Design Methodology and Applications of SiGe BiCMOS Cascode Opamps with up to 37-GHz Unity Gain Bandwidth

S.P. Voinigescu, R. Beerkens*, T.O. Dickson, and T. Chalvatzis

University of Toronto *STMicroelectronics, Ottawa

Introduction
Opamp design
Application to 1.2-GHz bandpass filter
Conclusions

Motivation

•Opamps are useful in a variety of low-cost RF applications •Opamp UGB has not kept pace with MOS/HBT f_T/f_{MAX}

Goal

Design methodology for large UGB opamps with good phase margin

Challenges for opamp design in nanoscale (Bi)CMOS

Square-law in sub 130-nm MOSFETs invalid for most bias range
 Traditional biasing at low V_{eff} makes nanoscale CMOS opamps suffer from

- sensitive to PVT variation
- modest bandwidth
- oor linearity
- model inaccuracy

How do we maximize opamp bandwidth?

•By selecting a high-bandwidth topology with good stability

•By (unconventionally) biasing and sizing transistors for high UGB

Topology: MOS-HBT cascode with p-MOS cascode load

•Miller effect completely eliminated •Good gain: $A_V = g_{mn}^* g_{mp} r_{op}^2$ •Unlike HBT-HBT cascode, input time constant $R_G(C_{gs} + C_{gd} + C_{pad})$ is minimized through layout (R_G)

Dominant pole at output

$$C_{out} = C_{bc} + C_{cs} + C_{db,pMOS} + C_{gd,pMOS} + C_{L}$$

Single-pole frequency response beyond $UGB = \frac{g_{m,nMOS}}{2\pi C_{out}}$

Opamp biasing

•HBT biased at peak f_{MAX} current density (1.2 mA/µm) •MOSFETs biased at peak f_{MAX} current density (0.2 mA/µm)

 ${}_{\rm MAX}$ and gain remain flat for ${\rm I}_{\rm DS}$ = 0.15 to 0.4 mA/µm

◆ 170 GHz @ 0.14 mW/µm of gate finger width

Opamp biasing (ii)

•MOSFETs f_{MAX} current density invariant over devices with

♦IOW,

standard, and

•high V_{τ}

Opamp biasing (iii)

•The peak f_T/f_{MAX} current densities are constant with temperature

Sorin Voinigescu et al. CSICS-2005, Nov. 2nd, 2005

Opamp test structure measurements

- •130nm SiGe BICMOS with HBT f_T/f_{MAX} = 150/150 GHz
- •4 opamp half circuit test structures
- •4 differential opamp test structures

Opamp half ckt. DC transfer characteristics

Opamp half-ckt. frequency response with 50 Ohm load

10mA version: UGB= 37(7)-GHz (1pF), PM= 37° w/o comp **5mA version :** UGB=15.5(3)-GHz (1pF), PM=110° w/o comp

Opamp half-ckt. noise figure in 50 Ohm system

NF50 = 7-8 dB for 10mA version (no reactive matching employed)

Half ckt. UGB vs. MOSFET current density

•Opamp reaches maximum UGB beyond the peak f_{MAX} current density •UGB varies by less than 10% for I_{DS} = 0.2 to 0.4 mA/µm

Fully differential amplifier CM feedback

 Emitter followers provide:
 broadband CM feedback
 DC level-shifting at output
 reduced impact of load capacitance on UGB

Sorin Voinigescu et al. CSICS-2005, Nov. 2nd, 2005

1.2-GHz biquad bandpass filter

Sorin Voinigescu et al. CSICS-2005, Nov. 2nd, 2005

Opamp filter vs. Gm-LC filter

•2-stage opamp filter: 0.3x0.6mm²

1-stage gm-LC filter:
0.96x0.96mm²

4th order (2-stage) gm-LC vs. 2-stage opamp filter

P_{out} vs P_{in}

-5 (ugp) ¹⁰-15 Gm-LC P1dB/dB -20 Opamp P1dB/dB -25∟ -50 -30 -20 -40 -10 0 10 P_{in} (dBm)

P_{1dB} determined by filter gain and O_{1dB}
 Same O_{1dB}

Summary

MOS-HBT cascode topology maximizes UGB with good stability
 Radical approach to biasing CMOS-based opamps at peak f_{MAX} current density ensures:

maximum UGB

```
•robustness to I_D, T, L, V_T variation
```

◆good linearity

1.2-GHz Biquad filter with 2 opamps and CMF demonstrated
Linearity & power comparable to g_-LC filter but 5x area reduction

•Portable between 130-nm and 180-nm nodes (G. Ng et al. SiRF 2006)

Acknowledgements

Bernard Sautreuil & Steve McDowall of STMicroelectronicsCFI, OIT and NIT for equipment

Backup

n-MOSFET characteristic current densities invariant across technology nodes and foundries (NF sims)

Comparison of power gain in 90nm MOSFETs and HBTs

•MAG > 6 dB at 65 GHz in both HBTs and FETs

MAG of MOSFET cascode (barely) larger than that of MOSFET @ 65 GHz
Use CS/CE or HBT-based cascodes

Characteristic MOSFET current densities invariant over topologies

 The peak f_τ current density of a MOSFET cascode stage remains 0.3 mA/μm

•Cascode stage can be treated as a composite transistor in circuit design (f_{τ} , f_{MAX} , NF_{MIN}) • f_{τ} of MOSFET cascode is < 60% of MOSFET f_{τ}

Opamp biasing (iiV): best linearity bias

•Linearity depends on $f_{MAX}(I_{DS})$ flatness at peak

OIP1,OIP3~
$$\frac{f_{MAX}}{\frac{\partial^2 f_{MAX}}{\partial I_{C(DS)}^2}}$$

...but optimal linearity bias corresponds

to peak f_{τ} : 0.3 mA/µm

•Allows for 400 μ A_{pp}/ μ m or 460 mV_{pp} of

linear swing: i.e. >40% of V_{DD} .

Impact of scaling on OP_{1dB}

•Linearity depends on $f_{MAX}(V_{GS})$ flatness at peak

Linear voltage swing at input/output

decreases with every new node

Current swing is constant over nodes

Current and transistor size must be

increased to generate the same power as in $OP_{1dB} \propto \frac{\Delta I_{DS} \times V_{MAX}}{n} = 25 \frac{\mu W}{\mu m}$ in 90-nm MOSFETs older nodes

$$OP_{1dB} \propto \frac{\Delta I_{DS} \times V_{MAX}}{16} = 188 \frac{\mu W}{\mu m}$$
 in SiGe HBTs

*) V_{MAX} is the maximum safe voltage

Sorin Voinigescu et al. CSICS-2005, Nov. 2nd, 2005

Conclusions

•CMOS characteristic densities largely invariant across nodes and foundries

•Constant-current density biasing in analog/RF CMOS minimizes impact of L, I_{DS} , T, and V_{T} variation

•Characteristic current densities in MOSFETs are invariant over topologies (CS, MOS-MOS and MOS-HBT)

Implications for circuit design

•CMOS CML gates, LNAs, TIAs, Opamps, VCOs, Mixers, PAs can be designed algorithmically and ported across nodes and technologies