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Abstract— We propose a bit-serial LDPC decoding scheme to reduce
interconnect complexity in fully-parallel low-density parity-check de-
coders. Bit-serial decoding also facilitates efficient implementation of
wordlength-programmable LDPC decoding which is essential for gear
shift decoding. To simplify the implementation of bit-serial decoding
we propose a new approximation to the check update function in the
min-sum decoding algorithm. The new check update rule computes only
the absolute minimum and applies a correction to outgoing messages if
required. We present a 650-Mbps bit-serial (480, 355) RS-based LDPC
decoder implemented on a single Altera Stratix EP1S80 FPGA device. To
our knowledge, this is the fastest FPGA-based LDPC decoder reported
in the literature.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] have recently been

adopted for several data communication applications due to their

superior coding performance and parallelizable decoder architecture.

LDPC codes allow a fine-level parallel message-passing decoding in

which all the check and variable nodes are updated concurrently. This

parallelism can potentially be used to build a decoder with Multi-

Gbit/sec throughput. The major obstacle for efficient implementation

of fully-parallel LDPC decoders is interconnect complexity which is

the result of random location of 1’s in the code’s parity-check matrix.

In this paper, we propose a bit-serial scheme for fully-parallel

LDPC decoders. Bit-serial computation allows variable and check

nodes to communicate multi-bit messages over single wires, hence

reducing the interconnect complexity. In addition, we introduce a new

approximation to the check update function in min-sum decoding. In

this approximation, in each check node only one minimum magnitude

is calculated over all the check node inputs. Depending on the number

of inputs that share the same minimum magnitude, a corrective

constant is then added in order to generate the proper check outputs.

We show that with 4-bit quantization this approximation reduces the

check node area by 48% while introducing less than 0.1 dB loss in

BER performance.

We illustrate feasibility of bit-serial LDPC decoding by imple-

menting a (480, 355) RS-based LDPC decoder on a single Altera

Stratix EP1S80 FPGA device based on the new proposed check node

architecture. The decoder operates at maximum clock frequency of

61 MHz, performs 15 decoding iterations per frame and achieves 650

Mbps throughput.

This paper is organized as follows. The rest of this section

briefly reviews LDPC codes and hardware implementation of iterative

message-passing decoders. Section II illustrates new approximations

for the check update functions in a min-sum decoder. Section III

describes the internal architecture of bit-serial variable and check

nodes for a fully-parallel LDPC decoder based on the approximate

min-sum algorithm of Section II. Finally, in Section IV, an FPGA

implementation of a bit-serial (480, 355) fully-parallel LDPC decoder

is presented.

A. LDPC codes and min-sum decoding

A binary (N, N−M) LDPC code, C, is the null space of a sparse

M×N parity-check matrix, H . It can also be described by a bipartite

graph, or Tanner graph. Tanner graph of an LDPC code consists of

two set of nodes. Check nodes {c1, c2, . . . , cM} represent the rows

of H and variable nodes {v1, v2, . . . , vN} represent the columns. An

edge connects the check node cm to the variable node vn if and only

if Hmn is nonzero. For a code with a full-rank M ×N parity-check

matrix, H , the code rate is R = 1 − M/N . We denote the set of

variables that participate in check cm as N(m) = {n : Hmn =
1} and the set of checks in which the variable vn participates as

M(n) = {m : Hmn = 1}.

The following paragraphs describe min-sum (MS) decoding [2]

which can be considered as an approximation to the commonly-used

iterative sum-product (SP) algorithm [3]. Although the performance

of MS is generally a few tenths of a dB lower than that of SP

decoding, it is more robust to quantization errors when implemented

with fixed-point operations [4]. Moreover, it requires much simpler

hardware for the check node functions compared to SP decoding.

In the MS decoding, similar to SP algorithm, the extrinsic messages

are passed between check and variable nodes in the form of log-

likelihood ratios (LLRs). Let z
(i)
mn represent the LLR value for bit n,

sent from variable node vn to check node cm in the ith iteration

and similarly ε
(i)
mn represent the LLR value for bit n, sent from

check node cm to variable node vn in the ith iteration. Suppose

W = (w1, w2, . . . , wN ) ∈ C and Y = (y1, y2, . . . , yN ) are the

transmitted codeword and the received sequence respectively. The

MS decoding algorithm consists of the following steps:

1) Initialize the iteration counter, i, to 1 and let IM be the

maximum number of iterations allowed.

2) Initialize z
(0)
mn to the a posteriori LLR, λn = log

`
P (vn =

0|yn)/P (vn = 1|yn)
´

for 1 ≤ n ≤ N , m ∈ M(n).

3) Update the check nodes, i.e., for 1 ≤ m ≤ M , n ∈ N(m),

calculate

ε(i)mn = min
n′∈N(m)\n

|z(i)

mn′ |
Y

n′∈N(m)\n

sgn(z
(i)

mn′). (1)

4) Update the variable nodes, i.e., for 1 ≤ n ≤ N , m ∈ M(n),

calculate:

z(i)
mn =

X
m′∈M(n)\m

ε
(i)

m′n. (2)

5) Apply a hard decision, i.e., compute Ŵ = (ŵ1, ŵ2, . . . , ŵN )
where element ŵn is calculated as

ŵn =

(
0 if λn +

P
m∈M(n) ε

(i)
mn ≥ 0,

1 otherwise.

If ŴHT = 0 or i ≥ IM stop decoding and go to step 6.

Otherwise set i = i + 1 and go to step 3.

6) Output Ŵ (i) as the decoder output.



B. Decoder implementation

In message-passing LDPC decoding, a large number of messages

need to be updated and transfered between check and variable nodes

in each iteration. Previous works have proposed several approaches

for representing and updating these messages. In [5], analog signals

are used to represent the extrinsic messages. In analog decoders

the exponential voltage-current relationship of a transistor is used

to realize the message-passing update functions. Although analog

decoders have the advantage of low power consumption, they become

impractical for decoding long LDPC codes due to the noise and

process mismatch.

More conventional LDPC decoders often use multi-bit digital

signals to represent the messages. In partially-parallel decoders [6],

[7], the messages are transferred between the nodes through memory.

This architecture reduces the decoder area by sharing the processing

units, but this comes at the cost of reduced throughput. To achieve

higher throughput, in the fully-parallel decoder presented in [8], all

check and variable nodes are directly instantiated in hardware. Using

this architecture, a throughput of 1 Gbps with 64 iterations per frame

is reported. The major challenge in the implementation of fully-

parallel LDPC decoders is the complex and random interconnection

between the variable and check nodes. This problem is worsened

when multi-bit buses are used to realize the edges in the code Tanner

graph.

C. Bit-serial computation

To reduce the complexity of the interconnect in fully-parallel

LDPC decoders, in this paper we investigate a bit-serial approach

for both communicating and computing extrinsic messages. Fig. 1

shows the difference between the conventional bit-parallel scheme

and a bit-serial scheme for a simple case of transferring an n-bit

number, bn · · · b2b1. In Fig. 1(a) all the n bits are sent over n parallel

lines in one clock cycle. In contrast, in a bit-serial scheme as in Fig.

1(b), the message is sent over a single line in n clock cycles.
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Fig. 1. Two alternatives for synchronous transmission of an n-bit number
(a) bit-parallel: n bits sent in one clock cycle over n wires. (b) bit-serial: n
bits sent in n clock cycles over one wire.

Stochastic computation [9] is similar to bit-serial computation in

that it communicates extrinsic messages over single wires. It has

a very simple check and variable node architecture but needs a

significant amount of hardware overhead in oreder to translate the

stochastic messages at the decoder inputs and outputs. In addition,

the stochastic computation uses a redundant number representation

which limits the decoder throughput.

In addition to simplifying the node-to-node interconnection, the bit-

serial approach has several other advantages for fully-parallel LDPC

decoders. In a bit serial scheme, the wordlength of computations

can be increased simply by increasing the number of clock cycles

allocated for transmitting the messages. Using this property, the

precision of the decoder can be made programmable just by re-timing

the node-to-node message transfers without the need for extra routing

channels. Programmability of the decoder wordlength allows one

to efficiently trade-off complexity for error correction performance.

This in turn allows efficient implementation of gear-shift decoding

[10]. Gear-shift decoding is based on the idea of changing the

decoding update rule used in different iterations to simultaneously

optimize hardware complexity and error correction performance. For

instance, gear shift decoding often suggests applying a complex

powerfull update rule in the first few iterations followed by simpler

update functions in later iterations. Bit-serial computation allows

efficient shifting between update rules by changing the computations

wordlength.

Bit-serial decoding, however, imposes some challenges. The im-

mediate effect is that it reduces the decoder throughput compared

with fully-parallel implementations, as multiple clock cycles are

required for transmitting a single message. Also some common check

and variable update functions can not be efficiently implemented

bit-serially. Although bit-serial fully-parallel LDPC decoders have

a lower throughput compared with bit-parallel fully-parallel LDPC

decoders we will show in this paper that their throughput can still be

higher than hardware-sharing decoder schemes.

II. SIMPLIFIED CHECK UPDATE FUNCTION

The MS decoding algorithm, as described in Section I, is cumber-

some if implemented in a bit-serial hardware decoder. In this section,

we introduce an approximation to the MS algorithm that reduces

the hardware complexity of check nodes while causing minimal

degradation in code performance. In fact, this approximation is also

applicable to bit-parallel hardware decoders.

The first step is to replace the check update rule of (1) with

ε(i)mn = min
n′∈N(m)

|z(i)

mn′ |
Y

n′∈N(m)\n

sgn(z
(i)

mn′). (3)

In other words, the sign of the check node outputs are calculated

exactly the same as before but now the output magnitude is the

minimum of magnitudes of all input messages. Fig. 2 compares the

BER performance of original MS decoding algorithm with that of the

modified MS based on (3) for two RS-based LDPC codes [11] using

full-precision computations. This graph shows that with full-precision

computations, the two algorithms perform almost identically. It is

clear that a check update rule as in (3) significantly reduces the

hardware complexity. The reason is that once the minimum among

all input magnitudes is found it is sent out as the magnitude of all

the outgoing messages, ε
(i)
mn, for all n ∈ N(m).

We have observed that although the above modification to MS

results in almost no performance loss under full-precision operations,

it introduces a considerable loss when performed in finite-precision.

Fig. 3 shows the effect of the MS approximation when applied to

quantized messages. In the following paragraphs we introduce a

further change to the modified MS decoding algorithm that reduces

the performance gap shown above.

The sign of the output messages in the new check update rule is

the same as in (3). The magnitude of the output message is calculated

as follows. First, for check node cm, in the ith iteration, we define

M
(i)
m = minn′∈N(m) |z(i)

mn′ |. We also define 1 ≤ T
(i)
m ≤ dc as the

number of inputs z
(i)
mj to check node cm that satisfy |z(i)

mj | = M
(i)
m .

The magnitude of check node outputs are calculated as

|ε(i)mn| =

(
M

(i)
m + 1 if T

(i)
m = 1 and z

(i)
mn = M

(i)
m

M
(i)
m otherwise.

(4)
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Fig. 2. Comparison between original min-sum and modified min-sum under
full-precision operations for (2048, 1723) and (992, 833) LDPC codes.

Simulation results plotted in Fig. 3 show that with the new check

update rule using 4-bit quantization the BER performance gap to the

original 4-bit MS algorithm is reduced from 0.7 dB to less that 0.1

dB at BER of 10−6. More importantly, the error floor effect is also

avoided. In spite of the extra hardware needed for the correction term,

VLSI implementation of a degree-15 check node using a CMOS-

90nm cell library shows that a check node based on (4) is 48%

smaller than a check node based on (1). This is because there is no

need to calculate the second minimum among the check node inputs.
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Fig. 3. Comparison between original min-sum and modified min-sums as in
(3) and (4) under fixed-point operations for (2048, 1723) LDPC code.

III. NODE ARCHITECTURE

This section describes an internal architecture for bit-serial hard-

ware implementation of variable and check nodes based on (2) and

(4) respectively. As discussed in Section II, in modified MS algorithm

only the smallest magnitude among all check inputs needs to be

found. Fig. 4 shows the pipelined bit-serial module that finds the

minimum of the check inputs. This module receives dc inputs. Each

input is an n-bit sign-magnitude binary number which is received bit-

serially (MSB-bit first). The output is a bit-serial n-bit number which

corresponds to the smallest magnitude in the inputs. Associated with

each input there is a flip flop acting as status flag which indicates

whether that input is still a candidate for being the minimum. At

the beginning, the status flags are all reset to zero. As the MSB bits

are received some flags become ’1’ indicating that the corresponding

input is out of competition. Notice that the circuit in Fig. 4 only

processes the magnitude of the check node inputs whereas the sign

bit is generated separately using an XOR tree.
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Fig. 4. A bit-serial module for detecting the minimum magnitude of the
check node inputs.
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Fig. 5. A degree-6 variable node architecture for computing (2) with a
forward-backward architecture [12]. Each adder box consists of a full-adder
and a flip-flop to store the carry from the previous cycle.

To find an efficient bit-serial variable node architecture, we have

investigated two alternatives. The first architecture, shown in Fig.

5, is based on a forward-backward computation [12]. The main

difference between our approach and [12] is that here all the inputs

and outputs are bit-serial. The main problem with the forward-

backward architecture of Fig. 5 is that for a variable node of degree

dv the critical path consists of a chain of (dv − 2) two-input adders.

For LDPC codes with relatively high dv , this can limit the timing

performance of the decoder. The second variable node architecture

investigated in this paper is shown in Fig. 6. In this architecture,

the bit-serial inputs are first converted to parallel inputs and then the

additions are performed in one cycle using parallel adders/subtracters.

The parallel outputs are finally converted back to bit-serial format

before being sent to check nodes.

Table I summarizes the VLSI hardware cost and timing perfor-

mance of two degree-6 variable nodes corresponding to the two above

alternatives. The parameters in this table are based on the synthesis

results using a CMOS 90nm cell library and with 3-bit quantization.

Based on Table I, we have used the variable node architecture of Fig.

6 in the design presented in this paper since it is superior both in

terms of timing and area.

Both check and variable nodes in this design are pipelined. For

n-bit quantized input messages they generate n-bit output messages

in n clock cycles. Each iteration of LDPC message-passing decoding

consists of one check and one variable node update. As a result, using

a conventional scheme, 2n clock cycles are needed to complete one

iteration. However, in this design we adopt a block-interlaced scheme
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Fig. 6. A variable node architecture for computing (2) with parallel adders
and parallel-serial converters at the inputs and outputs.

TABLE I

COMPARISON BETWEEN VARIABLE NODE ARCHITECTURES OF FIG. 5

(FORWARD-BACKWARD) AND FIG. 6 (PARALLEL ADDER/SUBTRACTERS)

WITH dv = 6 AND 3-BIT QUANTIZATION SYNTHESIZED WITH CMOS

90nm LIBRARY CELLS.

Architecture Forward-backward Parallel adder

Combinational area (µm2) 2484 2099

Non-Combinational area (µm2) 623 405

Total area (µm2) 3107 2504

Minimum clock period (nsec) 3 2.20

[13] where two frames are processed in the decoder simultaneously

in an interlaced fashion; while the check nodes process one frame,

the variable nodes are processing the neighboring frame. So, in effect

it takes only n cycles to complete one iteration, hence doubling the

throughput.

IV. FPGA IMPLEMENTATION

To demonstrate the feasibility of bit-serial message-passing decod-

ing, we have developed a fully-parallel (480, 355) RS-based LDPC

decoder on a single Altera Stratix EP1S80 FPGA device using a

configurable prototyping board called Transmogrifier-4 [14]. This

decoder updates the extrinsic messages using the node architectures of

Fig. 4 and Fig. 6. Since the updated messages are carried bit-serially

over single wires, the complexity of node-to-node interconnections is

less than that of conventional bit-parallel fully-parallel decoders [8].

Fig. 7 shows the measured BER performance from decoder hardware

as well as the bit-true simulation. Table II summarizes the FPGA

implementation results. The decoder operates at clock frequency of

61 MHz and performs 15 iterations per frame. Using the block-

TABLE II

(480, 355) RS-BASED LDPC DECODER IMPLEMENTATION RESULTS ON

ALTERA STRATIX EP1S80 DEVICE.

Logic elements (LEs) 66,588 (84%)

Max clock frequency (MHz) 61

Code length 480

Iterations per frame 15

Wordlength (bits) 3

Decoder throughput (Mbps) 650

interlacing technique and a wordlength of 3 bits, each iteration takes 3

clock cycles to complete which results in 650 Mbps total throughput.

4 4.5 5 5.5 6 6.5
10−6

10−5

10−4

10−3

Eb/N0

B
E

R

(480,355) LDPC, 3bit, Hardware
(480,355) LDPC, 3bit, Bit−true simulation

Fig. 7. FPGA hardware BER results and bit-ture software simulation.

V. CONCLUSION

In this paper we presented a bit-serial architecture for fully-parallel

LDPC decoding. We also proposed a new approximation to check

update function in MS decoding. A 650-Mbps FPGA-based fully-

parallel LDPC decoder based on the above ideas is presented in this

paper which to our knowledge is the fastest FPGA LDPC decoder

reported in literature.
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