A 40 Gb/s Transversal Filter in 0.18 μm CMOS Using Distributed Amplifiers

Jonathan Sewter & Tony Chan Carusone
University of Toronto

September 20, 2005
Outline

• Background on lumped-LC traveling wave filters
• “Folded-Cascade” traveling wave filter topology
• Prototype design in 0.18-μm CMOS
• Measurements
• Conclusions
Equalization

- Applications include chip-to-chip communication and optical fibre communication
- This work focuses on the programmable filter required for linear equalization in a receiver
Passive implementation of the delays:

- Low power
- Linear

High area
Lossy
Passive Delays

Transmission lines

- Several mm needed to achieve the required delays
 - Large area

Lumped-LC

- Forms a lowpass network
 - Limited bandwidth
3-Tap Traveling Wave Filter

Tap spacing: $\tau = 2\sqrt{LC}$

Delay Line Bandwidth: $f_{3\text{dB}} = \frac{1}{\pi \sqrt{LC}} = \frac{2}{\pi \tau}$
3-Tap Crossover TWF

Tap spacing: $\tau = 2\sqrt{LC}$

Delay Line Bandwidth: $f_{3dB} = \frac{2}{\pi\sqrt{LC}} = \frac{4}{\pi\tau}$
LC-delay line bandwidth

- The 6-section delay line has twice the bandwidth of the 3-section delay line for the same total delay
3-Tap Crossover TWF

- **Problem:** The crossover routing could introduce skew and crosstalk between paths that must be matched.
Folded-Cascade TWF

- **Solution**: Alleviate crossover routing by introducing an intermediate “folded” transmission line
Folded-Cascade TWF

- Each path through this network goes through 5 delay sections and 2 amplifiers
- Each path has a gain of a^2 (assuming lossless delay elements)
- There are 9 such paths
 - Total gain through this tap is $9a^2$
Folded-Cascade TWF

- **Alternate interpretation:** This is a cascade of 2 distributed amplifiers
- Each has a gain of $3a$ (assuming lossless delay elements)
 - Total gain is $9a^2$
3-Tap Folded-Cascade TWF

- Example: 3-tap FIR filter
3-Tap Folded-Cascade TWF

- 0.18 μm CMOS ($f_T = 45$ GHz)
- 3-tap filter
- Fully differential
- Analog control of tap weights
- 70 mW from a 1.8 V supply
Passive Delay Line

- Differential spiral inductor, \(L/3 \approx 210 \text{ pH} \) (per side)
- Capacitance, \(C/3 \approx 80 \text{ fF} \) (per side), consisting of device and routing parasitic capacitances
 - Nominal tap spacing of 25 ps
 - Differential characteristic impedance, \(Z_0 \approx 100 \text{ Ohms} \)
 - Terminated by two 50-Ohm resistors to \(V_{DD} \)
Input Delay Line

- The input delay line had to be compatible with single-ended testing
 - Two single-ended delay lines; no coupled spirals

26 µm
Tap amplifiers

- Each tap amplifier is a simple differential pair.
- The tail currents (hence, tap gains) are controlled by 3 external analog control voltages.
On-wafer Test Setup

Note: 6 dB loss introduced due to single-ended testing
Input and Output Matching

![Graph showing simulated and measured S11 and S22 magnitudes](image)
Tap Frequency Response

- Single ended measurements made with a 2-port network analyzer
- Differential measurements would be +6 dB greater
The slope of the phase response corresponds to a tap spacing of approx. 25 ps.
10 GHz Sinusoidal Response

Delay per tap is approximately 25 ps = 1 UI at 40 Gb/s

Note: Polarity of tap 2 is always reversed with respect to taps 1 and 3
Linearity Measurements

• Example:
 – 2 GHz input sinusoid
 – Tap 1 only turned on with maximum gain
 – Single-ended testing

• Input 1 dB compression: 0 dBm

• IIP_3: 15.8 dBm

• THD at 0 dBm input: -31.1 dB
Linearity Measurements: Summary

All measurements at 2 GHz input frequency:

<table>
<thead>
<tr>
<th></th>
<th>Tap 1</th>
<th>Tap 2</th>
<th>Tap 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1 dB Compression</td>
<td>0.0 dBm</td>
<td>1.5 dBm</td>
<td>2.5 dBm</td>
</tr>
<tr>
<td>IIP$_3$</td>
<td>15.8 dBm</td>
<td>17.0 dBm</td>
<td>18.3 dBm</td>
</tr>
<tr>
<td>THD at 0 dBm input power</td>
<td>-31.1 dB</td>
<td>-30.5 dB</td>
<td>-34.9 dB</td>
</tr>
</tbody>
</table>
10 Gb/s Measurements

- Equalization over 5 meters of coaxial cable (8 dB loss at 5 GHz)
39.5 Gb/s Measurements:
Channel response
39.5 Gb/s Measurements:
Input Eye Diagram
39.5 Gb/s Measurements: Output Eye Diagram
Conclusions

• A folded-cascade traveling wave filter topology was introduced to increase the bandwidth of traditional traveling wave filters that use lumped-LC delay lines

• The passive LC-sections required to provide delay in the FIR filter are also used as part of distributed amplifiers

• The topology was demonstrated in a 3-tap 0.18 μm CMOS filter capable of equalization up to 40 Gb/s (the fastest known CMOS FIR filter to date)
Acknowledgements

• Test support:
 – Adesh Garg
 – Nortel Institute for Telecommunications

• CAD tools and fabrication services:
 – Canadian Microelectronics Corporation

• Funding:
 – NSERC
 – Micronet
 – Intel Corp.
 – Gennum Corp.