
In Proceedings of the 34th Annual International Symposium on Computer Architecture, June 2007

Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi and Andreas Moshovos†
http://www.ece.cmu.edu/~stems

Mechanisms for Store-wait–free Multiprocessors

Computer Architecture Laboratory (CALCM)
Carnegie Mellon University

†Dept. of Electrical & Computer Engineering
University of Toronto

Abstract
Store misses cause significant delays in shared-memory
multiprocessors because of limited store buffering and ordering
constraints required for proper synchronization. Today,
programmers must choose from a spectrum of memory consistency
models that reduce store stalls at the cost of increased
programming complexity. Prior research suggests that the
performance gap among consistency models can be closed through
speculation—enforcing order only when dynamically necessary.
Unfortunately, past designs either provide insufficient buffering,
replace all stores with read-modify-write operations, and/or
recover from ordering violations via impractical fine-grained
rollback mechanisms.

We propose two mechanisms that, together, enable store-wait–free
implementations of any memory consistency model. To eliminate
buffer-capacity–related stalls, we propose the scalable store buffer,
which places private/speculative values directly into the L1 cache,
thereby eliminating the non-scalable associative search of
conventional store buffers. To eliminate ordering-related stalls, we
propose atomic sequence ordering, which enforces ordering
constraints over coarse-grain access sequences while relaxing
order among individual accesses. Using cycle-accurate full-system
simulation of scientific and commercial applications, we
demonstrate that these mechanisms allow the simplified
programming of strict ordering while outperforming conventional
implementations on average by 32% (sequential consistency), 22%
(SPARC total store order) and 9% (SPARC relaxed memory order).

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures

General Terms
Design, Performance

Keywords
Memory consistency models; store buffer design

1 Introduction
Store misses pose a significant performance challenge on shared-
memory multiprocessors [7]. In uniprocessors, store miss latency
can be hidden with small, simple store buffers that allow other
accesses to proceed past store misses [3].1 Unfortunately, in multi-
processor systems, application correctness often depends on the
precise order of accesses to distinct memory locations (e.g., acquir-
ing a lock before accessing a shared variable) [18]. To enable pro-
grammers to reason about the correctness of shared memory
accesses, multiprocessor system designers have developed elabo-
rate programming models, called memory consistency models,
which establish minimal ordering guarantees that hardware must
enforce [1]. To implement these guarantees, conventional proces-
sors often stall other accesses while in-flight store misses complete.

Today, programmers must choose from a spectrum of consistency
models that trade increasing programming complexity for hiding
more store-related stalls. At one extreme, strictly-ordered consis-
tency models provide the most intuitive programming interface,
but current implementations expose substantial store miss latency.
At the other extreme, relaxed consistency models allow unrelated
accesses to proceed past store misses, but require programmers to
explicitly annotate accesses where precise ordering is required.
Ideally, we would like to provide programmers with the simplest
programming models and yet, as in uniprocessors, never stall as a
result of store misses [16]. We call such designs store-wait–free
multiprocessors.

Store delays arise from two sources: (1) insufficient store buffer
capacity during store bursts, and (2) ordering constraints that stall
execution until all in-flight stores complete. Under strictly-ordered
consistency models, ordering stalls dominate, as loads may not
retire if a store miss is outstanding. Even in aggressive implemen-
tations that hide some stalls via prefetching and speculative load
execution [10], substantial stalls remain [7,11,13,26,27], account-
ing for nearly a third of execution time in commercial applications
[25]. In models that relax load-to-store order [7], the key bottle-
neck shifts to capacity stalls. Conventional store buffer capacity is
limited because every load must associatively search the buffer for
a matching store, and this search is on the load’s critical path.Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006...$5.00.

1. There is much confusion regarding the terms “store queue,” “store
buffer,” and “write buffer.” We use “store queue” to refer to storage
that holds stores’ values prior to retirement and “store buffer” to refer
to storage containing retired store values prior to their release to mem-
ory. We avoid the term “write buffer.”

2

Fully-relaxed models alleviate store buffer capacity pressure by
allowing stores to drain in any order, but still incur substantial
ordering delays at synchronization instructions [7,13,25,36].

To bridge the performance gap among consistency models,
researchers have proposed systems that speculatively relax order-
ing constraints and/or retire instructions past synchronization oper-
ations [12,13,16,21,23,24,27,36]. If a memory race exposes an
ordering violation, these systems roll back execution to the violat-
ing instruction. Speculation improves performance because races
are rare in well-behaved concurrent applications, and hence most
ordering delays are dynamically unnecessary. Unfortunately, exist-
ing designs address only specific classes of synchronization stalls
[21,23,24,36], provide insufficient speculation depth [27], replace
all stores with read-modify-write operations [12,13], and/or imple-
ment impractical fine-grained rollback mechanisms that recover
precisely to the violating instruction [12,13].

We propose two mechanisms to address limited store buffer capac-
ity and relax ordering constraints with practical hardware.
Together, these mechanisms enable store-wait–free implementa-
tions of any consistency model.

We eliminate store-buffer-capacity stalls through the scalable store
buffer (SSB). The SSB eliminates the non-scalable associative
search of conventional store buffers by forwarding processor-visi-
ble/speculative values to loads directly from the L1 cache while
maintaining globally-visible/committed values in L2. The SSB
maintains store order in a FIFO structure that does not require an
associative search, but enables a properly-ordered commit to L2.

We eliminate ordering-related stalls through atomic sequence
ordering (ASO). Rather than enforce ordering constraints on each
memory access, ASO enforces ordering at coarse granularity over
access sequences that appear atomic to other processors. If a data
race exposes an ordering violation, ASO recovers to the start of the
nearest atomic sequence. Because it uses coarse-grain rollback,
ASO can be implemented with efficient checkpoint-based rollback
mechanisms [2,8,20]. ASO leverages the SSB to provide sufficient
speculation depth and recover correct memory state using the
ordered FIFO in the event of a violation.

With these mechanisms, we construct store-wait–free implementa-
tions of sequential consistency (SC) and SPARC total store order
(TSO). We compare these to a conventional implementation of
SPARC relaxed memory order (RMO). Using cycle-accurate full-
system simulation of scientific and commercial multiprocessor
applications, we demonstrate:
• Substantial store stalls under all consistency models. In

even the most aggressive conventional implementations, we
observe an average of 31% of execution time on store-related
stalls under SC, 16% under TSO, and 14% under RMO.

• Scalable buffering bridges the TSO-RMO gap. We demon-
strate that the SSB provides store buffer capacity exceeding
application demands, closing the performance gap between
TSO and RMO. The SSB improves performance by as much
as 45% over conventional TSO.

• Store-wait–free implementations. ASO further eliminates
dynamically unnecessary ordering constraints, including syn-
chronization stalls. Our mechanisms enable SC or TSO guar-
antees while outperforming RMO by 6% to 9%.

The remainder of this paper is organized as follows. In Section 2,
we provide motivation and high-level descriptions of our mecha-
nisms. We present hardware details in Section 3 and evaluate our
designs in Section 4. In Section 5, we discuss related work. We
conclude in Section 6.

2 Store-wait–free mechanisms
Our goal is to design multiprocessor systems that, like uniproces-
sors, never incur store-related stalls. We begin by analyzing the
causes of store-related stalls in conventional implementations of
various memory consistency models.

2.1 Store stalls in conventional systems
In conventional systems, stores stall instruction retirement for two
reasons: (1) capacity stalls—a store instruction may not retire
because no store buffer entries are free, and (2) ordering stalls—a
load, fence, atomic read-modify-write (RMW), or synchronization
access may not retire until all prior stores complete. The precise
conditions that lead to these stalls vary across consistency models.
Figure 1 illustrates these conditions under three broad classes of
consistency models [1,16], and identifies the name for each stall
category used in our analysis.

Strongly-ordered consistency models. Under strongly-ordered
models (e.g., sequential consistency (SC)), retirement must stall at
the first load following an outstanding store miss. Hence, such sys-
tems expose nearly the entire latency of store misses on the execu-
tion critical path [11,13,26,27]. These systems may contain a small
store buffer to manage L1D port contention [3], but increasing
buffer capacity provides no benefit, because few stores occur
between consecutive loads. Store prefetching and speculative load
execution improve performance drastically under these models, as
they allow several misses to be serviced concurrently [10,26], but
remaining store stalls still account for up to a third of execution
time [25].

Models that relax load-to-store order. Under consistency models
that relax load-to-store order (e.g., processor consistency, SPARC
total store order (TSO), and Intel IA-32 processor-ordering), con-
ventional implementations buffer all retired stores (including hits)
that follow a store miss, but allow loads to bypass these buffered
stores. Stores may not retire when the store buffer is full. Store
buffer capacity is limited because all loads must search the buffer
for a matching store. This search is on the load critical path, and is
typically implemented using a non-scalable content-addressable
memory (CAM) [2,9]. Consecutive stores to the same cache block
may coalesce in the store buffer, but this optimization provides
minimal benefits [7]. High demand for store buffer capacity creates
a significant performance gap between these and more relaxed con-
sistency models. Although they do not stall retirement of loads,
these systems do stall RMW and memory fence instructions until
the store buffer drains.

Models that relax all order. Consistency models that fully relax
ordering (weak ordering, release consistency, SPARC relaxed
memory order (RMO), Intel IA-64, HP Alpha, and IBM PowerPC)
alleviate store buffer pressure, as buffer entries may be freely coa-
lesced and committed in any order. However, memory fence
instructions and/or annotated synchronization accesses still stall

3

instruction retirement until the store buffer drains. Because of the
frequent thread synchronization in commercial applications, these
ordering delays are significant [7]. When no data race occurs, these
stalls are unnecessary [13,36].

Throughout the remainder of this paper, we focus our study on the
SC, TSO and RMO consistency models. However, our mecha-
nisms also apply to other consistency models.

2.2 Stalls on RMWs
Atomic read-modify-write instructions have the semantics of both
loads and stores. When an RMW incurs a cache miss, it stalls
retirement much like a load miss, which neither of our mechanisms
address. However, in most cases, RMWs are used to acquire locks.
In the absence of contention, these locks are usually available and
the RMW read stall is dynamically unnecessary. In Section 4.6, we
consider value prediction as an approach to avoid RMW read stalls,
allowing our other mechanisms to hide the write latency of the
RMW.

2.3 Scalable store buffering
We propose the scalable store buffer (SSB) to eliminate the capac-
ity constraints of conventional store buffers. By providing capacity
exceeding application needs, the SSB closes the performance gap
between the TSO and RMO consistency models. Furthermore, it
provides a scalable buffering solution on which we can build more
elaborate mechanisms to achieve store-wait–free execution.

Conventional store buffers perform two largely independent func-
tions under TSO: (1) they forward values to matching loads, and
(2) they maintain order among stores for memory consistency. The
key idea of the SSB is to perform value forwarding through L1,
eliminating the need for the conventional store buffer’s CAM
search. To maintain consistency, stores are tracked in a FIFO struc-
ture that does not support associative search, called the Total Store
Order Buffer (TSOB). Stores drain from the TSOB into L2 in

order, and coherence requests return values from L2. Hence, L1
contains CPU-private values, while globally-visible (consistent)
values are maintained in L2 and beyond.

The SSB effectively increases store buffer capacity to the L1’s
capacity (with a victim buffer to address conflicting writes).
Although this capacity is sufficient for all the applications we study
(see Section 4.3), if a particular application does overflow the L1,
the SSB ensures correct execution by stalling until stores drain and
capacity is freed.

In the rare event that two processors simultaneously update a cache
block (e.g., contention), a block cached in L1 may be partially
invalidated—that is, CPU-private writes (uncommitted stores still
in the TSOB) must be preserved, but the globally-visible portion of
the cache line is invalidated. To enforce TSO, the memory system
must merge the uncommitted stores with any remote updates. In
conventional TSO systems, private values remain in the store
buffer, which ignores invalidations, while the remainder of the
cache block is discarded from L1. In designs with an SSB, we con-
struct the correct value of a partially-invalidated line by reloading
the affected line from the memory system and then replaying
uncommitted stores to the line from the TSOB. (Note that this
replay mechanism does not roll back execution.)

2.4 Atomic sequence ordering
We propose atomic sequence ordering (ASO) to address the order-
ing-related stalls under conventional implementations of any con-
sistency model. ASO dynamically groups accesses into atomic
sequences, and provides coarse-grain enforcement of ordering con-
straints over these sequences while relaxing ordering among indi-
vidual accesses. To meet consistency requirements, ASO ensures
that each sequence appears atomic to other processors. As long as
an access sequence appears atomic, the actual order of individual
accesses is not observable by other CPUs and, hence, does not vio-
late ordering constraints under any consistency model. In particu-

FIGURE 1. Store-related stalls under various classes of consistency models.

load may not retire while
store miss is outstanding

store may not retire while
store buffer is full

RMW may not retire while
store miss is outstanding

fence / sync may not retire
while store miss is outstanding

store may not retire while
store buffer is full

fence / sync may not retire
while store miss is outstanding

Strongly
ordered

Relaxed
load-to-store

order

Fully-relaxed
order

Consistency Stall condition Load/store queue Store buffer (SB) Stall category

Store

SB full

Ordering

Ordering

SB full

Ordering

...

...

...

...

...

...

...

...

...

...

...

...

tail entry tail entryhead entry

load

store

RMW

fence / sync

store Z

fence / sync

store
miss

store
miss

store
miss

Y

store

store
miss

store
miss

store
miss

X

store
miss

4

lar, ASO allows strictly ordered models (e.g., SC), to benefit from
store buffering. Moreover, atomic sequences eliminate dynami-
cally-unnecessary ordering stalls at the synchronization instruc-
tions required by fully-relaxed models.

As execution proceeds, atomic sequences either commit or are dis-
carded if a race for one of the locations accessed in the sequence
exposes an ordering violation. Because races are rare in well-
behaved parallel applications [13,21,23,27], atomic sequence
ordering improves performance.

Operation under ASO. Whenever an ordering constraint would
stall instruction retirement, the system initiates ASO. Figure 2
illustrates the lifetime of two atomic sequences.

Each atomic sequence proceeds through three states. (a) ASO cre-
ates a processor checkpoint and begins a new atomic sequence,
which is initially in the accumulate state. Loads, stores, RMWs and
memory fence instructions retire speculatively, ignoring ordering
constraints. As execution proceeds, retiring stores and loads are
accumulated into the sequence. The hardware requests write per-
mission for all cache blocks updated by the sequence. (b) When an
atomic sequence reaches a predetermined size, the hardware cre-
ates a new checkpoint and begins a new atomic sequence. Mean-
while, the first sequence transitions to the await permission state,
and waits for all write permissions to arrive. (c) Once all write per-
missions arrive, the first atomic sequence transitions to the commit
state, and drains its writes to the memory system. Because the local
processor holds write permission for all lines written by the
sequence, it can assure commit atomicity by delaying requests
from other processors until the commit is complete. The sequence
is committed once all its writes are globally visible. (d) In this
example, the second sequence transitions directly from accumulate
to commit state, because it already holds all required permissions.

If another processor writes an address speculatively read by an
atomic sequence (i.e., a data race), that and all later sequences are
discarded and the processor state is rolled back to the start of the

appropriate sequence. To guarantee forward progress, a processor
must commit at least one store before initiating another sequence.

Implementation requirements. An ASO implementation must
fulfill three requirements. First, it must detect when a read in an
atomic sequence returns a value in violation of memory consis-
tency constraints. Like many prior speculative techniques [19,23],
we track speculatively-read blocks in the cache hierarchy and use
the existing coherence notifications to detect conflicting writes.
Second, when a violation occurs, the hardware must rewind execu-
tion and recover the correct processor state (i.e., register values,
TLB/MMU, etc.) as of the start of the violating sequence. We apply
previously-proposed register checkpointing techniques [2,8,20] to
meet this requirement. Finally, the hardware must buffer all of a
sequence’s writes and either release them atomically upon commit
or discard them upon violation. We use the SSB (Section 2.3) to
address this requirement.

The SSB handles speculative writes (under any consistency model)
much like the private writes that occur under TSO. An atomic
sequence corresponds to a contiguous sequence of entries in the
SSB’s total store order buffer. When the atomic sequence commits
(i.e., when all required write permissions have arrived), its stores
drain from the TSOB into L2. To ensure atomicity, the L2 cache
stalls external coherence requests that might intersect the
sequence’s reads or writes during commit.

In the infrequent case that some, but not all, outstanding sequences
violate and must roll back, the L1 discards all speculatively-written
lines and discarded sequences are erased from the TSOB. Then,
TSOB entries from the remaining sequences are replayed into the
L1 cache to reconstruct the cache state at the time of the checkpoint
(much like the invalidation replay mechanism described in
Section 2.3). This TSOB replay mechanism is necessary to reduce
the performance impact of repeated violations in pathological cases
of contention—older sequences (that do not access the contended
address) continue to acquire permissions and make progress
towards commit. If a violation rolls back the eldest outstanding

Memory
System

LSQ

(d)

Commit

St S

Ld E

heldheld

Ld F

St T
held

St U

FIGURE 2. Atomic sequence ordering.

Memory
System

Await Perm
LSQ

(b)

St PSt Q

Ld A

Ld B

Ld C

St TLd F
held wait

Accumulate

St S

Ld E

wait

St R

Ld D

wait

Memory
System

Commit
LSQ

(c)

St PSt Q

Ld A

Ld B

Ld C

St U
held held

Accumulate

St S

Ld E

held

St R

Ld D

held

Ld F

St T

Memory
System

Accumulate
LSQ

(a)

St PSt Q

Ld A

Ld B

Ld C

St RLd D
wait wait

5

sequence, replay is unnecessary (i.e., all speculative writes are dis-
carded).

3 Hardware implementation
In this section, we present the hardware required to implement our
mechanisms. We organize our presentation around the major func-
tionality each mechanism requires. We illustrate the contents of
new structures and cache modifications in Figure 3, along with an
example of operation, described in Section 3.3.

3.1 SSB implementation
Scalable store buffering for conventional TSO. As store instruc-
tions retire, they update the L1 data cache, and are appended to the
Total Store Order Buffer (TSOB). We augment each L1 line with
per-word “valid” bits much like a sub-blocked cache. These bits
allow the processor to read private data while a store miss is out-
standing and facilitate merging with incoming data when the line is
filled. The TSOB records the address, value, and size of all stores
in a RAM structure organized as a circular buffer. Because it does
not require associative search, we can roughly match TSOB capac-
ity to L1 capacity (1024 entries, or about 10 KB of storage, in our
experiments). A 16-entry victim buffer addresses conflicting
stores.

Handling invalidations. If an invalidation matches a line with any
of the per-word valid bits set, the line may be partially invalidated
(i.e., another processor is writing part of the line). All valid bits are
cleared and a new request for write permission and the updated
value is issued. When the memory system returns the updated line,
the SSB reconstructs the correct value of the line by traversing the
entire TSOB to replay stores to the affected line, setting per-word
valid bits as appropriate. Although this process is inefficient, the
replay is sufficiently rare to cause negligible performance loss.

Handling sub-word writes. Because our design provides valid
bits on a per-word rather than per-byte basis, it cannot place writes
smaller than a word in the cache unless the line is valid (with or
without write permission). We handle sub-word store misses by
leaving them in a small (e.g., 8-entry), conventional mini store
buffer until the line is filled. When multiple sub-word stores write
the same word (a common case in unaligned memcpys) we create
individual entries for each store in the TSOB, but allow the stores
to coalesce in the mini store buffer.

3.2 ASO implementation
Tracking atomic sequences. We initiate atomic sequence ordering
when an ordering constraint prevents instruction retirement
because a store is outstanding (i.e., the SSB is not empty and a load
reaches retirement under SC, or an RMW or fence reaches retire-
ment under TSO). The Atomic Sequence Table (AST) tracks active
atomic sequences. For each sequence, the AST records the corre-
sponding range of TSOB entries and two additional counters.
“Lines” counts the distinct cache lines written by the sequence.
“Filled” counts lines for which write permission has been obtained.
A sequence may commit when all permissions arrive (“Filled”
equals “Lines”). We augment each L1 line with a speculatively-
written (“SW”) bit per supported sequence to indicate which
sequences’ “Filled” counters to update when the line arrives.
Because violations are rare, we have found that there is little sensi-
tivity to the precise heuristics used to allocate a new atomic
sequence. Shorter sequences enable faster commit, but require
hardware support for more active sequences to achieve store-wait
freedom. We allocate a new sequence whenever the current
sequence’s “Lines” count reaches 16, allowing rapid sequence
commit while requiring support for few (~4) sequences.

Detecting atomicity violations. To track the speculative reads in
each atomic sequence, we augment each L1 and L2 cache line with
per-sequence speculatively-read (“SR”) bits. If an invalidation

FIGURE 3. Example of store-wait–free hardware operation.

(a) A new atomic sequence is created when { St A=x } misses

Atomic Sequence Table

Ckpt TSOB range FilledLines

1 1-1 1 0

L1

Addr Value SR SWValid

A x??? 1000 00 01

Total Store Order Buffer

St A=x
1 2 3 4

(b) The sequence is extended with { Ld B ; St A+1=y }

Atomic Sequence Table

Ckpt TSOB range FilledLines

1 1-2 1 0

L1

Addr Value Valid

A xy?? 1100 00 01

Total Store Order Buffer

St A+1=y St A=x
1 2 3 4

B 1111 01 00

SR SW

(c) A second sequence begins with { St C+2=z, Ld D, St A=w }

Atomic Sequence Table

Ckpt TSOB range FilledLines

1 3-4 1 0

L1

Addr Value Valid

A wy?? 1100 00 11

Total Store Order Buffer

St A=w St C+2=z St A+1=y St A=x
1 2 3 4

B 1111 01 00

2 1-2 2 0

C ??z? 0010 00 10

D 1111 10 00

SR SW

(d) Invalidation of D violates the second sequence

Atomic Sequence Table

Ckpt TSOB range FilledLines

1 3-4 1 0

L1

Addr Value Valid

A ? 0000 00 00

Total Store Order Buffer

St A=w St C+2=z St A+1=y St A=x
1 2 3 4

B 1111 01 00

2 1-2 1 0

C ? 0000 00 00

D ? 0000 10 00

SR SW

(e) TSOB replay reconstructs the speculative values in L1

Atomic Sequence Table

Ckpt TSOB range FilledLines

1 3-4 1 0

L1

Addr Value Valid

A xy?? 1100 00 01

Total Store Order Buffer

St A+1=y St A=x
1 2 3 4

B 1111 01 00

SR SW

(f) Fill A arrives; the first sequence drains into L2 and commits

Atomic Sequence Table

Ckpt TSOB range FilledLines

1 3-4 1 1

L1

Addr Value Valid

A xy.. 1111 00 00

Total Store Order Buffer

1 2 3 4

B 1111 00 00

SR SW

6

message matches a speculative line, or the line is evicted from L2,
the corresponding atomic sequence must roll back.

Committing atomic sequences. When all permissions arrive, the
TSOB range corresponding to a sequence is drained into the L2
cache. To assure atomicity, external requests are delayed during the
commit process. Both the “SR” and “SW” bits corresponding to the
sequence are cleared via a bulk-clear operation [20]. To support the
bulk operations, these fields may be implemented in a specialized
array rather than augmenting the existing cache tag array. For the
cache sizes we study, these additional bits incur ~3% storage over-
head in L1, and less than 1% in L2.

Rollback on violation. To support rollback, we require a register
checkpointing mechanism that provides one checkpoint for each
supported atomic sequence. Several appropriate mechanisms have
been proposed [2,8,20]. Because we speculate in supervisory code,
the register checkpointing mechanism must record all supervisory
registers and recover TLB/MMU state. To correct cache state, all
lines with one or more “SW” bits set are bulk-invalidated, and the
TSOB ranges corresponding to discarded sequences are erased.
Then, the remaining TSOB contents are replayed into L1.

3.3 Hardware operation example
Figure 3 shows an example of the operation of our design.

(a) The hardware collects a CPU checkpoint and allocates a new
atomic sequence upon an L1 store miss. The store writes its value
into the cache, setting the appropriate valid and “SW” bits, and
increments the sequence’s “Lines” counter. The cache issues a
request for the line.

(b) While the miss is outstanding, execution continues, and loads
and stores are added to the atomic sequence. Loads set the
sequence’s “SR” bit. Stores are appended to the TSOB. In this
example, {St A+1=y} updates a line that has already been written
by this sequence (the “SW” bit is already set), so the “Lines”
counter is left unchanged.

(c) The atomic sequence hardware collects a second checkpoint
and allocates atomic sequence 2. Subsequent loads and stores are
added to this sequence. Note that {St A=w} overwrites a value pro-
duced by sequence 1, which is prohibited in some prior designs [9].

(d) An invalidation arrives for address D, which has been specula-
tively read in sequence 2, resulting in a violation. Sequence 2’s
AST and TSOB entries are discarded and the CPU state is recov-
ered to checkpoint 2. All lines that have been speculatively written
by any sequence are discarded.

(e) Before execution may continue, the remaining TSOB entries
(from sequence 1) are replayed into the L1 cache to reconstruct the
values, valid bits, “SW” bits, “Lines” and “Filled” counts for the
remaining sequences.

(f) When the fill for address A arrives, it increments the “Filled”
count for sequence 1. Because “Filled” equals “Lines”, sequence 1
may commit. The sequence’s TSOB entries are drained into L2 (all
accesses will result in hits), and all resources associated with the
sequence are cleared.

4 Evaluation
In the following subsections, we evaluate the effectiveness of our
mechanisms relative to conventional implementations.

4.1 Methodology
We evaluate our mechanisms using cycle-accurate full-system sim-
ulation of a shared-memory multiprocessor using FLEXUS [37].
FLEXUS models the SPARC v9 ISA and can execute unmodified
commercial applications and operating systems. FLEXUS extends
the Virtutech Simics functional simulator with models of an out-of-
order processor core, cache hierarchy, protocol controllers and
interconnect. We simulate a 16-node directory-based shared-mem-
ory multiprocessor system running Solaris 8. We implement a low-
occupancy directory-based NACK-free cache-coherence protocol.
Our system performs speculative load execution and store
prefetching (at execute under SC, at retirement under other consis-

Processing Nodes UltraSPARC III ISA
4 GHz 8-stage pipeline; out-of-order
4-wide dispatch / retirement
96-entry ROB, LSQ
32-entry conventional store buffer

L1 Caches Split I/D, 64KB 2-way, 2-cycle load-to-use
3 ports, 32 MSHRs, 16-entry victim cache

L2 Cache Unified, 8MB 8-way, 25-cycle hit latency
1 port, 32 MSHRs

Main Memory 3 GB total memory
40 ns access latency
64 banks per node
64-byte coherence unit

Protocol Controller 1 GHz microcoded controller
64 transaction contexts

Interconnect 4x4 2D torus
25 ns latency per hop
128 GB/s peak bisection bandwidth

Online Transaction Processing (TPC-C)
DB2 100 warehouses (10 GB), 64 clients, 450 MB buffer pool

Oracle 100 warehouses (10 GB), 16 clients, 1.4 GB SGA

Web Server
Apache 16K connections, fastCGI, worker threading model

Zeus 16K connections, fastCGI
Decision Support (TPC-H on DB2)

Qry 1 Scan-dominated, 450 MB buffer pool
Qry 6 Scan-dominated, 450 MB buffer pool

Qry 16 Join-dominated, 450 MB buffer pool
Scientific

barnes 16K bodies, 2.0 subdiv. tol.
ocean 1026x1026 grid, 9600s relaxations, 20K res., err tol 1e-07

TABLE 1. System and application parameters.

7

tency models) as described in [7,10]. Hence, our base system is
similar to the system described in [25]. We configure our processor
model to approximate the hardware resources of the Intel Core 2
microarchitecture. We list other relevant parameters in
Table 1 (left).

Table 1 (right) enumerates our commercial and scientific applica-
tion suite. We include the TPC-C v3.0 OLTP workload on IBM
DB2 v8 ESE and Oracle 10g Enterprise Database Server. We run
three queries from the TPC-H DSS workload on DB2, selected
according to the categorization of Shao et al. [30]. We evaluate web
server performance with the SPECweb99 benchmark on Apache
HTTP Server v2.0 and Zeus Web Server v4.3. We drive the web
servers using a separate client system (client activity is not
included in timing results). Finally, we include two scientific appli-
cations as a frame of reference for our commercial application
results.

We measure performance using the SimFlex multiprocessor sam-
pling methodology [37]. The SimFlex methodology extends the
SMARTS [38] statistical sampling framework to multiprocessor
simulation. Our samples are drawn over an interval of from 10s to
30s of simulated time for OLTP and web server applications, over
the complete query execution for DSS, and over a single iteration
for scientific applications. We launch measurements from check-
points with warmed caches and branch predictors, then warm
queue and interconnect state for 100,000 cycles prior to measuring
50,000 cycles. We use the aggregate number of user instructions
committed per cycle (i.e., committed user instructions summed
over the 16 processors divided by total elapsed cycles) as our per-
formance metric, which is proportional to overall system through-
put [37].

FLEXUS fully supports execution under the SC, TSO and RMO
consistency models. Unfortunately, the commercial applications
we study include code that requires TSO for correctness. Hence,
while we can simulate all applications directly under SC and TSO,
and scientific applications under RMO, our commercial applica-
tions lack the necessary memory barriers to run under RMO.

To work around this limitation, we dynamically insert memory bar-
rier instructions when simulating our commercial applications
under RMO. These barriers stall retirement until all preceding
memory operations complete, but allow loads within the instruc-
tion window to execute speculatively. Because it is difficult to
automatically identify all locations where barriers are required, we
err on the side of inserting too few barriers, thus overestimating
RMO performance (conservatively underestimating speedups from
ASO). We introduce a barrier after each RMW operation (i.e., lock
acquire). However, we do not introduce memory barriers at lock
release because it is difficult to reliably identify the releasing store.
As these barriers are not sufficient to guarantee correctness, we
separately track TSO-consistent memory values and confirm that
all loads return values that occur under TSO. In most cases, order-
ing differences between TSO and RMO do not affect the value
returned by a load. If a memory ordering difference causes a load
value mismatch, the affected load and its dependent instructions
are re-executed to assure correct program execution. These mis-
matches are rare and have a negligible performance impact.

4.2 Store stalls in conventional systems
The frequent store misses in commercial applications result in a
significant performance gap between conventional implementa-
tions of memory consistency models despite aggressive store
prefetching and speculative load execution. Figure 4 shows an exe-
cution time breakdown for each application under SC, TSO, and
RMO. The total height of each stacked bar is normalized to the
application’s performance under SC. The stall categories shown in
the breakdown are described in Section 2.1.

Under SC, we observe 25%-40% of execution time stalled on
stores. Our results corroborate previous results for OLTP [25]. We
observe somewhat higher stalls in Qry 1 and Qry 6 because of sig-
nificant lock contention in these two applications. The perfor-
mance gap between SC and more relaxed models arises because of
the ordering constraints on load retirement; loads stall until in-
flight stores complete. Store stalls are an even larger problem with-
out store prefetching; additional experiments (not shown in

0

0.2

0.4

0.6

0.8

1
S

C
TS

O
R

M
O

S
C

TS
O

R
M

O

S
C

TS
O

R
M

O

S
C

TS
O

R
M

O

S
C

TS
O

R
M

O

S
C

TS
O

R
M

O

S
C

TS
O

R
M

O

S
C

TS
O

R
M

O

S
C

TS
O

R
M

O

DB2 Oracle Apache Zeus Qry 1 Qry 6 Qry 16 barnes ocean

OLTP Web DSS DB2 Scientific

Ti
m

e
no

rm
al

iz
ed

 t
o

SC Store

Ordering

SB Full

RMW Read

Other

Busy

FIGURE 4. Execution time breakdown in conventional systems. Each bar shows an execution time breakdown under
conventional implementations of SC, TSO, RMO, normalized to SC performance.

8

Figure 4) indicate that store stall cycles nearly double without store
prefetching.

Under TSO, store delays manifest as SB full and ordering stalls.
The SB full stalls indicate that a 32-entry store buffer is insufficient
to hide the store bursts that arise in these applications. We examine
the capacity requirements of our applications in more detail in
Section 4.3.

As stores may coalesce and retire from the store buffer in any order
under RMO, a 32-entry store buffer eliminates the capacity-related
stalls. In the web applications, eliminating SB full stalls provides a
drastic performance boost; in addition to direct savings of SB full
time, the reduced stalls improve the out-of-order core’s ability to
hide load and RMW read stalls through speculative load execution.

The persistent lock contention in Qry 1 leads to a performance loss
under RMO relative to SC. Under high contention, delaying mem-
ory requests sometimes improves overall application performance
because of faster lock hand-offs.

Comparing RMO to TSO, despite substantial gains from eliminat-
ing capacity stalls, ordering stalls at barriers still account for an
average of 16% of execution time. We will show in Section 4.5 that
many of these stalls are dynamically unnecessary, and can be elim-
inated by ASO.

Finally, the overall proportion of memory stalls in these applica-
tions depends heavily on memory latency—in particular, on the
communication latency for coherence activity. In the distributed-
shared memory system we study, the latency of coherence misses
(for read or write permission) is typically three times that of a local
memory access, and more than 75% of off-chip accesses are the
result of coherence in our workloads. Hence, the overall store stall
time, and the gap among consistency models, will vary directly
with memory access and interconnect latency.

4.3 Store buffer capacity requirements
TSO capacity requirements. Under TSO, conventional store buff-
ers provide insufficient capacity during store bursts, resulting in SB
full stalls. Figure 5 (left) shows that typical store buffer capacity
(limited to ~32 entries because of the CAM search [7]) falls well
short of commercial applications’ requirements. Two constraints
drive the high capacity requirements: (1) stores that will hit in the
L1 must remain buffered behind store misses, and (2) overlapping
stores cannot coalesce into a single SB entry because of interven-
ing stores to other addresses. The scalable store buffer eliminates
both of these constraints, allowing both store hits and misses to
write to the L1 immediately. We examine the performance impact
of eliminating these stalls in Section 4.4

ASO capacity requirements. Our ASO design requires that spec-
ulatively-written data remain in the L1 cache and victim cache.
Hence, the capacity of these structures constrains maximum specu-
lation depth.

To assess ASO’s speculative-data capacity requirements, we ana-
lyze our workloads using the epoch execution model described
in [6,7]. This approach models the execution of out-of-order pro-
cessors with long off-chip access latencies as a series of execution
epochs. Each epoch consists of a computation period followed by a
long stall on one or more off-chip loads. During the stall period, all
outstanding misses complete, and any atomic sequences can com-
mit. Hence, we can estimate ASO’s capacity requirements from the
number of blocks stored during each epoch. The key advantage of
this analysis approach is that its results are independent of precise
access latencies and details of the execution core.

We present a cumulative distribution of the distinct cache blocks
written during epochs with at least one store in Figure 5 (right). In
every case except Oracle, nearly all epochs write fewer than 64
cache blocks, much less than the ~1000-line capacity of our 64KB
L1. Oracle exhibits long epochs without an off-chip load miss, as it
has been heavily optimized to maintain its primary working set

FIGURE 5. Capacity requirements. The left figure shows a cumulative distribution of SB capacity requirements under TSO.
The right figure shows the distinct blocks written in the execution epochs between off-chip load stalls.

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100
Distinct blocks stored during epoch

%
 e

po
ch

s

OLTP Oracle OLTP DB2
DSS Qry 1 DSS Qry 6
Web DSS Qry 16

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

Store buffer requirements under TSO

%
 e

xe
cu

tio
n

tim
e

OLTP Oracle OLTP DB2
DSS Qry 1 DSS Qry 6
Web DSS Qry 16

Conventional SB capacity

9

within the 8MB L2. However, these epochs also contain few store
misses. Hence, we conclude that L1’s capacity is sufficient for
ASO.

4.4 Impact of the scalable store buffer
Our capacity analysis indicates that conventional store buffers can-
not eliminate SB full stalls. However, the scalable store buffer pro-
vides capacity far exceeding application demands. In Figure 6, we
examine the performance impact of replacing conventional store
buffers with our scalable design.

By itself, the scalable store buffer has no effect on SC or RMO exe-
cution. Under SC, ordering constraints at loads result in stalls
regardless of store buffer capacity. Under RMO, a conventionally-
sized store buffer is sufficient to eliminate capacity-related stalls.
However, under TSO, conventional store buffers are insufficient,
creating a significant performance gap between TSO and RMO.
Adding the speculative store buffer to a TSO system (SSBtso) elim-
inates all capacity stalls. As a result, SSBtso provides performance
similar to RMO.

4.5 Impact of atomic sequence ordering
Atomic sequence ordering eliminates ordering constraints and their
associated performance penalties. As Figure 7 shows, adding ASO
to SSBtso (labelled ASOtso) improves performance an additional
8%. ASOtso outperforms conventional RMO implementations,
which always stall retirement at memory barriers to ensure proper
ordering. Under ASO, retirement continues, optimistically ignor-
ing ordering constraints. ASO incurs delays only if an ordering vio-
lation is actually observed by another node, in which case
execution must roll back. With the exception of high-contention
decision support queries (Qry 1 and Qry 6), less than 2% of execu-
tion time is lost due to rollback on ordering violations. Although all
ordering stalls are eliminated, order speculation sometimes
exposes read misses previously hidden behind a memory barrier.
Hence, only a portion of ordering stalls are recovered as perfor-
mance improvement.

Perhaps more importantly, however, ASO eliminates the load
retirement constraint under SC, allowing an SC system (ASOsc) to

0

0.2

0.4

0.6

0.8

1

TS
O

SS
Bt

so
R

M
O

TS
O

SS
Bt

so
R

M
O

TS
O

SS
Bt

so
R

M
O

TS
O

SS
Bt

so
R

M
O

TS
O

SS
Bt

so
R

M
O

TS
O

SS
Bt

so
R

M
O

TS
O

SS
Bt

so
R

M
O

TS
O

SS
Bt

so
R

M
O

TS
O

SS
Bt

so
R

M
O

DB2 Oracle Apache Zeus Qry 1 Qry 6 Qry 16 barnes ocean

OLTP Web DSS DB2 Scientif ic

Ti
m

e
no

rm
al

iz
ed

 to
 S

C

Violation
Ordering
SB Full
RMW Read
Other
Busy

FIGURE 6. Scalable store buffer (SSB) performance impact.

0

0.2

0.4

0.6

0.8

1

SS
Bt

so
AS

O
ts

o
AS

O
sc

SS
Bt

so
AS

O
ts

o
AS

O
sc

SS
Bt

so
AS

O
ts

o
AS

O
sc

SS
Bt

so
AS

O
ts

o
AS

O
sc

SS
Bt

so
AS

O
ts

o
AS

O
sc

SS
Bt

so
AS

O
ts

o
AS

O
sc

SS
Bt

so
AS

O
ts

o
AS

O
sc

SS
Bt

so
AS

O
ts

o
AS

O
sc

SS
Bt

so
AS

O
ts

o
AS

O
sc

DB2 Oracle Apache Zeus Qry 1 Qry 6 Qry 16 barnes ocean

OLTP Web DSS DB2 Scientif ic

Ti
m

e
no

rm
al

iz
ed

 to
 S

C

Violation
Ordering
SB Full
RMW Read
Other
Busy

FIGURE 7. Atomic sequence ordering (ASO) performance impact.

10

benefit from store buffering and avoid synchronization stalls. The
minimal performance losses in ASOsc relative to ASOtso arise from
increases in the average work discarded upon violations.

In general, we find that performance under ASO is insensitive to
the precise heuristics used to choose sequence boundaries. These
heuristics have minimal impact because violations are infrequent.
We choose to allow a sequence to store at most sixteen distinct
cache blocks before allocating a new sequence to enable rapid
commit to L2. Four checkpoints are sufficient to achieve peak per-
formance for this sequence length.

4.6 Impact of RMW read prediction
Even under ASOtso, considerable stalls on the read portion of
RMWs remain. These RMW read stalls arise when a node must
acquire a lock previously held by another node. In commercial
applications, RMWs are typically used in simple locking protocols
that use a unique value to indicate that a lock is free. Hence, we can
predict this value [4] to avoid RMW read stalls when the lock is
available. As ASO already requires rollback support, we can reuse
this mechanism to recover from mispredictions. Unfortunately, our
study shows that eliminating the lock acquisition latency has a
minimal effect on performance even when the prediction is highly
accurate. The prediction is ineffective because hiding lock acquisi-
tion simply exposes load stalls within the critical section.

We consider a perfect RMW read prediction mechanism that
always predicts the current value of the memory location (i.e., as if
the read had zero latency). Note that this algorithm can still lead to
“misprediction” and rollback if the value is changed after the pre-
diction is made (e.g., in cases of contention).

Figure 8 shows that RMW read prediction has minimal perfor-
mance impact (we omit benchmarks with negligible RMW read
stalls). Because we make a prediction any time an RMW would
otherwise stall, all RMW read stalls are eliminated. Some of these
gains are lost due to rollbacks in cases of contention. However,
even in the applications with minimal contention, we observe a

substantial increase in load stalls (reflected in the “Other” portion
of the bars). We conclude that, when the RMW acquiring a lock
misses, the loads within the critical section are also likely to miss.

4.7 Performance summary
By eliminating all ordering and store buffer capacity related stalls,
ASO and the SSB provide better-than-RMO performance with the
simplicity of stricter programming models. Our mechanisms can
exceed the performance of relaxed programming models because
they avoid conservative ordering stalls at memory barriers when
precise ordering is dynamically unnecessary (i.e., when there is no
race for a lock). Figure 9 summarizes the performance of the store-
wait–free implementations, ASOsc and ASOtso, relative to conven-
tional systems. All bars are normalized to the performance under
conventional SC, and the vertical line attached to each bar indicates
a 95% confidence interval on the speedup over SC given by our
paired-measurement sampling methodology.

5 Related work
Adve and Gharachorloo present an overview of the differences
between memory consistency models in [1]. Several prior studies
investigate the performance gap between consistency models in
scientific [11,13,26,27] and commercial [7,25] applications. Our
results corroborate these studies; even under fully-relaxed consis-
tency models, programs incur significant delays because of order-
ing constraints at synchronization operations.

Chou, Spracklen, and Abraham [7] introduce the epoch model for
analyzing store misses in commercial applications. They evaluate
several optimizations to reduce store stalls, including the store miss
accelerator to reduce capacity misses, and hardware scouting to
improve store prefetching effectiveness. These mechanisms can be
combined with ASO and the SSB. Finally, they demonstrate that
speculation techniques (from [23]) can bridge the performance gap
among consistency models, but their analysis assumes speculation
always succeeds and does not evaluate a hardware implementation.

FIGURE 8. RMW Read Prediction (RRP) impact.

0

0.2

0.4

0.6

0.8

1
AS

Ot
so

RR
Pt

so

AS
Ot

so
RR

Pt
so

AS
Ot

so
RR

Pt
so

AS
Ot

so
RR

Pt
so

AS
Ot

so
RR

Pt
so

AS
Ot

so
RR

Pt
so

DB2 Oracle Apache Zeus Qry 1 Qry 6

OLTP Web DSS DB2

Ti
m

e
no

rm
al

iz
ed

 to
 S

C
Busy Other
RMW Read Violation

FIGURE 9. Speedup. Each bar depicts speedup relative to
SC with 95% confidence intervals.

0.8

1

1.2

1.4

1.6

1.8

2

D
B

2

O
ra

cl
e

A
pa

ch
e

Ze
us

Q
ry

1

Q
ry

6

Q
ry

16

ba
rn

es

oc
ea

n

OLTP Web DSS DB2 Scientific

Sp
ee

du
p

ov
er

 S
C

RMO ASOsc ASOtso

11

Coherence protocol optimizations can eliminate store misses to
shared data for special-case communication patterns, such as
migratory sharing [33]. Our mechanisms hide the latency of all
classes of store misses.

We extend prior research on speculative implementations of mem-
ory consistency [12,13,27]. These prior designs implement roll-
back on violation through large history buffers that undo the results
of each speculatively retired instruction, and/or replace all stores
with RMW operations to support rollback of memory state. In con-
trast, our design enforces ordering constraints at coarse granularity,
enabling a checkpoint-based rollback mechanism.

Our SSB is similar to the Store Redo Log (SRL) of Gandhi et
al. [9]. SRL is designed to disambiguate accesses for large-instruc-
tion-window microarchitectures (e.g., [2]). A sufficiently large
instruction window hides the performance gap among consistency
models [27]. However, we target conventional microarchitectures.

Like SRL, the SSB places private/speculative values into L1. How-
ever, the SSB replaces the processor’s store buffer instead of its
store queue. Unlike store buffers, store queues perform an age-
based search to match each load to its nearest preceding store.
Hence, the store queue must provide rapid access to many values
for a single location. In contrast, for store buffers, only two values
are of interest: the unique value currently visible to the processor,
and the globally-visible (consistent) value. The SSB provides rapid
access to the processor-visible value through L1, and displaces glo-
bally-visible values to L2. The SSB allows multiple overlapping
writes, invokes the store replay mechanism infrequently (upon data
races instead of dependence mispredictions), and does not require
any of the other supporting structures of SRL. The SSB is comple-
mentary to other mechanisms that scale [9,22,28,35] or eliminate
[29,34] load and store queues.

Rajwar and Goodman [23] and Martinez and Torrellas [21] pro-
pose schemes to proceed speculatively into critical sections with-
out waiting for the lock to be acquired. We consider RMW read
prediction, which is similar to these techniques. Unfortunately, we
observe minimal performance gains from this approach in our
applications because hiding the lock acquisition latency exposes
read stalls within the critical section. Unlike their schemes, our
approach still performs the lock acquisition, and does not provide
the programmability benefits of allowing concurrent execution
within critical sections.

A variety of architectural techniques exploit the appearance of ato-
micity and detection of conflicts among memory accesses to sim-
plify programming models or improve performance. Transactional
memory simplifies parallel programming by allowing program-
mers to specify regions of code for which the implementation guar-
antees the appearance of atomic execution [15,19]. Thread-level
speculation enables parallel execution of sequential code provided
that the speculative threads’ writes appear to occur in order and
reads do not conflict with out-of-order writes [14,17,31,32]. How-
ever, unlike these techniques, under ASO, hardware chooses which
memory accesses to group into atomic sequences. Hence, atomic
sequences can be chosen to assure that speculative data does not
overflow L1, simplifying hardware requirements. Nonetheless,
many of these proposals detect atomicity violations using the same
underlying hardware mechanisms as ASO. Thus, by providing

these fundamental mechanisms, future systems might support all
these techniques for traditional parallel, transactional, and specula-
tively-threaded code, respectively.

Ceze et al. concurrently propose bulk enforcement of sequential
consistency, which, like ASO, enforces memory ordering con-
straints at coarse granularity [5]. Their design builds the whole
memory consistency enforcement based on coarse-grain operation
with hash-based signatures. Their goal is to decouple consistency
enforcement from processor design. Our study separately analyzes
scalable store buffering and proposes store-wait–free implementa-
tions of relaxed consistency models in addition to SC.

6 Conclusion
In this paper, we have shown that store-related capacity and order-
ing stalls degrade the performance of commercial applications
under all memory consistency models, including relaxed models.
We propose two mechanisms to address these stalls, the scalable
store buffer to eliminate capacity stalls, and atomic sequence order-
ing to eliminate ordering stalls. With these mechanisms, systems
can provide the intuitive programming interface of strongly-
ordered consistency models with performance exceeding fully-
relaxed models. Furthermore, the underlying hardware mecha-
nisms required (e.g., register checkpoints, tracking of speculative
reads, speculative write data within the cache hierarchy) overlap
strongly with the mechanisms required to implement emerging
programming models like transactional memory. By implementing
these underlying mechanisms in future designs, systems architects
can provide a migration path to new programming models while
enabling store-wait–free multiprocessing for legacy code.

Acknowledgements
The authors would like to thank Milo Martin, members of the
Impetus research group at Carnegie Mellon University, and the
anonymous reviewers for their feedback on drafts of this paper.
This work was partially supported by grants and equipment from
Intel, two Sloan research fellowships, an NSERC Discovery Grant,
an IBM faculty partnership award, and NSF grant CCR-0509356.

References
[1] S. V. Adve and K. Gharachorloo. Shared memory consisten-

cy models: A tutorial. IEEE Computer, 29(12):66–76, Dec.
1996.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint pro-
cessing and recovery: Towards scalable large instruction win-
dow processors. Proc. of the 36th Int’l Symposium on
Microarchitecture, Dec. 2003.

[3] R. Bhargava and L. K. John. Issues in the design of store
buffers in dynamically scheduled processors. Proc. of the
Int’l Symposium on the Performance Analysis of Systems and
Software, Apr. 2000.

[4] L. Ceze, K. Strauss, J. Tuck, J. Torrellas, and J. Renau. CA-
VA: Using checkpoint-assisted value prediction to hide L2
misses. ACM Transactions on Architecture and Code Optimi-
zation, 3(2):182–208, 2006.

[5] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. Bulk en-

12

forcement of sequential consistency. Proc. of the 34th Int’l
Symposium on Computer Architecture, Jun. 2007.

[6] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture opti-
mizations for exploiting memory-level parallelism. Proc. of
the 31st Int’l Symposium on Computer Architecture, Jun.
2004.

[7] Y. Chou, L. Spracklen, and S. G. Abraham. Store memory-
level parallelism optimizations for commercial applications.
Proc. of the 38th Int’l Symposium on Microarchitecture, Dec.
2005.

[8] O. Ergin, D. Balkan, D. Ponomarev, and K. Ghose. Increas-
ing processor performance through early register release.
Int’l Conference on Computer Design, Oct. 2004.

[9] A. Gandhi, H. Akkary, R. Rajwar, S. T. Srinivasan, and
K. Lai. Scalable load and store processing in latency tolerant
processors. Proc. of the 38th Int’l Symposium on Microarchi-
tecture, Dec. 2005.

[10] K. Gharachorloo, A. Gupta, and J. Hennessy. Two tech-
niques to enhance the performance of memory consistency
models. Proc. of the Int’l Conference on Parallel Processing,
Aug. 1991.

[11] K. Gharachorloo, A. Gupta, and J. L. Hennessy. Performance
evaluation of memory consistency models for shared memory
multiprocessors. Proc. of the 4th Int’l Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, Apr. 1991.

[12] C. Gniady and B. Falsafi. Speculative sequential consistency
with little custom storage. Proc. of the 10th Int’l Conference
on Parallel Architectures and Compilation Techniques, Sep.
2002.

[13] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP =
RC? Proc. of the 26th Int’l Symposium on Computer Archi-
tecture, May 1999.

[14] L. Hammond, M. Willey, and K. Olukotun. Data speculation
support for a chip multiprocessor. Proc. of the 8th Int’l Con-
ference on Architectural Support for Programming Languag-
es and Operating Systems, Oct. 1998.

[15] M. Herlihy and J. E. B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. Technical Re-
port 92/07, Digital Equipment Corporation, Cambridge
Research Laboratory, Dec. 1992.

[16] M. D. Hill. Multiprocessors should support simple memory
consistency models. IEEE Computer, 31(8), Aug. 1998.

[17] V. Krishnan and J. Torrellas. A chip-multiprocessor architec-
ture with speculative multithreading. IEEE Transactions on
Computers, 48(9):866–880, 1999.

[18] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transac-
tions on Computers, C-28(9):690–691, Sep. 1979.

[19] J. Larus and R. Rajwar. Transactional Memory. Morgan
Claypool Publishers, 2006.

[20] J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, and
J. Torrellas. Cherry: checkpointed early resource recycling in
out-of-order microprocessors. Proc. of the 35th Int’l Sympo-
sium on Microarchitecture, Dec. 2002.

[21] J. F. Martinez and J. Torrellas. Speculative synchronization:
applying thread-level speculation to explicitly parallel appli-
cations. Proc. of the 10th Int’l Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, Oct. 2002.

[22] I. Park, C. Ooi, and T. N. Vijaykumar. Reducing design com-

plexity of the load/store queue. Proc. of the 36th Int’l Sympo-
sium on Microarchitecture, Dec. 2003.

[23] R. Rajwar and J. R. Goodman. Speculative lock elision: en-
abling highly concurrent multithreaded execution. Proc. of
the 34th Int’l Symposium on Microarchitecture, Dec. 2001.

[24] R. Rajwar and J. R. Goodman. Transactional lock-free exe-
cution of lock-based programs. Proc. of the 10th Int’l Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, Oct. 2002.

[25] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A.
Barroso. Performance of database workloads on shared-
memory systems with out-of-order processors. Proc. of the
8th Int’l Conference on Architectural Support for Program-
ming Languages and Operating Systems, Oct. 1998.

[26] P. Ranganathan, V. S. Pai, H. Abdel-Shafi, and S. V. Adve.
The interaction of software prefetching with ilp processors in
shared-memory systems. Proc. of the 24th Int’l Symposium
on Computer Architecture, Jun. 1997.

[27] P. Ranganathan, V. S. Pai, and S. V. Adve. Using speculative
retirement and larger instruction windows to narrow the per-
formance gap between memory consistency models. Proc. of
the 9th Symposium on Parallel Algorithms and Architectures,
Jun. 1997.

[28] A. Roth. Store vulnerability window (SVW): Re-execution
filtering for enhanced load optimization. Proc. of the 32nd
Int’l Symposium on Computer Architecture, Jun. 2005.

[29] T. Sha, M. M. K. Martin, and A. Roth. NoSQ: Store-load
communications without a store queue. Proc. of the 39th Int’l
Symposium on Microarchitecture, Dec. 2006.

[30] M. Shao, A. Ailamaki, and B. Falsafi. DBmbench: Fast and
accurate database workload representation on modern mi-
croarchitecture. Proc. of the 15th IBM Center for Advanced
Studies Conference, Oct. 2005.

[31] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. Proc. of the 22nd Int’l Symposium on Computer
Architecture, Jun. 1995.

[32] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A
scalable approach to thread-level speculation. Proc. of the
27th Int’l Symposium on Computer Architecture, Jul. 2000.

[33] P. Stenstrom, M. Brorsson, and L. Sandberg. Adaptive cache
coherence protocol optimized for migratory sharing. Proc. of
the 20th Int’l Symposium on Computer Architecture, May
1993.

[34] S. Subramaniam and G. H. Loh. Fire-and-Forget: Load/store
scheduling with no store queue at all. Proc. of the 39th Int’l
Symposium on Microarchitecture, Dec. 2006.

[35] E. F. Torres, P. Ibanez, V. Vinals, and J. M. Llaberia. Store
buffer design in first-level multibanked data caches. Proc. of
the 32nd Int’l Symposium on Computer Architecture, Jun.
2005.

[36] C. von Praun, H. W. Cain, J.-D. Choi, and K. D. Ryu. Condi-
tional memory ordering. Proc. of the 33rd Int’l Symposium on
Computer Architecture, Jun. 2006.

[37] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. SimFlex: statistical sampling of
computer system simulation. IEEE Micro, 26(4):18–31, Jul-
Aug 2006.

[38] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe.
SMARTS: Accelerating microarchitecture simulation
through rigorous statistical sampling. Proc. of the 30th Int’l
Symposium on Computer Architecture, Jun. 2003.

