A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology

> Shahriar Shahramian Sorin P. Voinigescu Anthony Chan Carusone

Department of Electrical & Computer Eng. University of Toronto Canada

Introduction & Motivation I

- Equalization required at high bit rates
- Analog equalization up to 40 Gb/s
- Digital equalization is more robust and flexible

Require full rate Track & Hold Amplifiers

Introduction & Motivation II

Demonstrated 40-GS/sec THA in SiGe BiCMOS

 – f_T and f_{MAX} of 160 GHz

- CMOS technologies scaling to nanometre f_T and f_{MAX} exceed 200 GHz for in production CMOS
- CMOS is a serious contender for implementing DSP based equalizers above 10 Gb/s

Introduction & Motivation III

Diode Sampling Bridge

Switched Emitter Follower

- High speed
- Low dynamic range
- Requires diodes

- High speed
- Lower supply
- Isolation in hold mode

Introduction & Motivation IV

Series CMOS Sampler

I. H. Wang, et. al. Electronic Letters 06

- Low supply
- Low speed due to series CMOS R_{ON}

Switched Source Follower

 Take advantage of high speed CMOS source follower

0.13-µm CMOS Technology

- Simulated f_T and f_{MAX} of 80 GHz
- 8 layer metallization back end with thick RF top metal layers
- Available triple-well CMOS transistors
- Available low power (high V_{TH}) transistors

Simulated input integrated noise over 30 GHz: 0.5 mV_{rms}

A linear buffer drives the T/H block with 600mV_{PP}

input and output swing

Capacitor C_{fth} is used to match Q_{SF-CGS} and thus cancel

input signal feedthrough during hold mode

A linear output driver provides signal to external

50Ω resistors and measurement equipment

Clock Distribution

Converts a single-ended 30-GHz clock signal

to a differential signal with $750mV_{PP}$ swing

Chip Micrograph

 Manufactured using IBM's
 0.13µm CMOS
 technology

 The circuit operates from a 1.8V supply and consumes 150mA.

Measurement Results: SP

Measurement Results: SP II

Time Domain

Frequency Domain I

Frequency Domain II

Frequency Domain III

Circuit Comparison

	f _{sample} [GS/s]	Track BW [GHz]	THD [dB @ f _{in}]	Supply [V]	Power [mW]	Process [N / f _T]
This Work	30	7	-30 @ 1GHz -29 @ 7GHz	1.8	270	CMOS 0.13μm
I. H. Wang el. al. Electronic Letters 06	10	N/A	-24.7 @ 5GHz	1.8	200	CMOS 0.18µm
J. Lee et. al. JSSC 03	12	14	-23.3 @ 12GHz	-5.2	390	InP 120 GHz
S. Shahramian et al. CSICS 05	40	43	-27 @ 20GHz -29 @ 10GHz	3.6	540	SiGe 160 GHz
Y. Lu et. al. BCTM 05	12	5.5	-52.4 @ 1.5GHz	3.5	700	SiGe 200 GHz

Conclusion

- CMOS emerges as a contender for high speed DSP based equalizers
- Discussed the design methodology for CMOS switched source follower THA
- Demonstrated the first 30-GS/sec THA in CMOS

Acknowledgement

- CMC for chip fabrication and providing CAD tools
- NSERC for financial support
- OIT and CFI for equipment
- ECIT for providing the network analyzer