A 20-Gb/s Coaxial Cable Receiver Analog Front-End in 90-nm CMOS Technology

Peter Park¹ and Anthony Chan Carusone

University of Toronto, Canada ¹now with Synopsys, Inc.

Receiver AFE Specifications

- 20-Gb/s operation
- 75-ohm input (cable impedance)
- 50-ohm output (testing)
- External gain and equalization control (nonadaptive)
- < 0.5 mV_{rms} input-referred noise
- 90-nm CMOS, 1.3-V supply

Basic transceiver link.

AFE Block Diagram

- Shunt-feedback TIA stages have recently been used as low-noise broadband preamplifiers.
- TIA topologies were narrowed down to 1) nMOS TIA with common source (CS) and 2) nMOS TIA with active bias, and compared in simulation.

≩R₁

M2

Vo

Shunt-feedback TIA topology. Rin = Rf/(1+|A|). Topology: nMOS TIA with CS. The CS stage provides gain and level-shifting. Topology: nMOS TIA with active bias. The CS stage is removed, M_3 added to raise the output CM. 4

Simulation comparison results:

nMOS TIA with active bias (solid) and nMOS TIA with CS (dashed). Both topologies were designed to have the same A_{DC} and BW. At 10 GHz, activebias topology has 0.5-dB lower NF and 50% higher input P_{1dB} .

- By increasing R_I, the nMOS TIA with CS can have significantly larger gain, and so is preferable where large voltage gain is desired.
- In this work, the output is linearly processed by the rest of the AFE. Based on the previous simulation comparison, the nMOS TIA with active bias was used.

nMOS TIA with active bias. ⁶

nMOS TIA with CS.

- Implemented nMOS TIA with active bias.
- Dummy stage used for power supply rejection.

Simulation results:

AC gain (single-ended input). $A_{DC} = 7.5 \text{ dB}, \text{BW} = 11.6 \text{ GHz}.$ $|S_{11}|$, NF and NF_{MIN}. $|S_{11}| < -15$ dB up to 16.6 GHz, NF @ 10 GHz = 5.8 dB.

Design – Equalizer

• Implemented split-path equalizer.

$$A_{EQ}(s) = A_{DC}(1 + s/\omega_{z1})/(1 + s/\omega_{p1}),$$

$$A_{DC} = g_{m1,2}g_{m5,6}R_{1,2}R_{5,6}$$

$$\omega_{z1} = \frac{R_{3,4}}{L_{3,4}(1 + g_{m7,8}g_{m3,4}R_{3,4}/g_{m5,6}g_{m1,2}R_{1,2})} \qquad \omega_{p1} = \frac{R_{3,4}}{L_{3,4}}$$

$$R_{1} = \frac{R_{2}}{L_{3}} + \frac{R_{2}}{L$$

LP Path

Weighted Sum

Design – Equalizer

• Low-pass and high-pass paths are combined:

AC gains for various equalizer settings on linear and log scales $A_{DC} = -8.6 - 0.3 \text{ dB}$, maximum peaking = 8.6 dB.

10

Design – Post-Amplifier

 Post-amplifier uses three cascaded sourcedegenerated stages, providing some gain-control.

A_{DC} = 0 - 6.5 dB, BW ≥ 19.6 GHz

• Simulation results - |S₂₁| :

AFE: Simulated single-ended $|S_{21}|$ for maximum (top) and minimum (bottom) post-amplifier gains across equalizer setting. ¹²

• Simulation results - summary:

S ₁₁ < -15 dB up to:	14.9 GHz
Peaking @ 10 GHz	4.6 dB
Gain control range	6.8 dB
P _{1dB} @ 10 GHz	
(Excluding output driver)	105 mV _{pp}
min EQ, min post-amp. gain	98 mV _{pp}
max EQ, max post-amp. gain	
NF @ 10 GHz	12.9 dB
Differential output noise	2.0 mV _{rms}
(max EQ, max post-amp. gain)	
Input-referred noise	0.36 mV _{rms}
(max EQ, max post-amp. gain)	
Input sensitivity @ BER = 10 ⁻¹⁵	5.7 mV _{pp}

Measurements

Power/Area: 138 mW/0.89 mm²

S Parameter Measurements

 |S₁₁|, |S₂₂| < -10 dB up to 16, 20 GHz, respectively (converted from 50-ohm to 75/50-ohm input/output environment)

Transient Measurements

- 16.25 Gb/s, 9-ft SMA cable
- Launch amplitude ~ 47 mV
 Potential TX power savings

Transient Measurements

- 20.4 Gb/s, 9-ft SMA cable
- Launch amplitude ~ 47 mV
 Potential TX power savings

Measurement Summary

Technology/Supply	90-nm CMOS/1.3 V			
Power/Area	138 mW/0.89 mm ²			
S ₁₁ , S ₂₂	< -10 dB up to 16, 20 G	iHz		
Maximum Peaking	6.5 dB @ 8 GHz			
Gain Control Range	6.0 dB			
GBW Product (differential)	≥ 294 GHz			
P _{1dB}	1 GHz	7 GHz		
(no EQ, min gain)	-30.75 dBm	-31.6 dBm		
(no EQ, max gain)	-39.75 dBm	-38.6 dBm		
(max EQ, max gain)	-36.75 dBm	-35.6 dBm		
Bit Rate	16.25 Gb/s	20.4 Gb/s		
9-ft SMA Cable Loss	5.7 dB @ 8.125 GHz	7.5 dB @ 10.2 GHz		
Input Swing (single-ended)	40 mV _{pp}	40 mV _{pp}		
Output Swing (single-ended)	225 mV _{pp}	225 mV _{pp}		
RMS Jitter	2.5 ps	2.7 ps		
Timing Margin (BER = 10 ⁻¹²)	0.58 UI	0.32 UI		

Comparison - Equalizers

Reference	[ZG05]	[HMC+05]	[GLTR05]	[Lee06]	[TKO+05]	[SC06]	[LL08b]	This Work
Bit Rate (Gb/s)	10	10	10	20	10	30	40	20. 4
Loss ¹ (dB)	13	18	19	9.5	20	14.5	10	7.5
Supply (V)	3.3	1.8	1.2	1.5	1.2	1	-	1.3
EQ Power (mW)	155	7.3	25	60	13.2	25	58	31 (sim.)
Adaptive	YES	NO	YES	YES	YES	NO	YES	NO
Type ²	SP	4-FIR	CD	CD	СН	3-FIR	SP+CD	SP
Process	0.18-um BiCMOS	0.18-um CMOS	0.13-um CMOS	0.13-um CMOS	0.11-um CMOS	90-nm CMOS	90-nm CMOS	90-nm CMOS
Area (mm²)	0.705	_	0.162 (CORE)	0.2 (CORE)	0.004 (EQ)	0.3	0.539	0.891

¹ Loss compensated at one-half the symbol rate.

² SP: split-path; CD: capacitive-degeneration; CH: Cherry-Hooper.

Comparison – CMOS Amplifiers

Reference	[GR04]	[SSH+04]	[CL07]	[WSJ06]	[LL08a]	[LWL+05]	[TWKC05]	This Work
Bit Rate (Gb/s)	40	40	40	40	40	N/A	N/A	20.4
Supply (V)	2.2	1.8	2.8	1	1.2	2.4	-	1.3
Power (mW)	190	140	250	80	75	120	122	138
Diff. Gain (dB)	15	4	20	20	26	7.4	7	31.2
BW (GHz)	22	39	39.4	23	22	80	70	8.1
GBP (GHz)	124	62	394	230	440	188	157	294
VGA	NO	NO	NO	YES	YES	NO	NO	YES
Type ¹	CGS	DA	DA	CGS	CGS	DA	DA	CGS
Process	0.18-um	0.18-um	0.18-um	90-nm	90-nm	90-nm	90-nm	90-nm
	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS
Area (mm²)	0.5	3.3	2.24	0.033 (CORE)	0.56	0.72	0.72	0.891

¹CGS: cascaded gain stage; DA: distributed amplifier.

Conclusion

- A binary receiver AFE targeting 20 Gb/s for coaxial cable was designed in 90-nm CMOS.
- The nMOS TIA with active bias used as the preamplifier had not previously been implemented in CMOS.
- Main AFE blocks were the broadband preamplifier, analog (split-path) peaking equalizer and postamplifier, and functionality was verified by measurement up to 20.4 Gb/s.

Backup Slides

Equalizer Comparison

 Capacitive-degeneration (CD) and split-path (SP) equalizers have similar transfer functions, but the SP equalizer was chosen due to 1) the absence of varactor models and 2) potentially greater single-stage peaking.

Equalizer Comparison

 The split-path (SP) equalizer actually has a 2nd order transfer function due to the "tank" capacitance C_p:

Equalizer transfer function (2nd order).

Equalizer transfer function (1st order).

Note that the boost ratio from the 2nd order transfer function is equal to ω_{p1}/ω_{z1} derived using the 1st order expressions. This implies that both expressions predict the same amount of gain boost relative to DC.

Architecture - AFE Blocks

Alternative 1: Post-amplifier before the equalizer. This may be better for noise, since the post-amplifier gain is closer to the input side (and the equalizer has loss). However, this would require a larger equalizer input-swing limit.

Alternative 2: VGA integrated with (or before) the broadband preamplifier. This is probably best in terms of noise, as the required gain is at the front. However, only gain *reduction* is easily implemented here. Subsequent gain stages would still likely be required. Input matching might be affected.

Noise contribution of the active bias device (M₃):

Design – S2D

 Single-ended to differential (S2D) block is used as the preamplifier has no common-mode (CM) rejection.

 $A_{DC} = 8.3 \text{ dB}, \text{BW} = 19.0 \text{ GHz}.$ $A_{CM} @ 10 \text{ GHz} = -21.5 \text{ dB}.$

Design – S2D

Simulation results:

Design – Post-Amplifier

Simulation results:

Resistance of triode-region nMOS vs. V_{DS} for various values of r_ctl . ΔR_{triode} (@ V_{DS} = 50 mV) is 3.8%.

Design – Output Driver

 The output driver provides ~0-dB gain to the 50ohm testing environment.

• Simulation results - linearity:

VGA	EQ	P _{1dB} @ 10 GHz	P _{1dB} @ 10 GHz (no output driver)
Min	Min	82 mV _{pp}	105 mV _{pp}
Min	Max	93 mV _{pp}	108 mV _{pp}
Max	Min	54 mV _{pp}	87 mV _{pp}
Max	Max	68 mV _{pp}	98 mV _{pp}

Single-ended input P_{1dB} @ 10 GHz.

• Simulation results - noise:

AFE: Simulated single-ended NF for maximum (left) and minimum (right) VGA gains across equalizer setting.

VGA	EQ	Input-referred noise	Differential output noise
Min	Min	0.22 mV _{rms}	1.6 mV _{rms}
Min	Max	0.49 mV _{rms}	1.3 mV _{rms}
Max	Min	0.18 mV _{rms}	3.0 mV _{rms}
Max	Max	0.36 mV _{rms}	2.0 mV _{rms}

AFE: Simulated noise voltages at the limits of VGA and equalizer controls.

Simulation results - noise:

AFE: Simulated noise voltages at the limits of VGA and equalizer controls: differential output noise (left) and single-ended available input-referred noise (right).

Simulation results - transients:

AFE: Simulated single-ended input and differential output eye diagrams: 15-m cable at 16.6 Gb/s (top), and 20 Gb/s (bottom).

35

Measurement Setup

Linearity Measurements

Measured (markers) and simulated (no markers) P_{1dB} at 1- and 7-GHz.

AFE Setting	P _{1dB} at 1-GHz [dBm]	P _{1dB} at 7-GHz [dBm]
no EQ, min gain	-30.8	-31.6
no EQ, max gain	-39.8	-38.6
max EQ, max gain	-36.8	-35.6