An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 dB Gain

Michael Gordon, Sorin P. Voinigescu

University of Toronto Toronto, Ontario, Canada

ESSCIRC 2004, Leuven, Belgium

Outline

Motivation
LNA Topology Comparison
Inductor-Based LNA Design
Fabrication
Measurement Results
Conclusion
Future Work

Work Motivation

GigaBit Ethernet in 70-GHz and 80-GHz band 77-GHz Automotive RADAR

□ mm-wave design advantages over 5-10 GHz RF

- Simpler and robust super-heterodyne radio architecture (A lot of bandwidth available)
- Smaller passives and die area (lower cost)
- Smaller antenna with higher gain

Research Goals

- Study the feasibility of Si-based transceiver blocks for mm-wave applications
- □ Develop a mm-wave LNA design methodology
- Assess modeling limitations of active and passive components at mm-wave frequencies
 - Inductors
 - SiGe HBTs

Transceiver Overview

Choice of Technology

	f_{T}, f_{MAX}	Integration	Noise Figure	Breakdown voltage	Mask Cost
InP HBT	160	low	high	high	low
InP HEMT	170	low	low	low-medium	moderate
0.18µm SiGe	150	high	high	medium	low
90nm CMOS	140	high	low	low	high

[S.P. Voinigescu et al, SiRF 2004]

□ CMOS NF < SiGe NF (in simulation)

 \square SiGe transistor $\rm NF_{min}$ of 5 dB stresses LNA design

Basic LNA Topologies

Common-Emitter

Common-Base

 Concurrent noise / input match Simple input match

Cascode

- Concurrent noise / input match
- Increased Gain
- High Isolation
- Increased Noise

First iteration tape-out at mm-wave frequency:

Topology must be insensitive to transistor model inaccuracies and process variations

LNA Topology Comparison

Low gain at mm-wave frequencies (need multi-stage)

- Use Noise Measure for comparison
- \square CE: lowest M_{min}, but lowest G_A

Parasitics and emitter degeneration reduce gain

□ Cascode is the safe choice with high G_A and robustness

Inductor-Based LNA Design

 GHz LNA in [S. Reynolds et al, ISSCC 2004] uses transmission-lines for matching and loading
Inductors can replace transmission-lines

- Smaller significant die area reduction
- L-C networks for input and output matching

Need to be able to design inductors for mm-wave frequencies and model them accurately

29 µm

330 pH Stacked Inductor

32 µm

440 pH **Stacked Inductor**

Cascode Design Methodology

Extension to an LNA Design Methodology presented in [S. Voinigescu et al, JSSC Sep '97] for 2-6 GHz

Starting with the cascode, bias it at its M_{min} current density (J_{OPT})

2. At J_{OPT}, size Q1-Q2 emitter lengths to match the real part of the optimum noise impedance (R_{sop}) to Z_o

Cascode Design Methodology cont.

 $\operatorname{Re}\left\{Z_{IN}\right\} = \frac{L_{e}\left(2\pi f_{T}\right)}{\left(\frac{C_{\pi}+2C_{\mu}}{C_{\pi}+C_{\mu}}\right)}$ Add L_F and L_B to match Z_{IN} to Z_{O} 3. Add L_c to resonate the tank at the 4. desired frequency -Ø.2 -Ø.1954Ø5 Ø.5 V_{BIAS} -Ø.1 Ø.3 Noise match at 60 GHZ (Gopt) **OUT Concurrent** input Ø. Ø. Ø. 1 Ø.5 impedance and Ø.1 optimum noise impedance match Input match at 60 GHZ (S11 -0.1 -0.3 \mathbf{L}_{e} -Ø.5 -0.198.405 -1.8 -2.05

LNA Schematic

- Use two stages for higher gain
- Inter-stage matching inductor to improve power transfer
 - Low-pass noise filtering of bias network

Bias Q5-Q6: 2 x 1.7μm / 0.2μm

mm-wave Inductor Modeling

mm-wave inductor design technique [T. Dickson et al, IMS 2004]

Use 3D stacked inductors

440 pH inductor

 Modeled using the ASITIC software tool
Extracted compact 2-π inductor models used in circuit design

Michael Gordon, ESSCIRC 2004 Slide 13 of 22

Fabrication

□ Fabricated in Jazz Semiconductor's production 0.18 µm SiGe120 BiCMOS process

- □ Standard 60µm x 60µm, pads (100µm pitch)
 □ Die size is pad limited 250µm x 200µm core
 □ 4 stacked inductors
 - 2 wire inductors

RF Input

Transistor Measurements

□ NF_{min} extracted from measured Y-Parameters

 Shown to be a valid technique for frequencies below f_T / 2 [S. Voinigescu et al, JSSC Sep '97]

 f_T and f_{MAX} = 150 GHz
NF_{min} @ 60 GHz = 5.2 dB
Good agreement with HBT model

Inductor Measurements

Short and Open test-structure de-embedding
Inductance is 15% higher than simulated
SRF (Self-Resonance-Frequency) is lower for the 3D stacked inductors than simulated
Measured Q > 10 at 50 GHz

S-parameter Measurements

22 dB Gain at 52 GHz

LNA Peak frequency is dictated by tank inductor

- Lower inductor SRF shifts the peak to lower frequency
- Biasing does not affect peak frequency

Michael Gordon, ESSCIRC 2004 Slide 17 of 22

Linearity Measurements

Input 1 dB compression point of -14 dBm
Output 1 dB compression point of 3 dBm

Comparison to other work

	Tech	Gain	NF	P _{IN1dB}	Power	Area	FOM
		(dB)	(dB)	(dBm)	(mW)		
22 GHz [X. Guan, JSSC Feb 2004]	0.18µm CMOS	15	6.0	-	24	*0.05 mm ²	-
24 GHz [H. Hashemi, ISSCC 2004]	0.18µm SiGe	25	3.8	-	20	-	_
60 GHz [S. Reynolds, ISSCC 2004]	0.12µm SiGe	17	4.2	-20	11	0.77 mm ²	1.72
52 GHz This work (3.3V)	0.18µm SiGe	22	7.5	-14	38	0.16 mm ²	1.88**
<mark>52 GHz</mark> This work (2.5V)	0.18µm SiGe	18	7.9	-18	19	0.16 mm ²	0.53**

$$LNA_{FOM} = \frac{G * P_{IN1dB} * f}{(NF - 1) * P}$$

* Area without pads

** Simulated Noise Figure

Summary and Conclusion

Gain	22 dB at 52 GHz				
S ₁₁ / S ₂₂	< -12 dB / -5 dB				
NF	7.5 dB (simulated)				
Isolation	< -30 dB				
P _{IN1dB} / P _{OUT1dB}	-14 dBm / +3 dBm				
Power	38 mW (11.4 mA from 3.3V)				

□ 52 GHz LNA with 22 dB gain using a production
0.18µm SiGe BiCMOS technology

□ Fully inductor-based circuit operating above 50 GHz

Significant die-area reduction over the use of transmission lines

Future work: 90nm CMOS LNA

- \Box CMOS f_T and f_{MAX} = 140 GHz
- □ Single-stage cascode LNA
 - 2.5 dB gain at 52 GHz
 - Uses 3D stacked inductors
- Peak shift down due to tank inductor

Future - Simulated 2-stage

Acknowledgements

Kenneth Yau for SiGe HBT characterization

- Jazz Semiconductor for financial support and fabrication
- □ NSERC
- □ Micronet
- □ Canadian Wireless Telecom Association