegionTracker, a practical implementation of DGT. The
first, coarse-grain level in RegionTracker uses imprecise
information to capture most newly touched regions. This
use of imprecise information leads to a small, fast and
power efficient implementation. The second level uses a
simple, small table design to track fine-grain information
for a few regions. Both levels can be easily partitioned to
further improve speed and power. They impose no
additional restrictions on data placement and are
relatively fast as they do not use cascaded lookups.

This work makes the following contributions: (1) It
demonstrates that DGT has great potential in servicing
many of the accesses to higher-level caches, even when
these caches become relatively large (e.g., 16Mbytes). (2)
It proposes RegionTracker, an area, power and latency
efficient implementation of DGT and demonstrates that
practically sized RegionTrackers can capture many
requests and reduce power significantly (e.g., 45% of
lookup power for a 2Mbyte cache with a RegionTracker
that requires just 12.4% of the resources required by a
conventional tag array). (3) It demonstrates that dual-
grain tracking significantly outperforms a naive, demand-
driven allocation of fine-grain lookup resources. (4)
Finally, it shows that RegionTrackers are preferable to
tag set buffers, more so if a very small tag set buffer (e.g.,
two entries) is combined with them.

The rest of this paper is organized as follows: In
Section 2 we briefly discuss DGT and the intuition
behind it, and then we present experimental evidence in
support of two observations: (1) there is significant
potential for DGT methods, and (2) DGT is superior to
naive, demand-based allocation of lookup resources. In
Section 3 we present RegionTracker, an implementation
of DGT, and discuss its application for level-two, or L2
tag lookup power reduction. We review related work in
Section 4. In Section 5 we demonstrate RegionTracker’s
utility, and compare it to an existing technique for tag
lookup bandwidth amplification and power reduction.
Finally, in Section 6 we summarize this work.

For clarity, and without the loss of generality, we will
use the term tags for conventional memory hierarchy
lookup structures. The techniques we discuss, however,
are applicable to other recently proposed lookup
structures such as the centralized lookup arrays of the
NuRapid memory hierarchy [10]. We also restrict our
attention to level-two caches, however, the methods
proposed should be directly applicable to even higher
cache levels. Finally, all L2 caches used in this study are
8-way set-associative because through experimentation
we found that our techniques are not noticeably sensitive
to associativity. We also assume that the L2 uses 128-
byte blocks (a commonly used size today).

2  Dual-Grain Tracking Concept and 
Motivation
If a structure much smaller than a conventional tag

structure can provide the same information for a
sufficient fraction of memory access, then it would
provide increased area, power and latency efficiency. For
example, tag line buffers, e.g. [13], are a small cache of
recently accessed tags or tag sets which rely on temporal
and spatial locality in the post-L1 memory stream to
service many memory requests. Their utility for higher
level caches is gradually reduced as lower level caches
capture much of this locality.

The structures proposed in this work achieve high
efficiency via a two-level, dual-grain tracking (DGT),
approach where the first level uses coarse-grain tracking
and the second level uses fine-grain tracking but only for
a few, large memory regions. Specifically, the first,
coarse-grain, level aims at detecting first misses at the
region level. An access for block B within region R sent
to cache C is a first miss if and only if no block within
region R, including B, is currently cached within C. Once
a first miss is detected, the second level, fine-grain
tracking mechanism is used to track the location of all
blocks within the region. This can be done, for example,
by recording whether or not a block is cached, and if so,
in which data way it is cached. It is important to observe
that when a first miss is detected, complete location
information is also detected for the entire region, since
none of the blocks within the region are currently cached.
In this way, a single access uncovers information for
many blocks, making DGT effective despite a lack of
temporal locality. As an extreme example, when all
accesses are misses, conventional, demand-driven
methods such as tag set buffers would perform poorly.
Dual-grain tracking, on the other hand, relies on spatial
locality, and thus could capture all of these accesses (the
first miss per region can be captured by the first level and
all subsequent accesses by the second-level tracking
mechanism — in Section 3.3 we explain how power and
latency can be reduced even for L2 misses).
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DGT was designed primarily to exploit a behavior that
is typical of many applications with large memory
footprints. Specifically, while these applications access a
very large set of regions over their lifetime, many of them
only operate on a few large memory regions at any given
time. The first time an application accesses a region, it
incurs a first miss, giving DGT an opportunity to track
subsequent references within that region. Assuming that
only a few regions are accessed at a time, DGT should be
able to track them all successfully. Much later, after many
regions have been touched, a region may be accessed
again. Given that the application has a large memory
footprint, it is likely that all previously accessed blocks
within the region have since been evicted from the cache
as a result of capacity and, to a lesser extent, conflict
misses. Accordingly, another first miss will occur and
DGT again has the opportunity to detect it and start
tracking the region. 

The aforementioned behavior is typical of numerical
applications that access several large arrays sequentially
and repeatedly. By tracking a few regions at the time,
DGT will be able to track the location of the blocks
belonging to different arrays. The next time the same
arrays are processed, all previously accessed blocks will
have been evicted, assuming that the arrays are much
larger than the cache. Accordingly, new first misses can
be detected so those regions can again be tracked. While
reasoning about numerical applications with regular
access patterns is relatively easy, non-numerical
applications, with less regular access patterns, often
exhibit similar behavior. Due to temporal and spatial
locality, a large fraction of their references fall under
only a few regions at any one time, and hence they can be
tracked by DGT. Assuming a large memory footprint, by
the time the same data or instructions are accessed again
it is very likely that the corresponding blocks will have
been evicted due to capacity misses. There are many
other scenarios under which DGT offers significant
benefits, yet the previous discussion illustrates the key
intuition behind this approach.
2.1 Potential

Before presenting the RegionTracker design, we
provide experimental evidence of the potential of DGT
methods. Specifically, the results of this section support
the following two observations: (1) there is significant
potential for DGT assuming perfect first miss detection,
and (2) first miss detection is crucial in exposing this
potential, as a simple, demand-driven allocation of fine-
grain tracking resources exhibits significantly lower
potential. In support of the first observation, we report the
average first-miss-region-locality, or FMRL for typical
programs. We define FMRL(N) as the number of cache
accesses that could be serviced (i.e., we know where the
block is) if we were able: (1) to perfectly detect first

misses for a given region size, and (2) to fine-grain track
the last N unique regions that had a first miss detected.
The higher the FMRL(N) for small values of N, the
higher the potential of DGT. In support of the second
observation, we compare FMRL(N) with region-
locality(N), or RL(N), which is the fraction of cache
accesses that could be serviced if we track the last N
unique regions that were accessed. This corresponds to
the potential of conventional, demand-driven allocation
of lookup resources.

There are many parameters that influence FMRL(N)
including program behavior, cache geometry, cache size,
and region size. For the purpose of this discussion we
focus on cache size, ignoring associativity (our
experiments have shown that FMRL is not noticeably
sensitive to changes in the associativity), we consider
regions in the range of 512 bytes and up to 32 Kbytes and
vary N, the number of regions that are fine-tracked, from
two to up to 2K. Presenting results for all combinations of
cache size, region size and the number of fine-tracked
regions is impractical. Instead, we present a subset of the
results to illustrate a few key trade-offs. First, we fix the
cache size and study how FMRL varies as a function of
region size and the number of fine-tracked regions; then,
we fix the region size and vary the cache size. 

Figure 1(a) shows the average FMRL(N) over all
programs studied and for various values of N (x-axis)
(i.e., fine-grain tracked regions), and region sizes
(separate curves) for an 2 Mbyte L2 cache. Our
experimental methodology is discussed in Section 5.1.
The number of cache accesses that can be potentially
serviced increases with the region size and the number of
fine-grain tracked regions albeit the increase becomes
more pronounced as the number of fine-tracked regions
increases. Both parameters effectively increase the reach
of the second-level fine-grain tracking mechanism.
Increasing the region size increases the area of memory
that can be tracked even if the number of regions tracked
remains constant. These measurements show that
significant potential exists for DGT. For example, by just
tracking 32 8Kbyte regions it is possible to capture
approximately half of all memory references (46%),
whereas tracking 64 32Kbyte regions captures about three
out of four references (74%). 

Figure 1(b) reports FMRL(N) for three practical values
of N (64, 128 and 512) and for caches of various sizes
(2Mbytes up to 16Mbytes). We use a region size of 8K
(common OS page size). The three values of N were
selected as they correspond to RegionTracker
implementations whose storage requirements are a small
fraction of the tags for the largest cache used in this
experiment (see Tables 2 and 3 in Section 3). The
potential for DGT drops for larger caches, when the
number of fine-grain regions tracked remains constant
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(i.e., DGT resources remain constant). But even with just
64 fine-grain tracked regions there is potential to capture
45% of all references to a 16M cache. When the amount
of RegionTracker resources remains a constant fraction of
the L2 tags the potential does not drop with cache size
and in some caches increases. This can be seen by
comparing for example the potential with 64 fine-grain
tracked regions for the 2M cache (61%) to that with 512
fine-grain tracked regions for the 16M cache (67%). 

Finally, we present experimental evidence of an
observation that is central to this work: DGT can greatly
boost potential when there is a limited amount of fine-
grain tracking resources. Figure 1(b) compares the
potential of naive, demand-driven tracking (expressed as
RL(N)) with that of DGT (expressed as FMRL(N)) for
values of N of 64, 128 and 512, and for 2Mbyte to
16Mbyte caches. These measurements show that the
potential with DGT is always significantly higher,
especially for smaller values of N (i.e., when there are

fewer fine-grain tracking resources). For example: (1) the
potential with DGT with just 64 regions is consistently
higher than that with demand-driven tracking with 128
regions, and (2) for a 2Mbyte cache FMRL(64) is 61%
which is 13% higher than RL(64) and 6% higher than
RL(128). The demand-driven method considered in this
section uses the same fine-grain region-level tracking
resources as DGT. In Section 5.4 we compare
RegionTracker with a conventional tag set buffer
demonstrating the benefits of DGT compared to a
demand-driven method that uses set-grain tracking
resources.

In summary, this section has demonstrated that dual-
grain tracking has significant potential which does not
diminish as the on-chip cache sizes increase, and that its
potential is significantly higher than that of naive,
demand-based allocation of tracking resources.

3  RegionTracker Design and Application
RegionTracker is an implementation of DGT.

Conceptually, DGT comprises two structures, one that
tracks caching information at the coarse-grain level of a
region and one at the fine-grain level of cache blocks per
region. The RegionTracker implementations studied in
this work mirror this organization and consist of two
structures: (1) the Cached Region Hash or CRH, and (2)
the Cached Block Vector, or CBV. The CRH is used to
detect the first miss into a region and is identical to the
CRH proposed in [23]. The CBV is used to track the
location of all the blocks within the few regions that are
currently fine-grain tracked. The organization of both
structures is shown in Figure 2(a). Both structures are
indexed using parts of the incoming address. Without loss
of generality, in the discussion of this section we assume
a 2Mbyte L2 cache, 42-bit physical addresses and 8Kbyte
regions. The relevant parts of the incoming address are a
unique region number (bits 41 through 13), and the block
offset within the region (bits 12 through 7). The lower
seven bits are the byte offset within a block and are not
used by any RegionTracker structures. We assume
physical addresses.

3.1  Cached Region Hash
The CRH keeps track of those regions that have blocks

currently cached. A first miss is detected when an access
determines that there are currently no other cached blocks
in the same region. We opt for a simple Bloom-like filter
[5] which provides an imprecise representation of the set
of regions that are currently cached. This allows us to use
a very small, and hence power and latency efficient,
structure to capture most first misses. Specifically, the
CRH represents a superset of all regions that currently
have blocks cached. It provides two responses: (1) the
region is definitely not cached, and (2) the region may be
cached. It consists of a table of counts which are

Figure 1: DGT potential: Shown is the first miss region locality, 
FRML(N) (see text for definition) as: (a) a function of region size 

(different curves) and of the regions that we can fine-track (x-axis) and 
for a 2 Mbyte, 8-way set-associative L2 cache, and (b) a function of 

cache size (x-axis) for an 8k region and for 64, 128 or 512 fine-tracked 
regions (curves). Part (b) also shows the potential of a demand-driven 
tracking method for the same number of fine-tracked regions (region-

locality(N) or RL(N) — see text for the definition). 
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incremented on each block allocation, and decremented
on each eviction. The CRH is indexed using the region
part of the address of the block being allocated or evicted.
In this work, the index is simply computed as a sufficient
number of bits starting from the least significant bit in the
region part of the address (e.g., bits 13 through 22 for a
1K entry CRH); however, other indexing functions could
be used. To determine the first miss, the CRH is accessed
and the corresponding count is read. If the value is zero
then there are no cached blocks from the same region. If
the value is non-zero, then there may be cached blocks.
The uncertainty is due to potential aliasing of different
regions onto the same CRH entry. Once a first miss is
detected RegionTracker allocates a CBV entry for the
region and starts fine-grain tracking of the location of all
blocks in that region. Comparing the results of
Sections 5.2 and 2 demonstrates that small CRHs (512 to
1K entries) offer most of the benefits of ideal first miss
detection. The CRH can be partitioned to improve power
efficiency.

3.2  Cached Block Vector
The CBV is a table where each entry comprises a

region tag and a set of information bits for each block
within the region. For example, with 8Kbyte regions and
128-byte cache blocks, each CBV entry contains 64 block
information fields. In the configurations considered in
this work the information fields encode whether or not
the block is cached and where. For an 8-way set
associative cache four bits are sufficient per block to
encode the nine possible states: “not cached” or “cached
in way N” where N can be “0” through “7”. Depending on
the cache organization, other information may also be
stored. For example, status information such as whether
the block is dirty or coherence information can be stored
in each block information entry, or, in a NuRapid
memory hierarchy [10], the exact sub-array index can be
stored into the CBV. In the implementations considered
in this work status information is not stored in the CBV
(see Section 3.3).

To access the CBV, the region portion of the address is
compared with the region tags. If a matching entry is
found, the information contained in the corresponding
block field can be used to access the appropriate data
array (we assume serialized cache tag and data accesses
for power efficiency [6]). The CBV is updated when
blocks are allocated or evicted from the cache so that the
CBV block information remains coherent. CBV entries
are evicted when space is exhausted and a new entry has
to be allocated following the detection of a first miss.
Various replacement policies are possible. While
Figure 2(a) shows a fully-associative CBV other
organizations are possible as the CBV can be partitioned
both vertically and horizontally to improve power and

latency. As reported in Section 5.2 for the programs we
studied an 8-way set-associative CBV performs very
close (within 2%) of a fully-associative CBV.

The power and latency of the CBV organization shown
in Figure 2(a) can be improved. Instead of using a
multiplexer to select the appropriate block information
after a full CBV entry has been read out, as shown in part
(a), we can instead use column select signals to activate
only the appropriate column (the block offset is known in
advance). Latency can be further improved with the
organization shown in part (b). Here the region tags and
the block information bits have been separated into two
structures. The block information bits are rotated so that
each CBV entry forms a single column. This way each
row contains the block information for all blocks at a
specific offset within the regions. The advantage is that
the region tag matching and the per block information
access can proceed in parallel. At the end, if a region tag
match is found a multiplexer selects the appropriate CBV
entry. For this multiplexer we can use the column
multiplexers of the SRAM array further reducing power.
At the end just four sense amplifiers are needed. This is a
lot less than those needed by the regular tag array (we
need to read eight tags plus the status bits and then
compare). In Section 5.3 we show that 8-way set-
associative CBVs result in significant power savings
compared to conventional tags. Each partition of these
CBVs is organized as shown in Figure 2(b) with eight
region tags and the appropriate block information entries
(e.g, 64 for an 8Kbyte region and 128-byte blocks). 

3.3  An Application: Reducing Power and Latency 
for L2 Lookups

RegionTracker has several potential applications. For
example, it can be used to amplify tag lookup bandwidth
in support of aggressive prefetching or to compensate for
coherence related lookups in a multi-core architecture. In
this work we demonstrate its utility for reducing power
and latency for L2 tag lookups. In this application a
RegionTracker is placed in front of a conventional L2 tag
array. As accesses are issued by the L1, they first inspect
the RegionTracker, accessing both the CBV and the CRH
in parallel. If sufficient information is found in the
RegionTracker, then we may be able to completely avoid
an L2 tag lookup, or reduce the amount of L2 tag
resources that have to be probed. At the end, the L2 data
arrays are accessed to complete the access. We assume an
in-series tag and data array organization for the L2 to
reduce power, as several commercial designs have done,
e.g., [6].

Table 1 summarizes how RegionTracker impacts L2
tag power for all possible scenarios; and, it also lists what
parts of the L2 tag array have to be accessed. Power and
latency can be reduced on a RegionTracker hit which
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occurs not only when the CBV contains information
about the specific block, but also when the CRH detects a
first miss to a region. In the first case, the CBV entry
contains the actual data way where the corresponding
block resides, so the L2 tag arrays only need to be
accessed to update status information as needed (e.g., on
a read there is no need to update the L2 stored status —
however, we do have to update the  relevant replacement
information). Since we know which way the block resides
in, we can update just the status bits for the particular tag
using column select lines in the tag array, or by assuming
that status information is stored separately. If no
information is found in the CBV but the CRH detects this
access as a first miss, then we know that the block is not
cached. Therefore, we only need to access the
replacement information for the specific tag set and
update a single tag (as opposed to accessing all of the
tags). On a RegionTracker miss no information is
available about the location of the block, so power and
latency are increased as the conventional L2 tags have to
be accessed subsequent to the RegionTracker access. 

3.3.1  Relative Storage Requirements

RegionTracker can reduce power and latency provided
that it is sufficiently smaller than the regular tag arrays,
and that it captures a sufficiently large fraction of
requests. Tables 2 and 3 report the storage requirements

(total bit count) of various CRH and CBV structures
respectively, demonstrating that reasonably sized
RegionTracker structures are much smaller than
conventional tag arrays. The storage requirement of each
structure is expressed as a fraction of the storage
requirement of the tag arrays of a 2Mbyte L2 cache. Of
course, this is a first-order approximation of area cost.
Considering the overall bit requirement is meaningful
independent of whether the L2 tag array is partitioned
into separate banks or sub-arrays since the CRH and the
CBV can be similarly partitioned. Table 2 shows CRH
requirements for entry counts of 512 through 4K. The
size of each CRH entry is a function of the total number
of L2 cache blocks and of L2’s associativity. As shown in
Table 2 even a 4K CRH requires less than 15% of the
storage needed by the conventional tag array (in our
evaluation we demonstrate that even a 512-entry CRH is
sufficient for a 2Mbyte L2 cache). In general, the number
of bits required by a CRH is N x lg(L2 blocks + 1) where

Figure 2: (a) CRH and CBV organization for 8Kbyte regions, 42-bit physical addresses, 128-byte blocks and an 8-way set-associative 
cache.(b) An alternative fully-associative CBV implementation that results in lower power and latency.
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N is the number of CRH entries. This formula
pessimistically assumes that it is possible for all L2 block
to map onto the same CRH entry. This is possible for a
fully associative L2, however, for lower associativities
there are implicit restrictions that reduce the maximum
counter values possible in the CRH and hence its cost.

The CBV storage requirements are primarily
proportional to the number of CBV entries, the number of
blocks within the region and the number of L2 ways. The
larger the region, the more blocks it contains, and the
more block information fields each CBV entry requires.
The length of the physical address also impacts CBV size,
but to a much lesser extent, as it only affects the size of
the region tags. As shown in Table 3, a 128-entry CBV
with 8Kbyte regions requires less than 9% of the bits
needed by the conventional tag array. The percentages
shown in Table 3 can also be used to estimate the relative
cost of RegionTracker for larger caches since CBV
requirements are not affected by cache size. For example,
a 4Mbyte cache requires 1.923 times as many tag bits as a
2Mbyte cache. Accordingly, it follows that a 128-entry
CBV with 8Kbyte regions requires just 4.5% of the bits
needed by the L2 tag array. We include CBVs of up to
512 entries because they represent meaningful designs for
caches larger than 2Mbytes. For example, the 512 entry
CBV with 8K regions requires just 4.8% of the bits
required by a conventional tag array for a 16Mbyte L2
cache with 128-byte blocks.  

3.3.2 RegionTracker vs. a Tag Set Buffer
Most previously proposed techniques for reducing

power and latency for lookups at a high level rely on

caching a small subset of the tag information (see
Section 4). In this section, we discuss how RegionTracker
differs from a straightforward tag set buffer, or TSB for
short such as those proposed in [31,33]. A TSB is a small
cache of recently accessed tag sets. For example, for an 8-
way set-associative cache, each tag set entry will hold
eight tags. Entries are allocated on demand as accesses
probe the conventional tag array. Each access first probes
the TSB, and if the set it maps to is found in the TSB,
then there is no need to access the tags.

As our results show TSBs do not scale well enough for
larger, higher-level caches. This is because, TSBs rely
primarily on locality in the set stream. Beyond a point,
not much set locality appears in the L2 reference stream,
primarily because the L1 cache filters much of this
locality. Relatively small TSBs capture most of the
potential that exists, and, as we increase the number of
TSB entries, we quickly reach an area of diminishing
returns or the TSB becomes comparable in size to the L2
tag array. As demonstrated Section 5.2, RegionTracker
scales well as more resources are devoted to it. 

In addition, the access path in RegionScout quickly
becomes shorter than that of a TSB. Specifically,
accessing a direct-mapped TSB involves the following
steps: (1) use the set part of the incoming address to index
the TSB and compare it against the set tag associated with
the corresponding tag buffer entry, then (2), read out the
corresponding set entry, and finally (3), compare the tag
portion of the address with the tags in the TSB entry. If
the TSB is associative, then many of these steps occur
simultaneously. In RegionTracker we simultaneously
compare the region portion address with the region tags
and access the corresponding block information for the
tracked regions. The match signals then select the
appropriate block information entry amongst those
simultaneously read while the match was performed. For
the same associativity, RegionTracker requires fewer
comparisons and reads fewer bits compared to a TSB.
RegionTracker also overlaps the two accesses (region tag
match and block information access) whereas in a
conventional TSB the two accesses are sequential (first
we lookup the set tags and then read the corresponding
tag set). 

Finally, a TSB requires complete tag set contents.
Accordingly, it has to be placed next to the tag structures
it caches or additional large numbers of wires are needed
to communicate complete tag sets from the tag arrays to
the TSB. RegionTracker maintains way information
which is collected one block at the time. This is
particularly important for non-conventional cache
hierarchies such as DNUCA [15] and NuRapid [10] that
unify all higher-level caches into a larger structure with
variable, distance-dependent latency. Both TSB and
RegionTracker need to observe clean replacements.

Table 2. CRH storage requirements as a fraction of the bits 
required by the tag array of a 2Mbyte 8-way set-associative L2 

cache with 128-byte blocks
CRH entries Storage

512 1.9%
1K 3.8%
2K 7.2%
4K 14.4%

Table 3. Fully-associative CBV storage requirements (region 
tags and per block location information) as a fraction of the bits 
required by the tag array of a 2Mbyte, 8-way set-associative L2 
cache with 128-byte blocks. Ratios are shown for different CBV 

entry counts and region sizes. We assume 42-bit physical 
addresses and two status bits per tag entry (fractions will 

improve if additional status bits were used). 
CBV Entries Region Size in Bytes

512 1K 2K 4K 8K 16K 32K
16 <1% <1% <1% <1% 1.1% 2.0% 3.9%
32 <1% <1% <1% 1.2% 2.1% 4.1% 7.9%
64 <1% 1.0% 1.4% 2.4% 4.3% 8.1% 15.8%

128 1.5% 1.9% 2.9% 4.7% 8.6% 16.2% 31.6%
256 2.9% 3.8% 5.7% 9.5% 17.1% 32.5% 63.2%
512 5.9% 7.7% 11.4% 19.0% 34.3% 64.9% 126.3%
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4  Related Work

Given the proportion of chip area devoted to caches,
many contributions have been made to reducing cache
power. However, most existing proposals target level one
caches. The filter cache [16], consisting of a small cache
placed in front of the L1 cache, can service a large
fraction of L1 accesses, but misses to the filter cache
incur an increased latency. A similar mechanism has been
proposed for increasing L1 bandwidth [33], and [13]
explored the idea of using these line-buffers in front of
the L2 tag and data arrays to reduce power. Park et al.,
[25] proposed a simple modification to this scheme which
increased its effectiveness. These techniques exploit
temporal and fine-grain spatial locality. As shown in
Section 5.4, RegionTracker complements these
techniques by filtering many L2 accesses that would only
be caught by a larger TSB. Specifically, we show that a
tiny (two entry) TSB combined with a RegionTracker
outperforms a TSB with as many as 128 entries.

A number of techniques have also been proposed for
reducing the area and power of tag arrays. Decoupled
sectored caches [30] and Caching Address Tags [32] are
two techniques which reduce the tag array area by sharing
tags amongst multiple cache blocks. The resulting
structure has fewer tags than cache blocks. This exploits
the same spatial locality as RegionTracker.   However,
since these techniques rely on a reduced number of tags, a
single cache miss could require the invalidation of
multiple cache blocks because their corresponding tag has
been evicted. This incurs not only an initial latency
penalty on such a miss, but also a possibly higher overall
miss rate which can impact indirectly overall power and
performance. RegionTracker does not affect L2 miss rate
and as we report in Section 5.5 with straightforward
tuning it never hurts overall performance and hence
power. The implementation of these techniques requires
changing the L2 cache controller and can be proven a lot
more complex than that of the simple RegionTracker
structures. Other techniques which address tag array
power include way prediction [12,14,27] or memoization
[20], as well as techniques which attempt to optimize tag
search energy using multi-stage tag lookup [9,8]. The
former techniques, as well as [4] and [24] apply mostly to
the L1 instruction cache, while the latter techniques were
demonstrated for the L1 data cache. It is not clear if they
will scale well to larger L2 caches with higher
associativities.

Additional work has incorporated compiler support for
reducing cache power [1,2], and much work has been
done which relies on cache partitioning, layout and
circuit level techniques to realize energy reduction in
caches, including [17, 19, 31, 18, 11].

Bloom filters like CRH have been previously proposed
for avoiding snoop-induced tag lookups [22] or snoop
broadcasts [23], for L1 hit/miss prediction [26],
load/store queue complexity reduction [29] and for miss
prediction [21]. Whereas the Bloom filters previously
proposed cannot track the locations of individual cache
blocks, RegionTracker overcomes this short-coming by
combining a bloom-like filter with a fine-grain tracking
structure which can track and service most L2 requests.

5  Evaluation
This part of the paper is organized as follows: In

Section 5.1 we describe our experimental methodology.
In Section 5.2 we demonstrate that practical
RegionTrackers can capture many L2 references, and we
also show per program behavior. In Section 5.3 we report
power savings compared to a standalone, conventional
tag array. In Section 5.4 we compare RegionTracker with
tag set buffers. Finally, in Section 5.5 we summarize our
findings about overall power and performance.

5.1  Methodology
We used Simplescalar v3.0 [7] to simulate the

processor detailed in Table 4. Amongst several
modifications we modified the macros for the NOP
instruction to not generate memory references (the NOP
is a load to register zero and the hardware is supposed to
ignore this load). We compiled the SPEC CPU 2000
benchmarks for the Alpha 21264 architecture using HP’s
compilers and for the Digital Unix V4.0F using the SPEC
suggested default flags for peak optimization. All
benchmarks were ran using a reference input data set. It
was not possible to simulate some of the benchmarks due
to insufficient memory resources. As a result the
following SPEC CPU 2000 benchmarks are included our
experiments: ammp, applu, apsi, art, bzip2, crafty, eon,
equake, facerec, fma3d, galgel, gcc, gzip, lucas, mesa,
mgrid, parser, swim, twolf, vortex, vpr and wupwise. To
obtain reasonable simulation times, samples were taken
for 10 billion committed instructions. In the
measurements reported, we first skipped 100 billion
instructions prior to collecting measurements for all
benchmarks except for art and parser for which we only
skipped 20 billion instructions. We selected this
measurement interval after experimenting with several
other 10 billion instruction samples and with longer
samples of up to 40 billion instructions. We have
observed that results did not vary significantly for the
different samples. A continuous instruction sample is
important for our measurements as RegionTracker
structures have to be kept coherent throughout execution.
Table 5 reports the memory footprint per benchmark,
showing that in most cases it exceeds by far the on-chip
L2 cache capacity. Reasonably sized RegionTrackers
could easily track most, if not all, blocks for an
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application with a very small memory footprint. For all
experiments except for those in Section 5.5 we used
functional simulation. For the studies in Section 5.5 we
used timing simulation. The memory system comprises
split, 2-way set-associative level one data and instruction
caches of 32Kbytes each, with 64-byte blocks, a unified,
8-way set-associative L2 cache with 128-byte blocks and
a main memory. We studied L2 caches in the range of
2Mbytes to 16Mbytes. The latencies are shown in Table
4. In the interest of space and clarity we use an A/B
naming scheme for RegionTracker configurations where
A is the number of CRH entries and B is the number of
CBV entries. In all experiments that are presented we use
an 8Kbyte region size. While we have seen that larger
regions may be preferable (Section 2) the corresponding
measurements assumed that regions form a continuous
area of memory. Had we simulated a virtual memory
system this property would be guaranteed only for
regions that do not exceed the OS page size. Given that
many modern OSes use 8K pages we restrict our attention
to this region size. We note that virtual memory page
allocation could affect RegionTracker for larger than a
page regions either way. To estimate power and latency
for the various structures we modified CACTI [28] to
determine the optimal number of cache sub-arrays for a
0.10um process. To model the serialized L2 cache access,
we optimized the access delay of the tag and data paths
separately and modified the L2 tag array model to
appropriately account for bitlines, wordlines and sense
amps. Since RegionTracker uses simple SRAM structures
we modified CACTI to model its power and latency also.
To measure power dissipation at the architectural level,
we used the Wattch framework [8] with the
aforementioned power models.

5.2  Coverage with Practical  Structures

This section demonstrates that practical
RegionTrackers can capture many L2 references. We
report the coverage exhibited by various RegionTrackers,
that is the fraction of L2 accesses that find definite block

location information from the RegionTracker alone. For
clarity, we first study average coverage and then present
per program measurements. Average coverage allows us
to concisely present measurements over several
configurations. Figure 3 reports average coverage for
various fully-associative RegionTrackers and L2
capacities. Specifically, the number of CRH entries is
varied from 512 to up to 4K as reported along the x-axis.
Three different CBVs are considered with 64, 128 or 256
entries. Results are presented for 2Mbyte and 4Mbyte
caches. Each curve corresponds to a combination of CBV
and cache capacity and is labeled as A-B where A is the
number of CBV entries and B the L2 capacity. Observed
coverage varies from as low as 27% for the 512/64
RegionTracker and the 4Mbyte cache and as high as 76%
for the 4K/256 RegionTracker with the 2Mbyte cache.
Generally, coverage increases with the number of CRH
and CBV entries. The increase in coverage is more
pronounced in the range of 512 to 2K CRH entries. This
result combined with the results of Figure 1 (where we
assumed perfect first miss detection) suggest that a 2K
CRH provides much of the coverage possible with an
ideal CRH. Coverage appears to be less sensitive to CBV
entry count. Much of the coverage can be obtained even
with the 64-entry CBV. Depending on the cache capacity
and the CRH entry count, doubling the number of CBV
entries increases coverage anywhere between 5% to 9%.
While we do not show additional results we note that
further increasing the CBV entry count results in similar
behavior. At approximately 2K CBV entries coverage
nears 95% for all programs studied while it is very close
to perfect for most. However, a 2K CBV is a relatively
large structure (larger than the L2 tags for a 2M cache).
These results show that practically sized RegionTrackers
can capture many L2 references. For example, the 1K/128
RegionTracker offers coverage of 57% when used with a
2Mbyte cache. The amount of storage required by this
RegionTracker is just 12.4% of that required by the
conventional L2 tags.

Table 4. Base processor configuration
 Branch Predictor Fetch Unit

16k GShare +16K bi-modal 
16K selector

2 branches per cycle

Up to 6 instr. per cycle 
64-entry Fetch Buffer
Non-blocking I-Cache

Issue/Decode/Commit Scheduler
any 6 instr./cycle 128-entry/64-entry LSQ

FU Latencies Main Memory
same as MIPS R10000 Infinite, 300 cycles

L1D/L1I Geometry UL2 Geometry
32KBytes, 2-way set-associative 

with 64-byte blocks
2Mbytes to 16Mbytes, 8-way 
set-associative with 128-byte 

blocks
L1D/L1I/L2 Latencies Cache Replacement

3/3/16 cycles LRU

Table 5. Total simulated memory bytes allocated per 
application during our simulation interval.

Benchmark Memory Footprint Benchmark Memory Footprint
ammp 27M gcc 133M
applu 186M gzip 185M
apsi 196M lucas 189M
art 89M mesa 10M

bzip2 188M mgrid 57M
crafty 2M parser 62M
eon 2M swim 196M

equake 50M twolf 3M
facerec 17M vortex 70M
fma3d 107M vpr 51M
galgel 45M wupwise 181M
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5.2.1  Per Program Coverage

Average behavior can be misleading. Accordingly,
Figure 4 reports per program coverage for X/128
RegionTrackers where X varies as reported along the x-
axis (range of 512 to 4K CRH entries). For clarity, we
restrict our presentation to the 2Mbyte cache and split the
results into two graphs. Per program varies greatly,
exposing the trade-offs in tuning the CRH and the CBV.
The larger the CRH, the more first misses are detected.
However, as more first misses are detected, a larger CBV
may be required to track more regions. In general, for all
applications except vortex and galgel, coverage increases
or remains constant as the number of CRH entries is
increased. Coverage remains constant and is relatively
high for crafty, eon and twolf. As reported in Table 5 the
memory footprints of these applications are relatively
small hence the RegionTracker can track most of blocks
accessed for the application’s lifetime. A small memory
footprint is not a requirement for high coverage. For
example, coverage is 93% with the smaller 512/64
RegionTracker for gzip, an application that has a
185Mbyte footprint. Observed coverage is below 25% for
ammp, art, parser and vpr because they access more than
128 regions in close proximity in time. Accordingly,
larger CBVs are needed to fine-track these regions. For
example, coverage with a 256-entry CBV increases to
30%, 62%, 27% and 30% respectively. In vortex coverage
is inversely proportional to the CRH entry count while in
galgel a drop is observed going from 1K to 2K CRH
entries. The larger CRHs detect more first misses and
expose more active regions which in turn thrash the 128-
entry CBV. Larger CBVs are needed for these two
applications (512-entry for galgel and 256-entry for
vortex). 

Due to limited space we do not report results with
limited CBV associativity. However, in the rest of this
paper we consider 8-way set-associative CBVs as their
coverage is within 2% of that possible with a fully-
associative CBV for the configurations we studied.

5.3  Power Savings Compared to Conventional L2 
Tags

This section demonstrates that significant power
savings are possible with practical RegionTrackers for
various L2 caches. We consider L2 caches with sizes
from 2Mbytes to up to 16Mbytes. Figure 5 reports
average power savings reported as a fraction of the power
dissipated by the conventional L2 tags. We report results
for RegionTrackers that have either 64 or 128 entry CBVs
and CRH entry counts of 512 to up to 4K (x-axis). Each
combination of CBV entry count and cache size is
reported on a different curve and is labeled as A-B where
A is the number of CBV entries and B the L2 cache size.
The highest power savings of 47% is observed for the
2K/128 RegionTracker and the 2Mbyte L2 cache (which
is just 2% higher than that possible with the 1K/128
RegionTracker). This RegionTracker produces savings of
45%, 36% and 23% for the 4Mbyte, 8Mbyte and 16Mbyte
caches respectively. Thus relatively high savings are
possible for all cache capacities studied. The savings are
reduced as the cache capacity is increased for the same
RegionTracker. By increasing CBV entry count it is

Figure 3: Coverage (i.e., fraction of L2 references serviced by the 
RegionTracker) with practical RegionTrackers. Region size is 8K. 

The number of CRH entries is varied from 512 to up to 4K (x-axis). 
Three different fully-associative CBVs are shown with 64, 128 or 

256 entries (curves). Finally, results for 2Mbyte and 4Mbyte caches 
are shown. Each curve corresponds to a different CBV and L2 cache 

combination (labelled as CRH_Entries-Cache_size). 
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possible to increase coverage and power savings for the
larger caches. As the cache capacity increases more
regions remain cache resident hence fewer first misses
occur. Accordingly, a larger CBV is needed to track
them. It should be emphasized that as cache capacity
increases, larger RegionTrackers become practical as
their storage requirements become a smaller fraction of
the L2 tag arrays. 

For completeness we report per program power
changes for the best and the worst average cases which
are, respectively, the 2Mbyte L2 cache with the 2K/128
RegionTracker and the 16Mbyte L2 cache with the 1K/64
RegionTracker. For the best average case, RegionTracker
is robust producing power savings for all programs. For
the worst average case, RegionTracker is not as robust as
power may increase, albeit only by at most 1%.
Accordingly, it is important to tune the RegionTracker
configuration to match the underlying memory system.
Fortunately, RegionTracker tuning is primarily
influenced by L2 capacity.

5.4  Comparing with Conventional Tag Set Caching

As we discussed in Section 4, a number of existing
proposals for reducing L2 tag power rely either on
efficient encoding or on keeping a small cache of recently
accessed tags. In this section, we compare RegionTracker
with TSBs of various sizes. We use average coverage for
comparison. Figure 7 reports average coverage for
various fully-associative TSBs (range of two to 128
entries), standalone 1K/64 and 1K/128 8-way set-
associative RegionTrackers and combinations of the
aforementioned TSBs and RegionTrackers. Parts (a) and
(b) report coverage for a 2Mbyte and 4Mbyte caches
respectively. The grey bars report coverage for TSBs of

the corresponding size (listed along the x-axis). The
white bars report coverage for hybrid RegionTracker and
TSB organizations. The TSB entry count is listed along
the x-axis. The first seven bars are for the 1K/64
RegionTracker and the next seven bars are for the 1K/128
RegionTracker. Finally, the two dark bars report coverage
with just the 1K/64 (left) and the 1K/128 (right)
RegionTrackers respectively. Table 6 reports the storage
requirements in bits of the TSBs and the two
RegionTrackers as a fraction of the L2 tags. This is a
first-order approximation of the cost and power of these
structures. As we explained in Section 3.3 the latency and
power of RegionTrackers is lower than a TSB of similar
size. Also note that each TSB entry contains a full set of
eight tags plus a set index tag. 

Coverage increases with the number of TSB entries.
Still, the 1K/64 RegionTracker that is smaller offers
coverage that is virtually identical to that of the 128-entry
tag set buffer with the 2Mbyte cache and very close with
the 4Mbyte cache. The combination of a RegionTracker
and of a TSB outperforms all standalone configurations.
More importantly, adding just a two entry TSB to a 1K/64
RegionTracker offers coverage at least 7% better than
that possible with the 128-entry TSB. These results
suggest that the two approaches are to some extent
complimentary. There is some short-term set locality in
the L2 stream that even a very small TSB can capture.
RegionTracker on the other hand can capture most of the
far-flung locality that exists in a more efficient manner. 

5.5  Performance and Overall Power
RegionTracker affects L2 latency, and thus impacts

both overall performance and power. We have measured
the overall performance impact of a 1K/128 8-way set-
associative RegionTracker, assuming that it decreases L2

Figure 5: Average power savings expressed as fraction over the 
power of a conventional L2 tag array. Shown are RegionTrackers 

with various CRH entry counts (x-axis) and a 64- or 128-entry CBV. 
Results are shown for L2 caches of 2Mbytes to up to 16Mbytes. 

Each curve corresponds to a different CBV and L2 configuration 
(labeled as CBV_Entries-L2_Capacity). RegionTrackers are 8-way 

set-associative.
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access latency by two cycles on a RegionTracker hit
while it increases it by one cycle for a RegionTracker
miss. These assumption were validated using an
analytical latency model based on WATTCH [8]. We
studied caches of 2Mbytes and 4Mbytes. On average,
overall performance increased only slightly with
RegionTracker, but it never decreased. In the best case of
gzip performance increased by 6% with a 2Mbyte cache.
Correspondingly, overall processor power always
decreased slightly with the two RegionTracker
configurations we studied.

6  Summary
We proposed RegionTracker as an area, power and

latency efficient implementation of memory hierarchy
lookup structures aimed primarily at higher-level,
relatively large, on-chip caches. RegionTracker
implements the concept of dual-grain tracking, using a
simple Bloom-like filter (CRH) to track coarse-grain
regions, combined with a small table of fine-grained
region tracking entries (CBV). A key result was the
demonstration that using a dual-grain tracking approach
provides significantly more potential than simple,
demand-based allocation of fine-grained tracking

resources. We demonstrated the utility of RegionTracker
for reducing power and latency for L2 tag lookups. A
1k/128 RegionTracker captures 56% of all L2 references,
saving 38% of the tag lookup power for a 4Mbyte L2
cache, while requiring less than 5% of the resources
required for the conventional tag array. RegionTracker
can be complemented by adding a tiny tag set buffer to
achieve better coverage than either RegionTracker or tag
set buffers can provide on their own. Other potential
applications of RegionTracker include increased tag
lookup bandwidth for aggressive prefetching, or
increasing L1 tag port bandwidth and lookup latency,
although the latter application would involve complex
scheduling and latency issues.
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