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ABSTRACT

A key challenge in architecting a CMP with many cores is main-
taining cache coherence in an efficient manner. Directory-based
protocols avoid the bandwidth overhead of snoop-based protocols,
and therefore scale to a large number of cores. Unfortunately,
conventional directory structures incur significant area overheads
in larger CMPs.

The Tagless Coherence Directory (TL) is a scalable coherence
solution that uses an implicit, conservative representation of shar-
ing information. Conceptually, TL consists of a grid of small
Bloom filters. The grid has one column per core and one row per
cache set. TL uses 48% less area, 57% less leakage power, and
44% less dynamic energy than a conventional coherence directory
for a 16-core CMP with 1MB private L2 caches. Simulations
of commercial and scientific workloads indicate that TL has no
statistically significant impact on performance, and incurs only
a 2.5% increase in bandwidth utilization. Analytical modelling
predicts that TL continues to scale well up to at least 1024 cores.

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles—cache memories,

shared memory
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1. INTRODUCTION
Chip-multiprocessors (CMPs) have become the defacto design

for high-performance processors. While current CMP models
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have up to eight cores, shrinking feature sizes may lead to CMPs
with tens or maybe even hundreds of cores. The shared memory
programming paradigm has become an entrenched component in
parallel application development that can exploit the performance
potential of these CMPs. To continue supporting this paradigm,
CMPs must maintain cache coherence across all of their cores.

CMPs with few cores can use snoop coherence protocols [19,21],
but these designs do not scale well as the number of cores increases.
Snoop protocols rely on broadcasts that result in overwhelming
bandwidth utilization for larger CMPs. Despite recent proposals to
reduce the snoop protocol bandwidth requirements [23,29], scaling
these protocols to larger systems still remains unlikely.

Directory protocol bandwidth utilization scales more graciously,
but directory protocols introduce large structures that consume
precious on-chip area and leakage power. Conventional directory
implementations either have large area overhead, or suffer poor
performance for some sharing patterns, or are simply impractical
for large CMPs. Of the two most common directory designs,
duplicate tag directories, such those used by Niagara 2 [2], be-
come impractical for larger CMPs due to their highly associative
lookups. Sparse directories, the other common directory design,
incur large area, bandwidth, or performance overheads [3, 10, 14,
25]. Additionally, sparse directories may restrict which blocks
can be cached simultaneously and thus suffer from premature
block evictions that can hurt performance, bandwidth, and power.
This work attempts to develop a scalable coherence directory that
has a minimal impact on performance and bandwidth utilization
compared to conventional designs while mitigating the area, power,
and complexity overheads.

This work revisits directory design starting from the basic
required functionality — in essence, maintaining coherence in a
CMP consists of performing set-membership tests on all private
caches. This work combines two well known observations: 1) as
sparse directory designs have demonstrated [3, 10, 14, 25], the
set-membership tests do not have to be precise – a conservative
estimate is sufficient for correctness, but an accurate test is desired
for performance; 2) Bloom filters are space-efficient structures for
performing set-membership tests [6] and have been applied to solve
countless problems across many domains [7, 24].

This work proposes the Tagless Coherence Directory (TL), a
novel, scalable directory structure based on Bloom filters. Con-
ceptually, TL is a grid of Bloom filters, with one column for each
CMP core, and one row for each cache set. Each Bloom filter tracks
the blocks of one cache set of one core. Given a block, accessing
the Bloom filters in the corresponding row in parallel produces a



sharing vector that represents a superset of all of the sharers of the
block. In practice, relatively small Bloom filters (e.g., 256 bits for
16 cores with 16-way cache sets) are sufficiently precise that the
average sharing vector is the true set of sharers. TL overcomes
the challenge of element removal in Bloom filters by dedicating a
Bloom filter to each cache set, allowing it to easily remove elements
from the represented set without the area overhead of counting
Bloom filters, a commonly used solution to this problem [13, 24].

Experimental results using commercial and scientific workloads
running on a 16-core CMP show that TL uses 44% less dynamic
energy per lookup, 57% less leakage power and 48% less area
than a conventional sparse directory with no statistically significant
performance loss, and incurs an average bandwidth increase of only
2.5%. Analytical models predict that TL will scale well for CMPs
with increasing numbers of cores.

The rest of this paper is organized as follows: Section 2
describes the motivation and challenges associated with directory
protocols for CMPs. Section 3 describes TL. Section 4 reviews
three conventional directory designs. Section 5 evaluates TL’s
effectiveness. Section 6 reviews related work, and Section 7
summarizes this work.

2. MOTIVATION
The cache coherence problem occurs any time multiple locations

have copies of the same data block. In a CMP, solving this problem
requires the ability to identify all of the cores that have cached
copies of a given block. Each cache contains a unique set of blocks,
and the coherence protocol, in essence, consists of performing set-
membership tests to find all copies of a given block.

Snoop coherence protocols make these set-membership tests
explicit by directly probing each cache. The resulting bandwidth
and energy demands, while reasonable for small CMPs, become
overwhelming with tens or hundreds of cores. Recent proposals
allow snooping to scale to slightly larger CMPs [4,8,12,23,24,29],
but their effectiveness has not been demonstrated for the very large
CMPs expected to result from increased feature-size shrinking.

Directory coherence protocols rely on a conceptually central
structure to track which cores share each block. This reduces band-
width requirements, but adds an area overhead for the structure, and
also increases the latency of requests that must now go through the
directory structure.

The first directory protocol was proposed over 30 years ago [33];
however, as CMPs replace traditional multiprocessors, they in-
troduce new challenges and opportunities for directory designs.
CMPs have limited area and power budgets. The less area and
power a directory uses, the more area and power available to
other components. Furthermore, on-chip integration in CMPs
provides fast on-chip caches, low latency interconnects, and the
possibility of implementing structures that would be less practical
with discrete components.

A CMP directory should solve the coherence problem by taking
advantage of the opportunities CMPs offer while addressing the
new challenges. The directory structure should require little
area and energy while providing low-latency lookups, and the
overall directory protocol should have low-latency requests and low
bandwidth utilization. The next section describes a new directory
design that attempts to meet these objectives.

3. TAGLESS COHERENCE DIRECTORY
The Tagless Coherence Directory (TL) provides a space-efficient

directory structure that is practical to implement and requires only
minor modifications to the coherence protocol. The remainder

of this section describes the conceptual directory structure (Sec-
tion 3.1), its usage (Section 3.2), a practical implementation for it
(Section 3.3), and an analytical model of its precision (Section 3.4).
Without loss of generality, the description uses an example CMP
with 16 cores, 48-bit physical addresses, and 1MB, 16-way set-
associative, private, inclusive L2 caches. While many CMPs
include large shared caches in addition to private caches, these
shared caches have the same problem of needing to maintain
coherence amongst the private caches. Using large private caches
and no shared cache emphasizes the performance and bandwidth
impact of the directory since requests for shared, read-only data
cannot be provided by the shared cache.

3.1 Conceptual Structure
Maintaining coherence consists of performing a set-membership

test on each cache to determine which ones have copies of a
given block. Bloom filters are a proven, space-efficient structure
that uses a conservative, implicit representation of set contents to
perform set-membership tests [6]. A coherence directory could
use a Bloom filter to represent the contents of each cache, as
shown in Figure 1(a). While their simple, space-efficient structure
makes Bloom filters seem well-suited for a low area, low power
CMP coherence directory, they also present two challenges: 1) the
conservative representation of set contents, and, 2) the difficulty of
removing items from the represented set.

Bloom filters provide an inherently conservative representation
of set contents. The filter’s structure is exemplified by the parti-

tioned Bloom filter shown in Figure 1(b) which uses a number of bit
vectors, each with its own hash function, to represent the members
of a set [24, 31].1 A given item maps to one bit in each bit vector.
Adding an item to the set requires setting the corresponding bits in
each bit vector. A set-membership test consists of evaluating each
hash function for the test item and performing a logical-AND of
the selected bits. A zero result indicates the item is definitely not

a member of the set. A one indicates the item may be a member
of the set, hence the representation is conservative. A false positive

occurs when a Bloom filter wrongly indicates the set may contain
an item. When using Bloom filters to represent cache contents,
false positives do not affect coherence protocol correctness, but
they can affect bandwidth utilization and performance.

Removing items from the set represented by a Bloom filter is
difficult; as items are removed from the set, a bit should only be
cleared when none of the remaining items map to that bit. A naïve
solution would check all remaining items to determine which bits
can be cleared. For a coherence directory, this amounts to searching
an entire cache each time it evicts a block. Counting Bloom filters
replace each bit in the filter with a counter [13, 24]. Adding an
item to the set increments the counters for each hash function, and
removing an item decrements them. This solution significantly
increases the size of the filter; even the pathological case of using
two-bit counters requires twice as many bits. These bits could be
better utilized to increase the size of the Bloom filter bit vectors,
thus improving their accuracy.

TL takes advantage of normal cache operation to avoid the
overheads of counting Bloom filters. Typical caches are set-
associative arrays where each access reads one set of the tag array.
If a Bloom filter only represents a single set of a single cache
(referred to hereafter as a cache-set), then on an eviction, the cache
can evaluate all the hash functions for each block in the set in
parallel and determine which filter bits can be cleared.

1A traditional, non-partitioned Bloom filter allows the hash
functions to share a bit vector and thus requires a multi-ported
structure.
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Figure 1: (a) A coherence directory using Bloom filters. (b) Implementation of a single Bloom filter. (c) TL concept.

Conceptually, as shown in Figure 1(c), TL consists of an N ×P

grid of Bloom filters. Each of the P columns of filters represents
one cache in the CMP, and each column contains N filters, one for
each set in the corresponding cache. On a directory lookup, TL
probes a row of P Bloom filters to produce a P -bit sharing vector

that indicates which caches might contain copies of the requested
block. Our example CMP would have a 1024 × 16 grid of Bloom
filters. The results of Section 5 show that each Bloom filter should
use four hash functions and 64 bits for each vector, resulting in
a total of 1024 × 16 × 4 × 64 = 4Mbits. For comparison, the
tag arrays for these private caches require a total of 16 caches ×

1024sets×16ways×32-bit tags = 8Mbits. Although conceptually,
the 4Mbits form 16K separate Bloom filters, Section 3.3 shows how
these filters can be implemented as a few SRAM arrays.

3.2 TL Operation
A TL lookup produces a sharing vector that indicates which

cores might share the requested block. Attempting to initiate a
cache-to-cache transfer might result in requesting data from a node
that does not have a valid copy, or there might not be any valid copy
on-chip. Additionally, a simple MOESI protocol does not track
ownership for clean blocks. The imprecise sharing vectors and lack
of ownership require some modifications to the coherence protocol.
Some existing directory designs, as described in Section 4.2, also
maintain potentially imprecise sharing information. The only
new scenario that TL must handle is the case when the directory
indicates a potential on-chip sharer when there are no valid copies
on-chip. As shown in the following sections, this scenario requires
little extra complexity, and, thus, TL should not require excessive
verification costs. The remainder of this section describes one
possible protocol implementation that is evaluated in Section 5.

3.2.1 Read Requests

When the directory receives a read request, there are two cases:

1. The sharing vector indicates no other cores share the block.
The directory forwards the request to memory.

2. The sharing vector indicates one or more caches might share
the requested block. The directory snoops each potential
sharer in turn until one of two things happens:

(a) A cache containing the block is found, in which case
the data is forwarded to the requester.

(b) All potential sharers have been snooped and none have
the block. The directory then forwards the request to
memory.

When the requester completes the read request, it sends a final
acknowledgement to the directory. At this time a conventional
directory would update it’s sharing information; in TL the directory
does this by adding the block in the set represented by the
appropriate Bloom filter. As described, TL uses a serial snooping

technique [30] to resolve read requests with minimal bandwidth at
the expense of potentially extra latency. The evaluation in Section 5
confirms that TL is sufficiently precise that serial snooping does
not impose any noticeable performance penalty. Alternatively,
a multicast approach could be used that would result in more
bandwidth on average, but potentially lower latency. A multicast
approach would either require tracking ownership for clean data,
or require all sharers to provide data when receiving the multicast,
or introduce additional latency to select a single node to supply
data.

3.2.2 Write Requests

Handling writes requires an extension of the underlying con-
ventional directory protocol because TL does not know the exact
set of sharers or whether there is a sharer in the Owner state.
Because clean data does not have an on-chip owner, the sharers
cannot decide independently who will provide data to the requester.
Similarly, the directory cannot guarantee that the node selected to
provide data actually has a copy of the data, or if there is even a
copy on-chip. Before examining the modified protocol, consider
how the conventional protocol handles writes:

1. A node, the writer, initiates a write by sending an appropriate
request to the directory.

2. If there are no cached copies, the directory asks memory to
provide the data directly to the writer and lets the writer know
of the request. Otherwise, the directory takes three actions in
parallel: a) it requests that all sharers invalidate their copies;
b) it asks one of the sharers, the provider,2 to send the data
to the writer prior to invalidating; and c) it notifies the writer
how many sharers there are.

2In our implementation, the directory chooses the lowest numbered
core that is a potential sharer as the provider, but other selection
algorithms could be used.



3. The writer waits until it receives acknowledgements from all
the sharers. One of these acknowledgements will contain
the data. Alternatively, the writer will receive the data from
memory.

4. The writer notifies the directory that the transaction is com-
plete.

TL operates identically except for when it selects, in step 2(b), a
provider that does not have the data. In practice, the probability of
the selected sharer not having a copy is very low; thus, the common
case for TL proceeds the same as the original protocol. In the less
common case, when the provider does not have a copy, it sends a
NAck to the writer instead of an acknowledgement. This leaves
three possible scenarios:

1. No copy exists: The writer will wait to receive all of
the acknowledgements and the NAck, and since it has not
received any data, it will send a request to the directory which
then asks memory to provide the data.3

2. A clean copy exists: For simplicity, this is handled iden-
tically to first case. All sharers invalidate their copies and
data is retrieved from memory instead. This may result in
a performance loss if it happens frequently, but Section 5
shows that no performance loss occurs in practice.

3. A dirty copy exists: One of the other sharers, the owner, will
be in the Modified or Owned state. The owner cannot discard
the dirty data since it does not know that the provider has a
copy. Accordingly, the owner always includes the data in its
acknowledgement to the writer. In this case, the writer will
receive the provider’s NAck and the owner’s valid data and
can thus complete its request. If the provider has a copy as
well, the writer will receive two identical copies of the data.
Section 5.5 demonstrates that this is rare enough that it does
not result in any significant increase in bandwidth utilization.

In all cases, all transactions are serialized through the directory,
so no additional race considerations are introduced. Similarly, the
underlying deadlock and livelock avoidance mechanisms remain
applicable.

3This request is serialized through the directory to avoid races with
evicts.

3.2.3 Evictions and Invalidates

When a block is evicted or invalidated TL tries to clear the
appropriate bits in the corresponding Bloom filter to maintain
accuracy. Each Bloom filter represents the blocks in a single set,
making it simple to determine which bits can be cleared. The cache
simply evaluates all the hash functions for all remaining blocks in
the set. This requires no extra tag array accesses as all tags are
already read as part of the normal cache operation. Any bit mapped
to by the evicted or invalidated block can be cleared if none of
the remaining blocks in the set map to the same bit. When using
an inclusive L2 cache, as in our example, it is sufficient to check
only the one L2 cache set. If the L2 cache is not inclusive, then
additional L1 accesses may be necessary.

3.3 A Practical Implementation
Conceptually, TL consists of an N × P grid of Bloom filters,

where N is the number of cache sets, and P is the number of
caches, as shown in Figure 1(c). Each Bloom filter contains k bit-
vectors. For clarity we will refer to the size of these bit vectors as
the number of buckets. In practice, these filters can be combined
into a few SRAM arrays provided that a few conditions are met: 1)
all the filters use the same set of k hash functions, and 2) an entire
row of P filters is accessed in parallel. These requirements do not
significantly affect the effectiveness of the Bloom filters.

Conceptually, each row contains P Bloom filters, each with
k hash functions. Figure 2(a) shows one such row. By always
accessing these filters in parallel using the same hash functions, the
filters can be combined to form a single lookup table, as shown in
Figure 2(b), where each row contains a P-bit sharing vector. As
a result, each lookup directly provides a P -bit sharing vector by
AND-ing k sharing vectors. Since every row of Bloom filters uses
the same hash functions, we can further combine the lookup tables
for all sets for each hash function, as shown in Figure 3(a).

These lookup tables can be thought of as a “sea of sharing
vectors” and can be organized into any structure with the following
conditions: 1) a unique set, hash function index, and block address
map to a single unique sharing vector; and 2) k sharing vectors can
be accessed in parallel, where k is the number of hash functions.
An example implementation uses a single-ported, two-dimensional
SRAM array for each hash function, where the set index selects
a row, and the hash function selects a sharing vector, as shown in
Figure 3(b).

As a practical example, Section 5 shows that a TL design with
four hash tables and 64 buckets in each filter performs well for
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Figure 2: (a) A naïve implementation with one filter per core. (b) Combining all of the filters for one row.
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Figure 3: (a) Per set and per hash function Bloom filter combining. (b) A practical implementation.

our 16-core CMP example. Each hash table in this design contains
1K sets × 64 buckets/set × 16 bits/bucket = 1M bits. The total
number of bits is: 4 hash functions × 1Mbit per table = 4Mbits.
Each of these tables can be banked, for example, by distributing
the sets. Assigning one bank per CMP core results in 16 banks
of 64 sets × 64 buckets/set × 16 bits/bucket = 64K bits. This
is equivalent to accessing a 16-bit word from an 8KB SRAM
array with 128-byte lines. The entire directory requires four such
accesses in parallel.

3.3.1 Network Overhead

In addition to potentially sending unnecessary snoop or invali-
date messages as a result of imprecise information in the directory,
there are some additional fixed network overheads. Both eviction
and invalidate acknowledgement messages contain a small bit
vector indicating which hash tables can clear bits in their sharing
vectors. For the configurations studied in Section 5, these are small
bit vectors (3-7 bits) and can piggyback within the original 64-
bit message. Invalidate acknowledgements are sent to the writer,
which collects the bit vectors and sends them to the directory with
the final write acknowledgement, adding one bit per core per hash
function. As a result, write acknowledgements increase from 64-
bits to 128-bits in our configurations.

3.3.2 Other Required Hardware

On an eviction or invalidation, the cache needs to search the
affected set for blocks that map to any of the sharing vectors
used by the evicted block. This requires evaluating all of the
directory hash functions for each block in the set, and comparing
the results with the hash values for the evicted block. When
simple hash functions are used, the necessary circuitry requires
only a small amount of additional area and energy compared to
the overhead of the directory itself. Additionally, since invalidate
acknowledgements are collected by the writer before being sent
to the directory, the size of each miss-status handling register
(MSHR) has to increase so that a writer can accumulate multiple
bit-vectors (up to P − 1 vectors in the worst case), as mentioned in
Section 3.3.1, to indicate which bits to clear in the directory.

3.4 Analytical Model
In TL, false positives in the sharing vectors can result in in-

creased bandwidth and reduced performance. An analytical model
can be useful in predicting TL’s behavior especially for larger
CMPs where simulation becomes prohibitively expensive. For
simplicity, we assume randomly distributed memory accesses and
pair-wise independent uniform hash functions. Following the
analysis of previous work [7], the probability of a Bloom filter
having a false positive is given by

P (false positive) =

„

1 −

„

1 −
1

b

«a«k

(1)

where b is the number of buckets for each hash function in the
filter, k is the number of different hash functions used, and a is the
associativity of the cache. Ignoring sharing, we can extend Broder
and Mitzenmacher’s analysis to an N -core CMP using a series of
N − 1 Bernoulli trials, one for each of the additional cores in the
CMP. As a result, the expected number of false positive bits (FPB)
in the sharing vectors becomes:

E[FPB] = (N − 1) P (false positive) (2)

= (N − 1)

„

1 −

„

1 −
1

b

«a«k

(3)

Section 5.2 validates this analytical model against simulation
results. Section 5.6 then uses it to demonstrate how TL is expected
to scale with increasing numbers of cores.

4. CONVENTIONAL DIRECTORIES
Conventional directories offer three potential solutions for CMP

directories: Duplicate tag directories require a small amount of
area and achieve good performance and bandwidth, but they are
impractical for CMPs with many cores. Sparse directories are more
practical, but because they restrict which blocks can be cached
simultaneously they either impose large area overheads, or sacrifice
performance and bandwidth. In-cache directories offer a practical
design with no block placement restrictions, but they have area,



bandwidth, and performance overheads similar to sparse directories
and can only be use with inclusive, shared caches.

4.1 Duplicate Tag Directories
A conceptually simple directory implementation replicates the

tag arrays of each private cache at a “central” location [33].
This design uses the smallest explicit representation of the cache
contents without constraining which blocks can be cached simul-
taneously. The Piranha prototype [5] and the Niagara 2 CMP [2]
both use such a duplicate tag directory (referred to hereafter as
DUP). However, for CMPs with many cores, DUP requires an
impractical, highly associative lookup. For our example CMP, DUP

has to compare 256 tags simultaneously.

4.2 Sparse Directories
Sparse directories with full-map vectors (referred to hereafter as

SPARSEFULL) use a set-associative directory structure where each
entry contains a block tag and a vector with one bit per core
identifying the cores caching the block [14, 25]. The associativity
of SPARSEFULL is much lower than the aggregate associativity
of the caches it tracks. As a result, allocating a new entry
can require evicting an existing entry and invalidating all cached
copies of that block. This restricts which blocks can be cached
simultaneously, potentially hurting performance, bandwidth and
power. To minimize the effect of these placement restrictions,
SPARSEFULL usually contains at least one entry for each cached
block. The area of SPARSEFULL grows as O(P 2) making it
impractical for large CMPs.

Coarse vectors [14], segment directories [10], the SGI Origin
directory [18], and limited pointer directories [3] use more compact
directory entry formats. Such designs (referred to hereafter col-
lectively as SPARSECOMP) can only accurately represent a limited
number of sharing patterns. When other sharing patterns occur,
the directory either restricts sharing and suffers a performance loss,
or maintains a conservative sharing representation and relies on a
broadcast or multicast protocol to attempt to maintain performance
at the cost of higher bandwidth utilization. SPARSECOMP designs
use less area, but still have placement restrictions and may hurt
performance and bandwidth.

TL provides imprecise sharing information similar to some
SPARSECOMP designs. However, TL embeds the sharing infor-
mation in Bloom filters and does not explicitly associate shar-
ing information with specific block addresses. Additionally, the
SPARSECOMP and TL differ significantly in the conditions that result
in increased bandwidth or performance degradations. Existing
SPARSECOMP designs perform poorly for specific sharing patterns.
Regardless of the block address, any block being shared by specific
combinations of nodes results in increased bandwidth. Typically,
this behavior is application dependant, making certain applications
always perform poorly with certain SPARSECOMP designs. TL, on
the other hand, only performs poorly for specific combinations of
block addresses in different nodes. More specifically, because there
are seperate filters for each cache set, only certain combinations of
physical page addresses cause TL to perform poorly. This makes
it very difficult to purposefully construct any application that will
degrade the performance of TL, and typical applications will only
have degraded performance for a small fraction of physical address
combinations. Ultimately, the likelihood of truly pathological
behavior with TL is vanishingly small, while any SPARSECOMP

design will always exhibit poor behavior for applications with
sharing patters that it cannot accurately represent.

4.3 In-Cache Directories

Censier and Feautrier proposed a coherence directory for
traditional multiprocessors that associated each memory
block with a bit-vector representing which nodes had cached
copies of that block [9]. CMPs with inclusive shared caches can
include such directory entries with each cache block to track which
cores share each block. This avoids the cost of accessing a seperate
directory structure, and avoids adding new restrictions on which
blocks can be cached simultaneously. However, this design does
not apply to CMPs without shared caches, or with non-inclusive
shared caches.

Also, since shared caches are typically many times larger than
the total capacity of the private caches, most of the directory
entries in an in-cache directory contain no information. Usually a
SPARSEFULL or SPARSECOMP design would be more space-efficient.
An in-cache directory is only more space-efficient when

entry bits >
tag bits

“

shared cache blocks

private cache blocks×number of cores
− 1

” (4)

For modern CMPs, such as the Intel Nehalem [1], this only
holds true when the directory entry is less than one seventh the
size of the tag. For a reasonably sized tag, SPARSEFULL is more
space-efficient than an in-cache directory with full bit-vectors
for CMPs with more than four or five cores. Some in-cache
directories with very small entries may be more space-efficient
than comparable SPARSECOMP designs, but such designs result in
increased bandwidth and potentially lowered performance. Since
SPARSEFULL and SPARSECOMP are generally more space-efficient,
the remainder of the paper focuses on these designs.

4.4 TL vs. Conventional Directories
TL is an alternative to the three conventional coherence directory

designs: DUP, SPARSEFULL, and SPARSECOMP. As mentioned,
DUP scales poorly due to its highly associative lookups for large
CMPs. SPARSEFULL scales poorly due to its large area overhead.
SPARSECOMP represents an entire family of possible designs, but
the performance and bandwidth of such designs varies depending
on specific application, and, secondary effects aside, these designs
offer, at best, the same performance as DUP and SPARSEFULL with
more bandwidth for some workloads. Also, both SPARSEFULL

and SPARSECOMP place restrictions on which blocks can be cached
simultaneously.

TL avoids the complexity of DUP by requiring only simple
direct-mapped SRAM lookups, and the implicit representation of
each cache set avoids the placement restrictions of SPARSEFULL

and SPARSECOMP. The next section shows that TL requires less
area than all three conventional designs, while achieving the same
performance as DUP and SPARSEFULL with only slightly more
bandwidth than SPARSEFULL.

5. EVALUATION
This section demonstrates the benefits of TL. Section 5.1 de-

scribes the evaluation methodology. Section 5.2 performs a design-
space exploration to determine hash table configurations that result
in few false positives. Based on these results, Section 5.3 selects
promising configurations and demonstrates that properly config-
ured TL designs offer performance comparable to conventional
directories. Section 5.4 shows that these designs provide significant
energy and area savings. Section 5.5 shows that these benefits come
at the cost of only a small increase in bandwidth utilization. Finally,
Section 5.6 demonstrates that TL scales well with increasing
numbers of cores.



5.1 Methodology
Simulations modeled a tiled, 16-core CMP with private, inclu-

sive L2 caches. The simulator is based on the full-system simulator
Flexus [16] which uses Virtutech Simics [20]. Each tile contains
a processor core with private L1 and L2 caches as described in
Table 1, as well as some portion of a distributed directory. The
directory banks are interleaved at 64-byte granularity, and directory
lookups have a 3-cycle latency for all designs as estimated by
CACTI assuming 4GHz processors (see Section 5.4). The L2
caches use a MOESI coherence protocol. The tiles are connected
using a mesh network with 64-bit links and using XY routing. Off-
chip memory is connected to four memory controllers which are
distributed around the edge of the mesh network. The network
latency is five cycles per hop [17, 26]. A number of commercial
and scientific workloads were simulated, as described in Table 2.
All simulated systems ran the Solaris 8 operating system.

To prune the design space, the initial results in Section 5.2
rely on functional simulations. These results depend mostly on
the set of memory addresses accessed by each core, and are
mostly independent of the order or timing of these accesses.
Functional simulations executed 500 million instructions per core.
Sections 5.3 and 5.5 use detailed timing simulations to evaluate the
most practical TL designs. Timing simulations use the SMARTS
sampling methodology [36]. Each sample measurement involves
100k cycles of detailed warming followed by 50k cycles of mea-
surement collection. Results are reported with errors with a 95%
confidence interval. Matched-pair sampling is used to measure
change in performance [11]. Performance is measured as the
aggregate number of user instructions committed each cycle [35].
Average results are shown per workload class (i.e., OLTP, DSS,
Web, and Scientific), and overall averages are taken across all
workload classes.

5.1.1 Baseline Designs

Two baselines represent conventional directory configurations:

1. The Duplicate Tag Directory (Section 4.1) baseline, or
DUP, requires a minimal amount of storage capacity without
any cache placement restrictions and is similar to the direc-
tory used in the Niagara 2 processor [2]. However, it requires
a 256-way tag comparison that makes it impractical.

2. The Sparse Directory (Section 4.2) baseline, or
SPARSEFULL, is a more practical directory implementation.
The baseline configuration has 16K sets, with 16 ways each,
and each entry is a 16-bit vector. Using a full bit vector
results in the best performance and lowest bandwidth, but
designs with smaller entries are also possible. Any sparse
directory design that uses a compressed directory entry
format (e.g., coarse vector, or limited pointer) is referred to
as SPARSECOMP or SPARSECOMP-n where n is the number
of bits in each directory entry.

Simulations use the same three cycle latency for all directories.
As Section 5.4 demonstrates, the DUP design will likely have a
higher latency than the other directory designs.

5.2 Hash Function Effectiveness
The key to TL’s good performance is eliminating collisions so

that the directory can identify the true set of sharers and not
simply a superset of sharers. The collision rate can be controlled
by varying the type and number of hash functions used, and by
varying the size of each hash table. The number of false positive

bits (FPB) per directory lookup, that is the number of cores that

Table 1: Processor core configuration

Branch Predictor Fetch Unit

8K GShare, 16K bi-modal, Up to 8 instr. per cycle
and 16K selector 32-entry Fetch Buffer

2K entry, 16-way BTB Scheduler

2 branches per cycle 256/64-entry ROB/LSQ

ISA & Pipeline Issue/Decode/Commit

UltraSPARC III ISA any 4 instr./cycle
4 GHz, 8-stage pipeline Main Memory

out-of-order execution 3GB, 240 cycles

L1D/L1I Private UL2

64KB, 64B blocks 1MB, 64B blocks
4-way set-associative 16-way set-associative

LRU replacement LRU replacement
1 cycle latency 2 cycle tag latency

14 cycle data latency

Table 2: Workload Descriptions

Online Transaction Processing (OLTP) — TPC-C

DB-A 100 warehouses (10GB), 16 clients
DB-B 100 warehouses (10GB), 64 clients

Decision Support (DSS)

TPC-H on a commercial database system

Qry 2 Join-dominated, 450 MB buffer pool
Qry 6 Scan-dominated, 450 MB buffer pool
Qry 17 Balanced scan-join, 450 MB buffer pool

Web Server (Web) — SPECweb99

Apache 2.0 16K connections, FastCGI, worker threading
Zeus 4.3 16K connections, FastCGI

Scientific —- SPLASH-2

EM3D 600K nodes, degree 2,
span 5, 15% remote

Ocean 1026 × 1026 grid, 9600 seconds
Sparse 4096 × 4096 matrix

the directory mistakenly reports as having a cached copy, was
measured to compare different designs. A lower FPB results in
better performance and bandwidth utilization.

The bars in Figure 4 show the average FPB for several TL config-
urations, and the dashed lines show the area of each design relative
to SPARSEFULL. Configurations are labeled as B−h1+. . .+hN,
where B is the number of buckets allocated to each hash table,
and h1+. . .+hN is a list of hash functions used (one per table).
The goal is not to determine the best possible hash function
combinations, but merely to see the trends for different numbers
of hash tables. For further clarity, the number of buckets per set
in each hash table is also indicated by the shading of the bars.
The solid line indicates the predictions of the analytical model of
Section 3.4.

There are three types of hash functions, each producing a bucket
index of m = log(bucket size) bits:

sN : The bucket index uses m bits from the tag starting at bit
position N .

xor: The tag is split in half and the two portions are xor’d and
the lower m bits form the bucket index.

prime: The number of buckets is reduced to the nearest, smaller
prime number. The bucket index is the tag modulo this
prime number.
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Figure 4: The average number of false positive bits in the sharing vector for different TL configurations as measured by simulation
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Figure 5: Performance of various configurations relative to DUP.

Of the three types of hash functions, sN has the lowest cost since
it directly uses part of the address. The xor hash function is slightly
slower, but requires relatively little extra logic. The prime hash
function should produce a distribution closer to random uniform
values, but it is slower and requires more logic.

The results of Figure 4 show that several three- and four-table
TL designs using sN or xor result in very low average FPB while
offering significant area savings compared to SPARSEFULL. Specif-
ically, 64-s0+s3+s6+xor and 128-s0+s5+xor result in area
savings of 48% and 35% respectively (as indicated by the dashed
line) while only having 0.1 and 0.025 false positive bits on average
(as indicated by the bars). Single-table designs perform similarly
irrespective of the hash function, and are inferior to two-table
designs with the same number of total entries (e.g., 128-prime
vs. 64-s0+xor). Comparing different designs with the same
number of total buckets divided into different numbers of hash
tables (e.g., 64-s0+s3+s6+xor and 128-s0+xor), the design
with more smaller tables performs better than the design with larger
tables.

Also in Figure 4, the solid line shows the expected FPB predicted
by the analytical model of Section 3.4. While the model assumes
randomly distributed accesses and independent hash functions, its
predictions are accurate. Thus, Section 5.6 uses it to argue that TL
scales well with increasing numbers of cores.

The remainder of the paper focuses on the five most
promising designs, namely 64-s0+xor, 64-s0+s5+xor,
64-s0+s3+s6+xor, 64-s0+s2+s4+s7+xor, and
128-s0+s5+xor. Also, the simpler naming convention of
TLn×B is used, where n is the number of hash functions, and B is

the number of buckets allocated to each cache set in each hash
table.

5.3 Performance Comparison
This section demonstrates that sufficiently precise TL designs

offer performance comparable to conventional directory designs.
Figure 5 shows the performance of SPARSEFULL (leftmost bar)
and of a number of TL configurations normalized to DUP. The
figure does not show performance for any SPARSECOMP design as,
secondary effects aside, any such design would perform at most as
well as SPARSEFULL.

SPARSEFULL suffers from no significant performance loss even
though it restricts which blocks can reside simultaneously in the
L2 caches and can introduce additional L2 cache misses compared
to the other designs. The first three TL configurations suffer
no statistically significant performance loss either. For TL4×64,
the worst individual workload is EM3D which sees a negligible
slowdown of 2.9% ± 1.3%. Based on these results, the rest of the
paper focuses on TL3×128 and TL4×64.

5.4 Delay/Area/Power/Energy Comparison
Having shown that TL offers similar performance to

DUP and SPARSEFULL, this section demonstrates that TL requires
less energy and area. CACTI 5.3 [34] was used to model a single
bank of DUP, SPARSEFULL, SPARSECOMP-8, TL4×64 and TL3×128, in
a 32nm technology. SPARSECOMP-8 uses just eight bits per vector
which severely restricts what sharing patterns it can represent.
This design illustrates that the TL designs are superior even to
aggressive SPARSECOMP designs. Table 3 shows in order from left



Table 3: CACTI estimates for various conventional and TL directories.

Configuration Delay (ns) Eread (pJ) Pleakage (mW) Area (mm2) KBits of Storage

TL4×64 0.24 9.64 26.63 0.0845 256
TL3×128 0.26 9.11 37.53 0.1068 384

SPARSEFULL 0.55 17.76 72.04 0.1634 704
w/o comparators – 17.21 61.45 – –

SPARSECOMP-8 0.55 13.60 61.01 0.1364 464
w/o comparators – 13.05 50.42 – –

DUP 0.85 127.90 2,785.75 0.3967 576
w/o comparators – 90.25 74.64 – –

to right: the configuration name, the access time, dynamic read
energy, leakage power, area, and number of Kbits of storage for
each design. The TL designs require 16 3- or 4-input NAND gates
for AND’ing sharing vectors and six or seven 2-input XOR gates
to calculate the xor hash function, but the area and energy of the
directory should be dominated by the sharing vector SRAM array.
By default CACTI uses comparators that have high leakage power,
but other, more energy efficient comparator implementations
exist. This is of particular concern for the highly-associative
DUP. Accordingly, Table 3 reports energy and power with and
without the comparators. For clarity, the discussion focuses on the
measurements without the comparators.

The two TL designs are first compared against each other, and
then the best is compared with the conventional directories. TL4×64

requires 20% less area and 29% less leakage power than TL3×128,
but uses 6% more dynamic energy per lookup. The higher dynamic
energy may result in higher average power consumption, but as
feature sizes continue to shrink, leakage power is becoming a more
dominant constraint, making the TL4×64 the better design overall.

Compared to the conventional designs, TL is significantly better.
While DUP has been promoted as a good option because it requires
fewer bits, the results from CACTI demonstrate that DUP is worse
than all other designs for all metrics. Although the CACTI
implementation of DUP may not be optimal, the differences with
TL are large and further optimizations are challenging due to its
high associativity. Relative to SPARSEFULL, TL4×64 uses 44%
less dynamic energy for reads, and consumes 48% less area and
57% less leakage power. Compared to SPARSECOMP-8, TL4×64

uses 26% less dynamic energy, 47% less leakage power, and 38%
less area. Although timing simulations were not performed for
SPARSECOMP-8, at best it will offer the same performance and
bandwidth as SPARSEFULL, and in practice it will likely be worse
than SPARSEFULL.

In terms of overall area, using TL4×64 reduces the area of
each CMP tile, including the core, L2 cache and directory
bank, by 0.33%, 0.17%, and 1.66% compared to SPARSEFULL,
SPARSECOMP-8, and DUP, respectively. These values are based on
CACTI’s estimate of a 1MB cache and the assumption that the
processor core (including L1 caches) is about 3.3 times larger than
the 1MB cache [28].

Finally, the delay of the TL designs is half that of SPARSEFULL

and SPARSECOMP-8, and less than a third of the delay of DUP.
This allows time for the extra logic necessary to compute the hash
functions and to perform the AND operation to form the final
sharing vector. Depending on the delay of this logic, the latency
of TL might be slightly lower than SPARSEFULL or SPARSECOMP-8,
resulting in a slight performance benefit.
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Figure 6: On-chip network utilization normalized to DUP.

5.5 Bandwidth Utilization
The on-chip interconnect consumes a significant amount of

power, thus it is important to ensure that the benefits of TL do
not come at the expense of any significant increase in bandwidth
utilization. Additional bandwidth results from transmitting ex-
tra data for some write transactions (Section 3.2.2), from false-
positives in the sharing vectors, and from increasing the size of
write acknowledgements from one to two flits (Section 3.3.1).
Figure 6 compares the on-chip network utilization for conventional
directory designs and TL designs normalized to the DUP baseline.
Network utilization is measured by counting the number of flits
that traverse each link every cycle. The sum of these traversals
is then normalized to the sum for DUP. In principle, ignoring
secondary effects (e.g., changes to cache replacement decisions
due to directory restrictions), DUP should require less on-chip
bandwidth than all other designs. In practice, SPARSEFULL uses up
to 5.6%±2.0% more bandwidth for Sparse , but up to 12%±6.6%
less bandwidth than DUP for Ocean. SPARSEFULL may invalidate
cached blocks to allocate new directory entries. When these
prematurely evicted blocks change subsequent cache replacement
decisions, the overall cache miss rate can be reduced, resulting in
the observed bandwidth reduction. In addition, prematurely evicted
blocks may require fewer link traversals to fetch from memory in
SPARSEFULL instead of another cache in DUP.

Both TL designs incur statistically insignificant amounts of
overhead compared to DUP, and both result in only about 2.5%
more bandwidth utilization than SPARSEFULL on average. The
only workload that results in any significant bandwidth increase
compared to either baseline is Sparse, which has an increase of
4.2%±2.5% for TL4×64 compared to DUP. However, as mentioned
previously, SPARSEFULL incurs an even higher overhead for Sparse.
Overall, none of these minor bandwidth variations result in any
significant change in performance.
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Figure 7: Expected number of false positive bits with increasing core counts.

5.6 Scalability
Using the analytical model of Section 3.4 this section

demonstrates that TL is expected to scale well with an increasing
number of cores. This section and Section 5.6.1 examine how the
expected FPB and area of TL scale, respectively for CMPs of up to
1024 cores.

The expected FPB in the sharing vector for TL grows as
shown earlier in Eq. 2. While this model ignores sharing, the
results of Section 5.2 validated the model for 16-core CMPs.
Maintaining a similar expected FPB should result in similarly
negligible performance and bandwidth overheads as demonstrated
in Sections 5.3 and 5.5. As the number of cores increases, the
expected FPB can be controlled by increasing either the number
of hash tables, the size of each hash table, or both.

Figure 7(a) shows how increasing the number of hash tables
affects the expected FPB for different sized CMPs. Each curve
represents a TL design with a different number of 64-bucket hash
tables. The solid line shows the average FPB with the TL4×64 for
a 16-core CMP. To achieve a similar or lower FPB, CMPs with up
to 64, 256 or 1024 cores require five, six, or seven hash functions
respectively.

Figure 7(b) performs a similar analysis this time keeping the
number of hash tables constant at four while the size of each hash
table increases from 64 to 512. The expected FPB is evaluated for
various CMPs, with the solid line indicating the average FPB of
TL4×64. The results show that 256 bucket hash tables should be
sufficient for CMP designs with up to 1024 cores.

5.6.1 Area

To illustrate how the area of TL scales better than that of
SPARSEFULL and SPARSECOMP, Figure 8 shows the storage require-
ments of each design as a percentage of the number of bits used in
the tag and data arrays of all L2 caches. The results demonstrate
that TL offers the most practical design for these CMPs. Figure 8
does not include DUP because the high associativity requirement
makes it an impractical design for large CMPs.

The solid black line in Figure 8 represents a SPARSEFULL that
always contains one entry per cache block. The poor scalability
shown makes SPARSEFULL impractical for large CMPs. Many
alternative SPARSECOMP designs have been proposed to improve
upon the poor scalability of SPARSEFULL. Since there are an
unlimited number of possible SPARSECOMP designs, Figure 8 shows
three designs as dashed lines: SPARSECOMP-n/4 contains one bit
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for every four cores, representing a coarse-vector, or SGI Origin
style design, SPARSECOMP- log(n)+1 contains a single core pointer
per directory entry, and SPARSECOMP-1 contains only a single bit
per entry. The first design represents a realistic SPARSECOMP

design that scales similarly to SPARSEFULL and results in moderate
bandwidth increases. The other two designs are extremely restric-
tive and would result in large increases in bandwidth utilization
and likely a significant performance loss. SPARSECOMP-1 is an
unrealistic, impractical design, and SPARSECOMP- log(n)+1 would
only be realistic for workloads that have no sharing. More realistic
SPARSECOMP designs with better bandwidth or performance would
necessarily have larger area.

Despite the very aggressive, low area nature of the last two
SPARSECOMP designs, the solid grey line in Figure 8 shows that TL
offers better scalability. Based on the observation in Section 5.2
that more, smaller tables are generally better than fewer, larger
tables, the TL designs shown have been chosen based on the results



in Figure 7(a). Each design uses 64-bucket hash tables, and the
number of tables increases from four to seven as the number of
cores increases from 16 to 1024. These designs always require
less area than SPARSECOMP-n/4 and SPARSECOMP- log(n)+1, and up
to 256 cores, they require less area than SPARSECOMP-1. Based
on the predictions of the analytical model, combined with the
simulation results for the 16-core CMP, the TL designs should
have negligible impact on performance and bandwidth. On the
other hand, SPARSECOMP- log(n)+1 and SPARSECOMP-1 will result in
significant bandwidth increases for almost any workload.

6. RELATED WORK
The most common techniques for implementing coherence di-

rectories were discussed in Section 4. This section discusses some
additional possible CMP directory designs, as well as works that
use concepts similar to TL.

Two-level directory structures have been proposed that use a
small first level directory for most accesses and rely on a larger
second level directory when necessary [25]. Placing the first level
on-chip and leaving the second level of the directory off-chip in
main memory may provide a viable solution for a CMP directory.
Similarly, it has been suggested that an on-chip directory cache

can be used in conjunction with an in-memory directory [22].
While such a solution eliminates the cache placement restrictions
of SPARSEFULL, it requires significant off-chip memory and the
long latency of requests that miss in the on-chip directory can hurt
performance.

The Scalable Coherent Interface (SCI) stores directory infor-
mation as a series of doubly-linked lists within the caches [15].
The head of each sharer list is stored in main memory, making
this impractical for a CMP directory. While the head pointers
could be stored on-chip, this would require area comparable to the
SPARSECOMP- log(n)+1 design, and Section 5.6 demonstrated that
the size of TL scales better than this design. SCI may require
less bandwidth than SPARSECOMP- log(n)+1), but the latency of
traversing the sharer list might result in worse performance.

Simoni proposed the idea of Directory Entry Combining that
used a large direct-mapped directory with no tags [32]. Blocks
that mapped to the same directory entry shared the entry the
same as TL shares sharing vectors. TL differs significantly from
Simoni’s design. TL provides a mechanism for removing sharing
information for evicted blocks, and it incorporates multiple tables
with different hash functions. TL provides improved accuracy at a
lower area, resulting in a more area-efficient design that achieves
higher performance.

Raghavan et al. recently proposed the PATCH protocol with
combines a directory coherence protocol with token counting to
improve performance [27]. Because TL does not explicitly track
individual cache blocks, it might be difficult to apply such a
performance optimization to TL. For larger CMPs, PATCH can
be used to reduce the bandwidth overhead of SPARSECOMP designs
without significantly reducing performance. However, as shown
in Section 5.6, TL should require less area with little expected
performance or bandwidth penalty.

JETTY reduces the need to probe caches in snoop coherence
protocols using counting Bloom filters to represent the set of
all blocks cached in a local cache [24]. RegionScout grouped
addresses into coarse-grain regions tracked by counting Bloom
filters [23]. TL uses similar filters, but by partitioning these filters
per cache set, it avoids the need for counters and utilizes area and
power more efficiently to achieve higher precision.

7. CONCLUSION
Directory protocols can maintain cache coherence without the

bandwidth overhead of snoop protocols, especially as the number
of cores increases in a CMP. While directory protocols offer more
scalable bandwidth utilization than snoop protocols, conventional
directory designs either have large area overhead, suffer poor
performance for some sharing patterns, or are simply impractical
for large CMPs.

This paper presents a new Tagless Coherence Directory structure
that uses an implicit, conservative representation of the blocks
stored by each cache. The new directory uses a grid of small
Bloom filters, one for each set in each private cache in the CMP.
This organization preserves the effectiveness and space-efficiency
of Bloom filters, and it avoids the well understood problem of
removing elements from the set represented by conventional Bloom
filters. By efficiently removing the sharing information when
a block is evicted from the cache, on average, the superset of
sharers maintained per block includes very few, or no, non-sharers,
resulting in a negligible impact on performance and bandwidth
utilization. The resulting implementation requires only minor
extensions to an underlying conventional coherence protocol. In
addition, the bulk of the implementation uses SRAM arrays while
imposing very few restrictions on how these are partitioned and
organized.

As a result, the new directory structure uses 48% less area,
57% less leakage power, and 44% less dynamic energy than
a conventional directory for a 16-core CMP with 1MB private
L2 caches. Simulations of commercial and scientific workloads
indicate that this design results in no statistically significant change
in performance, and only a 2.5% increase in bandwidth utilization.
In addition, an analytical model predicts that this design continues
to scale well for CMPs even up to 1024 cores. Moving forward,
future work can leverage TL to improve performance by reducing
the need for indirections through the directory for cache-to-cache
transfers.

TL finally provides a practical, scalable directory implementa-
tion for future CMPs. In the debate between snoop-based and
directory-based coherence protocols, snoop-based protocols have
benefited from the lack of a truly scalable CMP directory option.
TL provides a new champion for the side of directory-coherence
protocols and allows for a proper and fair debate.
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