14 Gb/s AC Coupled Receiver in 90 nm CMOS

Masum Hossain & Tony Chan Carusone University of Toronto masum@eecg.utoronto.ca

OUTLINE

Chip-to-Chip link overview

AC interconnects

- Link modelling
- ISI & sensitivity

AC Receiver architecture

- Implementation in 0.18 um CMOS
- Measured results

Speed and sensitivity improvement techniques

- Implementation in 90nm CMOS
- Measured results

Conclusion

Goals : • Achieve high speed

- Small area : small coupling capacitor
- High sensitivity
- Achieve good FOM mW/Gb/s

AC Coupled Link Overview

3. DC offset immune

AC Coupled Link Overview

Our goal is to increase both sensitivity and speed using standard CMOS process

AC Coupled Link Modeling

Coupling capacitor 1 area 1 ISI 1 sensitivity requirement Coupling capacitor 1 area I ISI 1 sensitivity requirement 1

Rx Architecture

Non-linear Clock less Rx

Hysteresis – Regenerates data from the transitions

Hysteresis Architecture

- Hysteresis Condition : g_mR_L > 1
- Unstable points : M,N (large gain g_mR_L)
- Bi-Stable points : A,B (non-linear gain)

Hysteresis Analysis

11

Hysteresis Analysis

12

Hysteresis Analysis

13

Hysteresis Architecture

Hysteresis Design Consideration

Improved Hysteresis Architecture

- Condition for hysteresis : $(g_{m2}R_{L2})(g_{m3}R_{L1}) > 1$
- g_{m2} buffers node V_{HYST} from capacitive loading
- R_{L2} , R_{L3} distributes the output capacitance

10+ Gb/s Hysteresis Design

- Hysteresis condition: $(g_{m2}R_L)(g_{m3}R_{OUT}) = 1.3347 > 1$
- Sensitivity & Logic levels: $|V_{th}| = 40mV$; $2|V_0| = \frac{2g_{m-in}}{g_{m2}}|V_{th}| = 76mV$
- **Rise time:** $\tau_{HYST} = R_L C_{Tot} = 18 ps$
- Power Consumption: (1.8 X10) < 20 mW

Implementation & Measurement

- Active area 200 um X 300 um
- Only single ended testing was possible
- Measured swing will be 25% of actual swing

10 Gb/s Measured eye

10 Gb/s Measured sequence

Error free operation verified with 127 bit pattern

14 Gb/s Measured eye

Rx eye

Recovered eye

Performance Summary

- Process 0.18 um CMOS
- Bit rate 10+ Gb/s
- Output Eye amplitude 80 mVp-p differential
- Coupling capacitor of 150 fF
- Power consumption 20 mW

90-nm Implementation

Coupling C = 80fF : improve sensitivity
Eye Amplitude > 250 mV : increase output swing
Bit Rate = 15 Gb/s : improve speed

Improving sensitivity

5x Improvement in sensitivity !!

Bandwidth of the Pre-amp

How can we improve Jitter and ISI ??

Speed Improvement

- Improve speed by using available data transitions
 - How to match the latency ?
 - Can we have sufficient BW ?

Speed Improvement

Speed Improvement

300 um

- Active area 100 um X 300 m
- Total power 32 mW

10 Gb/s Measured eye

Slope path was turned off at 10 Gb/s

14 Gb/s Measured eye

Slope Path OFF

Slope Path ON

Vertical scale : 25 mV/div Horizontal scale : 50 ps/div

Vertical scale : 50 mV/div Horizontal scale : 50 ps/div

14 Gb/s Measured BER Bathtub

14 Gb/s recovered eye with Hysteresis only

14 Gb/s recovered eye with Hysteresis + Slope-path

Conclusion

- 10+ Gb/s hysteresis circuit topology is implemented and tested in 0.18-um CMOS process (FOM 2 mW/Gb/s)
- High speed AC coupled receiver architecture is introduced:
 1. Additional slope path reduces ISI at hysteresis output
 2. Additional slope path reduces jitter
- 14 Gb/s AC coupled receiver is implemented and tested in 90-nm CMOS
 - FOM 1.80 mW/Gb/s @ 10 Gb/s
 - FOM 2.28 mW/Gb/s @ 14 Gb/s