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Abstract—A half-rate decision feedback equalizer (DFE) with
two infinite impulse response (IIR) filters and one discrete-time
tap is presented. The two IIR filters have different time constants
to cancel the long tail of the pulse response. The discrete-tap
cancels the first post-cursor inter-symbol interference term. The
system can operate with a low transmit swing of 150mVpp-diff
and 24 dB channel loss at the Nyquist frequency while consuming
4.1mW at 10 Gb/s. The receiver, including the DFE, clock buffers
and clock phase adjustment, occupies an area of 8,760 µm2 and
was fabricated in an ST 28nm LP CMOS process.

I. INTRODUCTION

Chip-to-chip links over lossy PCB substrates (∼1m in
length at 10Gb/s), die-to-die links over silicon interposers (up
to a few centimeters in length at 10+Gb/s), or coaxial cable
links (whose maximum length depends upon the cable cross-
section) have between 20-30dB loss at one-half the bitrate,
often without any major channel discontinuities. Hence the
primary impairments to signal integrity are noise, crosstalk
and a long smooth tail in the pulse response resulting in
inter-symbol interference (ISI) spanning more than 10 UI. A
passive equalizer followed by a gain stage (e.g. [1]) can be used
to cancel the long tail of the pulse response. Alternatively, a
continuous time active linear equalizer may be used [1]. How-
ever, significant extra power is consumed and high frequency
noise is amplified relative to the received signal amplitude. A
transmit swing of several hundred mV can overcome the noise
enhancement, but also increases crosstalk. Another approach
to cancel the numerous post-cursor ISI terms of the channel is
a decision feedback equalizer (DFE). A traditional DFE will
allow the post-cursor ISI to be removed without enhancing
noise or crosstalk but can consume a large amount of power
for channels with a large number post-cursor ISI. Recent work
has shown that infinite impulse response (IIR) DFE taps can
efficiently cancel many post-cursor ISI terms [2], [3]. For
example, [2] demonstrated 1 IIR + 1 discrete-tap DFE as
shown in Fig. 1A. Here, we extend that DFE architecture to
comprise of 2 IIR + 1 discrete-time taps, Fig. 1B, affording
more flexibility to match the channel’s pulse response while
maintaining a low power consumption of 0.41mW/Gb/s.

The remainder of the paper is organized as follows. Section
II discusses the DFE architecture chosen to compensate for a
channel with a long pulse response while keeping the power
consumption low. Section III shows the circuit implementation
details followed by measurement results in section IV. Finally,
section V concludes the paper.

II. DFE ARCHITECTURE

The benefit of an IIR DFE is that a single tap can
cancel many UI of ISI. However, whereas a discrete-time DFE
remains effective as long as the loop delay is less than 1 UI
(Fig. 2A), the performance of an IIR-DFE varies with loop
delay, degrading significantly even for loop delays less than 1
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Fig. 1. Receiver equalizer architecture comparison: (A) Integrating latch with
1-IIR and 1 discrete-tap [2]. (B) 2-IIR and 1 discrete-tap [this work].

UI. Post layout simulations in a 28nm LP CMOS technology
show that a 10% decrease in VDD results in a ∼0.2UI increase
in latch clock-to-output delay at 10Gb/s shown in Fig. 2F
(delays are normalized to a VDD of 1V at the typical (TT)
corner). Process variation will also affect the latch-delay and
can cause significant increases. The increase in latch-delay
reduces the eye opening anywhere from 0.1UI to 0.3UI in
an IIR DFE system with no discrete-tap (Fig. 2B). However,
combining one discrete-time DFE tap with the IIR-DFE makes
it much more robust to delay variations (Fig. 2C) [2], [3].
Although the sensitivity to delay variations is addressed in [2]
with the discrete-tap, since only one IIR filter is used there
is limited freedom to shape the DFE response. Moreover, the
windowed integration attenuates the signal by 3.92 dB at a
frequency of one-half the bitrate creating more loss that needs
to be equalized.

Using 2-IIR DFE taps provides a significant improvement
over 1 IIR filter [4] as seen in Fig 2B vs. Fig. 2D. In [5] 2-IIR
DFE taps are implemented with two separate feedback paths
to minimize feedback loop delay. The additional feedback path
necessitates a second 2:1 mux operating at the full data rate
and consuming extra power. Even so, because there is no
discrete-time tap in that work, the architecture’s performance
remains sensitive to latch clock-to-output delay which is in
turn sensitive to VDD and process variations (Fig 2F).

This work is the first to combine the benefits of 2 IIR-DFE
taps plus one discrete-time DFE tap as shown in Fig 1B. The
two IIR DFE taps cancel the long tail of the channel pulse
response better than one tap can and the discrete-time DFE
tap makes its performance insensitive to latch timing delays
(Fig. 2E). Moreover, unlike past work, the proposed design is
implemented in a low-power (LP) process suitable for devices
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Fig. 2. (A) - (E) Simulated Bathtub curves with various latch-delays for
different DFE architectures for a 32” backplane channel. (F) Post-layout
simulations of latch-delay increase as a function of reduction in VDD .

requiring low standby power, but where in general it can be
difficult to realize the high gain-bandwidth product required
for analog equalization.

III. PROPOSED RECEIVER

Fig. 3 is a block diagram of the proposed half-rate re-
ceiver. The front-end comprises of a passive equalizer and
preamplifier. The passive linear equalizer can be disabled to
compare different methods of equalization. Dynamic logic is
used throughout. Unlike [2], a current integrating latch is not
used, eliminating its inherent 3.92dB loss at the Nyquist rate.
The 1 discrete-time plus 2 IIR DFE taps all feed directly into
additional latch inputs. A single 2:1 mux, shown in Fig. 4
and followed by cross-coupled buffers, is used to drive both
IIR filters. By contrast, [5] used two 2:1 muxes to minimize
the loop delay for the fast IIR filter, and allow more settling
time for the second IIR filter. In this work, the architecture
includes a discrete-time tap making the performance relatively
insensitive to small variations in loop delay and obviating the
need for the additional mux.

A. Data re-muxing & IIR Filters

The implementation of the 2:1 differential mux is shown
in Fig. 4. Two single-ended 2:1 muxes choose between each
of the even and odd inputs and are followed by cross-coupled
buffers. The clock is placed closer to the output of the mux
to have a shorter delay to the output with respect to the data.
Since the clock is aligned to sample the data in the middle of
the eye opening, the data has been stable for some time and
minimizing the delay from the clock to the output creates a
faster mux.

The IIR filter time constants can be adjusted to fit the DFE
response to that of the channel as shown in Fig 5. The two
IIR filters have time constants an order of magnitude apart;
hence, one is intended primarily to cancel the first 6 UI of
post-cursor ISI while the other is primarily intended to cancel
ISI that persists for more than 6 UI beyond the main cursor.
The higher bandwidth filter, IIR1, can be adjusted between
200MHz to 3.2GHz while the lower bandwidth filter, IIR2,
can be adjusted between 20MHz to 320MHz. Fig. 5A shows
the IIR filter with a faster time constant (IIR1), which can be
adjusted with 3 binary-weighted switched capacitors as well
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as a varactor. Since the DFE performance is more sensitive
to the first few large post-cursor ISI contributors, having the
varactor allows for finer tuning of the time constant to better
match the pulse response. The tuning range of the varactor was
designed to be larger than the LSB capacitor value to allow
for tuning to any time constant within the range 200MHz to
3.2GHz. The filter IIR2, shown in Fig. 5B, has a 4-bit binary-
weighted switched capacitor bank for tuning its time constant,
but no varactor since the accuracy of this time constant is
not as critical. The time constant of the IIR2 filter only needs
to roughly match the long tail of the response to cancel the
remaining post-cursor ISI.

B. Input Stage

Fig. 6 shows the CMOS inverter with resistive feedback
used as a pre-amp. At the input, C1 and R1 provide attenuation
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at low-frequencies creating a relative boost at high-frequencies.
The boost can be turned off by activating the transmission gate
which shorts out C1 and R1. The input resistance to the pre-
amp is designed to be more than 10X larger than the required
50 ohm termination resistance to minimize its impact on the
matching network. The input common-mode is also set by the
pre-amp assuming the incoming data is AC coupled.

C. Summing and Latches

Fig. 7 shows a double-tail latch implementation [6] with
additional differential inputs subtracting the DFE feedback
signals [5]. Three binary-weighted transistor pairs sized 1X,
2X and 4X relative to the input pair can be selectively enabled
to set the tap gains. In this work, the gain adjusting transistors
are placed closer to the output to reduce the coupling from the
fed-back data in the DFE (DODDp, DODDn, IIRp, IIRn,
etc.) to the latch summing node. There are three subtraction
paths, one for the lone discrete-tap and one for each of the
2 IIR filter outputs. A pair of transistors are introduced in
parallel with the input pair to allow for offset compensation
in the latch by adjusting Voffp & Voffn as shown in Fig. 7.
The offset compensation transistor sizes were determined by
post-layout monte-carlo simulations and were set to ensure the
DC offset can be compensated well beyond 3σ.

IV. MEASUREMENT RESULTS

The chip die photo along with an area breakdown is shown
in Fig. 8. The measured channel attenuations are shown in Fig.
9 A, B for a 6 meter coax channel and a 34” backplane channel,
respectively. The plots also contain the simulated losses of the
characterization PCB and the QFN package which are ∼2.5dB
at 5GHz.

Fig. 10 shows an eye diagram at the output of the chip and
Fig. 11 C, F show measured eye diagrams at the output of the
channel at two different amplitudes. With the passive equalizer
disabled, the DFE can successfully equalize a signal launched
with a swing of only 150mVpp differential (mVpp-diff) and
transmitted over a backplane channel with 24 dB attenuation,
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Package.

or a 19 dB-loss coax cable driven single-endedly with only
75mVpp swing.

Fig. 11A, B show measured bathtub curves for the system
employing only the passive equalizer for various transmit
swing amplitudes and the two channels. Fig. 11D, E show
the bathtub curve for the system with the passive equalizer
disabled and only the DFE enabled at a transmit swing of
75mVpp (single-ended), and 150mVpp-diff (shown in Fig.
11F), respectively. For the backplane channel, to obtain similar
horizontal eye openings, the passive equalizer requires an
input swing which is 8X higher than using the DFE (1.2Vpp-
diff shown in Fig. 11C). The larger swing is required to
compensate for the low frequency attenuation of the signal
used to relatively boost high frequencies. A continuous-time
linear equalizer (CTLE) with gain could have been used to
provide similar input sensitivity [7], but the additional power
consumption of a CTLE is expected to be approximately 0.27
mW/Gbps [7]. In comparison, the power overhead for the
proposed DFE is only that of the 2:1 CMOS mux and the extra
dynamic power of the differential pairs performing subtraction
in the DFE, both totaling only 0.074 mW/Gbps based upon
post-extraction simulations. Furthermore, a CTLE amplifies
crosstalk and high frequency noise whereas the proposed DFE-
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Fig. 10. Full-Rate retimed output from the chip.
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Fig. 12. Power breakdown and comparison to previous work

based receiver does not. The improved receiver sensitivity here
can be translated into a minimum of 11mW (1.1mW/Gbps)
power savings at the transmitter assuming a 150mVpp-diff
driver instead of 700mVpp-diff over a doubly-terminated 50-
Ohm-per-side link.

Fig. 12 shows a power breakdown of the receiver along
with a table of comparison to previous work. The DFE power
consumption consists of only dynamic power and as a result
scales with frequency. Among the compared receivers, this
work occupies the least area and can offer the lowest overall
link power consumption owing to the greatly reduced transmit
swing requirement.

V. CONCLUSION

Behavioural simulations showed that the large impact of
feedback loop delay in IIR-based DFEs has a tremendous
impact on the receiver performance, but a discrete-time tap

was shown to make the architecture robust. An all dynamic
power DFE with two IIR taps and one discrete-time tap was
developed in a 28nm-LP process. It consumes 4.1 mW at
10Gb/s. The design has a lower input swing requirement and
smaller circuit area than all previous designs as well as a lower
area. The DFE was able to compensate 24dB of loss with a
transmit swing of only 150mVpp-diff which is 8X lower than
the swing required for a passive equalizer.
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