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Motivation

• digital communications is an active area for research in 
academia and industry

• adaptive filters are important in digital communication 
applications (equalizers, interference cancellation, etc.)

1. increased integration is sought to improve reliability and 
reduce cost
⇒ digital & analog circuits must coexist

2. increased data rates pursued
⇒ analog signal path

3. robust algorithm desired for adaptive signal processing 
functions
⇒ implement the adaptation algorithm digitally



Motivation
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Echo Cancellation Application

• analog front-end still required

• high power consumption in digital logic & A/D at high speeds

• for linear echo cancellation, require highly linear D/A, line 
driver, and A/D
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Echo Cancellation Application

• considerable extra analog circuitry may be required to 
implement adaptation algorithm

• LMS adaptation is susceptible to the dc offsets present in 
analog circuits
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Background - LMS Algorithm

• LMS adaptation is popular due to easy hardware 
implementation

• filter parameters are updated according to:

Problem: For an analog filter, how can we obtain the gradient 

signals, φφ?

• all analog systems require additional filters to generate the 
gradient signals

• until now, digitally-programmable analog filters have required 
additional A/D converters to obtain the gradient signals
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Obtaining Digital Gradient Signals
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Filter adaptation with access to the filter’s internal states

Filter adaptation without access to the filter’s internal states



Obtaining Digital Gradient Signals
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Obtaining Digital Gradient Signals

• first, separate H(z) into binomial factors: H(z) = H1(z)⋅H2(z)⋅⋅⋅

• for each minimum phase factor, take the direct inverse: 1/Hi(z)

• for each non-minimum phase factor, approximate the inverse 
by introducing delay and truncating the impulse response

• numerically, this is done by a Taylor Series expansion:

(*) the Taylor Series expansion is valid on the unit circle if
|a| > 1 (i.e. for all non-minimum phase factors, Hi(z))
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Obtaining Digital Gradient Signals

Model Matching Experiment Using Approximate Inverse





Dc Offset Effects

• by using digital estimates of the gradient signals, two sources 
of dc offsets are eliminated
⇒ convergence to optimal parameter values is possible
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Conclusions

qq a technique was presented for estimating the 
internal states of a filter with unknown inputs

qq LMS adaptation is possible using these 
approximate state estimates

qq useful for digital adaptation of analog filters since 
sampling the filter states and filter input is not 
required

qq the adaptation is robust with respect to dc offsets


