Obtaining Digital Gradient Signals for Analog Adaptive Filters

Anthony Carusone and David A. Johns

Department of Electrical and Computer Engineering University of Toronto

University of Toronto Department of Electrical and Computer Engineering

Motivation

- digital communications is an active area for research in academia and industry
- adaptive filters are important in digital communication applications (equalizers, interference cancellation, etc.)
 - 1. increased integration is sought to improve reliability and reduce cost

 \Rightarrow digital & analog circuits must coexist

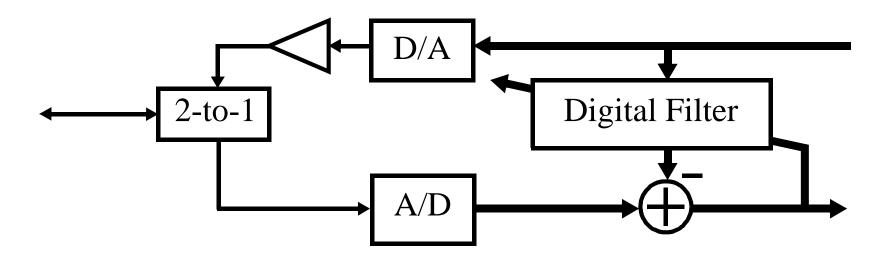
- 2. increased data rates pursued
 - \Rightarrow analog signal path
- 3. robust algorithm desired for adaptive signal processing functions
 - \Rightarrow implement the adaptation algorithm digitally

Motivation

	Analog	Digital	Digitally-Programmable Analog
power consumption	 ✓ 		✓
integrated circuit area	✓		✓
relaxed A/D specs	✓		✓
robust		✓	✓
scaleable		✓	
linear		✓	

Echo Cancellation Application

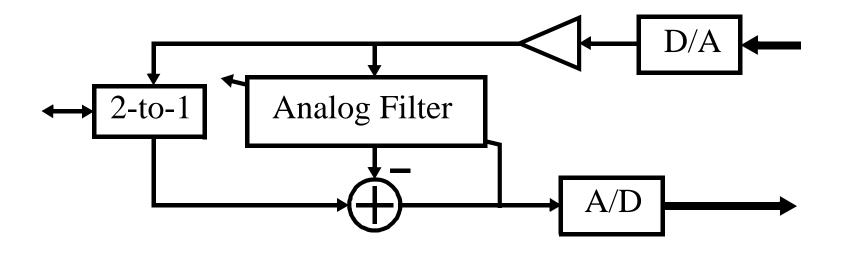
All Digital



- analog front-end still required
- high power consumption in digital logic & A/D at high speeds
- for linear echo cancellation, require highly linear D/A, line driver, and A/D

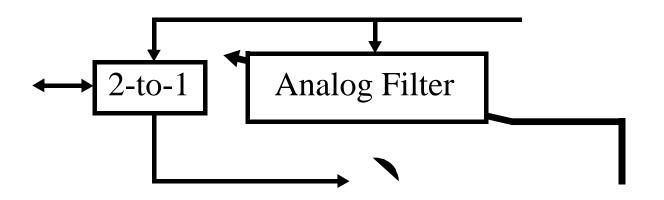
Echo Cancellation Application

All Analog



- considerable extra analog circuitry may be required to implement adaptation algorithm
- LMS adaptation is susceptible to the dc offsets present in analog circuits

Echo Cancellation Application



- low power
- relaxed linearity specifications on D/A, line driver, and A/D
- potentially robust with respect to dc offset effects

Background - LMS Algorithm

- LMS adaptation is popular due to easy hardware implementation
- filter parameters are updated according to:

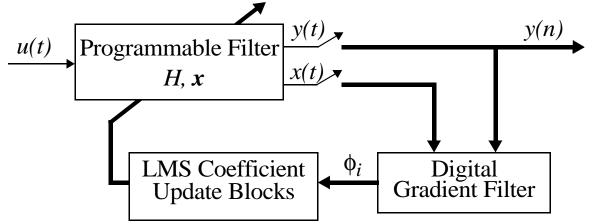
$$p(k+1) = p(k) + 2\mu \cdot \phi(k) \cdot e(k)$$

$$\phi = \frac{\partial y}{\partial p}$$

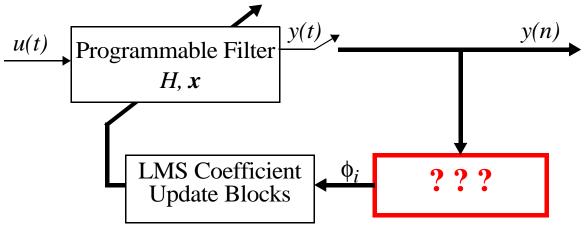
Problem: For an analog filter, how can we obtain the gradient signals, ϕ ?

- all analog systems require additional filters to generate the gradient signals
- until now, digitally-programmable analog filters have required additional A/D converters to obtain the gradient signals

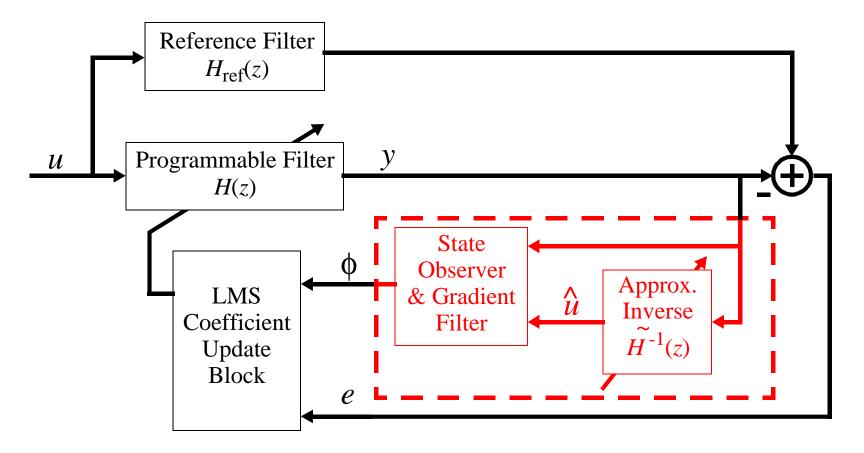
Filter adaptation with access to the filter's internal states

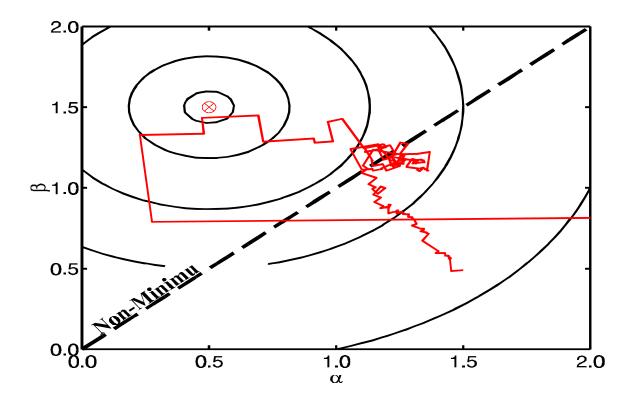


Filter adaptation without access to the filter's internal states



Model Matching Configuration





- first, separate H(z) into binomial factors: $H(z) = H_1(z) \cdot H_2(z) \cdots$
- for each minimum phase factor, take the direct inverse: $1/H_i(z)$
- for each non-minimum phase factor, approximate the inverse by introducing delay and truncating the impulse response
- numerically, this is done by a Taylor Series expansion:

$$H_{i}(z) = 1 - az^{-1}$$

$$\Rightarrow 1/H_{i}(z) = 1/(1 - az^{-1})$$

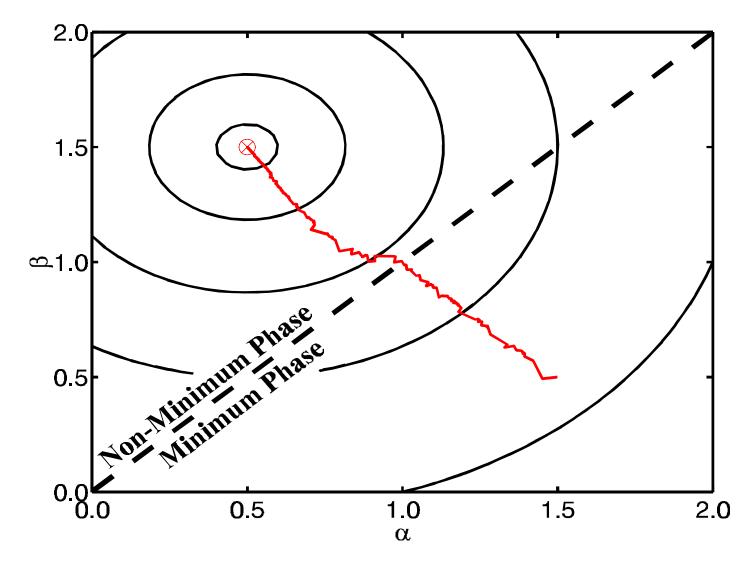
$$= (-a^{-1}z)/(1 - a^{-1}z)$$

$$= (-a^{-1}z)(1 + a^{-1}z + a^{-2}z^{2} + ...)$$

$$= z^{d+1}(-a^{-1}z^{-d} - a^{-2}z^{-d+1} - ... - a^{-d-1}) = \tilde{H}_{i}^{-1}(z)$$
(*)

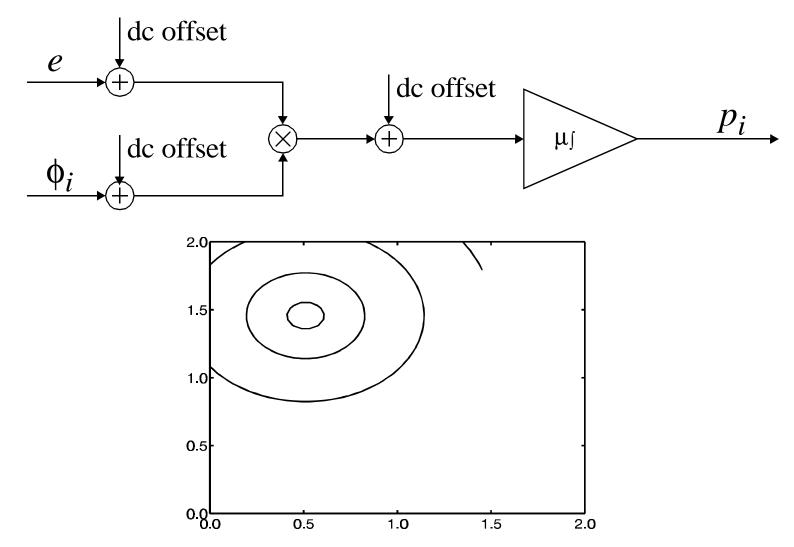
(*) the Taylor Series expansion is valid on the unit circle if |a| > 1 (i.e. for all non-minimum phase factors, $H_i(z)$)

Model Matching Experiment Using Approximate Inverse



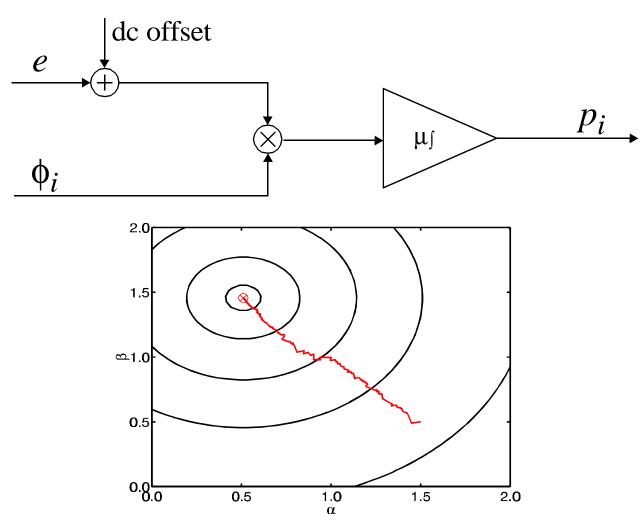
Dc Offset Effects

• dc offsets in analog LMS circuitry prevent convergence to optimal parameters



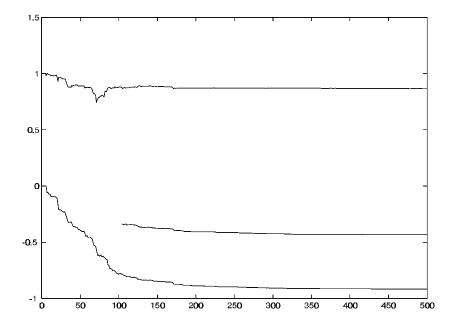
Dc Offset Effects

- by using digital estimates of the gradient signals, two sources of dc offsets are eliminated
 - \Rightarrow convergence to optimal parameter values is possible



Dc Offset Effects

- 4th order model matching experiment with reference filter $H_{ref}(z) = 0.9 - 0.9z^{-1} - 0.4z^{-2} - 0.2z^{-3} + 0.1z^{-4}$
- approximate inverse transfer function, $\tilde{H}^{-1}(z)$, implemented as 20-tap FIR filter



Conclusions

- □ a technique was presented for estimating the internal states of a filter with unknown inputs
- □ LMS adaptation is possible using these approximate state estimates
- useful for digital adaptation of analog filters since sampling the filter states and filter input is not required
- □ the adaptation is robust with respect to dc offsets