An Anti-Aliasing Multi-Rate $\Sigma\Delta$ Modulator

Anthony Chan Carusone Depart. of Elec. and Comp. Eng. University of Toronto, Canada *Franco Maloberti* Department of Electronics University of Pavia, Italy

May 26, 2009

Outline

- Motivation and background
- Anti-aliasing multi-rate modulator front-end
- Practical considerations
 - Mismatch
 - Clocking
 - Opamp settling requirements
- Simulation results
- Conclusions

Aliasing in Discrete-Time $\Sigma\Delta$ Modulators

Anti-Aliasing in Discrete-Time $\Sigma\Delta$ Modulators

AAF may be either a continuous-time filter or a discrete-time filter operating at a higher sampling rate [6,7], Mf_s

Discrete-Time $\Sigma\Delta$ Modulator with Discrete-Time Anti-Aliasing Filter

Basic idea is to incorporate L(z) into the frontend of the $\Sigma\Delta$ modulator with minimal circuit overhead

"Hybrid" $\Sigma\Delta$ Modulators

There are several examples of modulators incorporating a continuous-time front-end to provide an anti-aliasing STF [1-5], but these are still susceptible to clock jitter, like all CT modulators.

Conventional $\Sigma\Delta$ Modulator Front-end

$\Sigma\Delta$ Modulator with Anti-Aliasing Front-end Sampler

$\Sigma\Delta$ Modulator with Anti-Aliasing Front-end Sampler

Similar approach has been applied to integrate antialiasing into the front-end of a discrete-time filter [8,9] and SAR ADC [10]

Other "Multi-Rate" $\Sigma\Delta$ Modulators

Other "Multi-Rate" $\Sigma\Delta$ Modulators

Choice of capacitor values, C_k

Zeros of L(z) with M = 5:

 $C_k = (C/M)$

 C_k chosen to maximize anti-aliasing around f_s

Choice of capacitor values, C_k

Capacitor Mismatch

Clocking

• This scheme requires the generation of multiple clock phases [2]

• Faster settling of the sampling capacitors necessitates larger switches and, hence, some overhead in the clock distribution

• Skew between the clock phases results in harmonic at $f_s \pm f_{in}$, which will be filtered by the following digital decimation filter

Opamp Settling Time

Since only ½ of the total sampling capacitance is integrated at any time, the feedback factor in the integration phase is increased, thus permitting the use of an opamp with lower GBW.

Simulation Results

- 3rd-oder modulator
- OSR = 24
- Two-tone input:
 - -2 dBFS in-band
 - -30 dBFS at 0.98 f_s
- a) Conventional front-end
- b) Anti-aliasing multi-rate front-end with M = 5and $C_k = C/M$
- c) Anti-aliasing multi-rate front-end with M = 5and optimized C_k

Simulation Results

Conclusions

- Splitting the input sampling capacitor in a discrete-time $\Sigma\Delta$ modulator into multiple parallel branches sampled at increased rate enables the STF to be shaped by an FIR transfer function, here used for anti-aliasing
- Example 3rd-order modulator with OSR=24 and M=5 demonstrates:
 - 35 dB of anti-aliasing is provided by a uniformly segmented input sampling capacitor, $C_k = C/5$
 - An additional 30 dB of anti-aliasing is provided when the values of C_k are optimized for a total of 65 dB of anti-aliasing

EXTRAS

Simulation Model

Table of optimized capacitor values

(C_1/C)	(C_2/C)	(C_{3}/C)	(C_4/C)	(C_{5}/C)
0.52	-0.64	1.24	-0.64	0.52