### 65-nm CMOS, W-band Receivers for Imaging Applications

Keith Tang Mehdi Khanpour Patrice Garcia\* Christophe Garnier\* Sorin Voinigescu

University of Toronto, \*STMicroelectronics







# Table of Content

- Motivation
- Circuit Schematics
- Fabrication
- Measurement Results
- Conclusion







# Motivation

- Investigation of W-band receivers in 65-nm GP CMOS
  - CMOS might provide alternatives to III-V and SiGe technology in imaging arrays:
    - Broadband (multi-GHz)

- Low noise
- Low power
  Small area
- Comparison of two LNA feedback topologies
  - Series-series feedback with inductor
  - Shunt-series feedback with transformer











### LNA – Schematic



- Inductive (series-series) feedback LNA
- Input matched by  $L_{G}$  and  $L_{S}$   $\Re\{Z_{IN}\} = 2\pi f_T L_S + R_G + R_S$
- Noise impedance matched by transistor sizing and biasing







- Input matched by  $L_P$ ,  $L_S$  and  $M \quad \Re\{Z_{IN}\} \approx \frac{L_P}{g_m \cdot M}, \quad M = k \sqrt{L_P L_S}$
- Noise impedance matched by transistor sizing and biasing







•  $S_{11}$ ,  $\Gamma_{opt} < -10 \text{ dB from 74-100 GHz for both designs}$ 





### Fabrication

- 65-nm GP/LP digital CMOS process
- 7 metal layers
- GP n-MOSFETs (80×60nm×1µm) with gate contacted on one side:  $f_T/f_{MAX}$ =170 GHz/200 GHz at V<sub>DS</sub> = 0.7 V
- GP MOSFETs 30% faster than LP MOSFETs and require lower V<sub>GS</sub> and V<sub>DS</sub>  $\rightarrow$  lower power
- Gate leakage does not affect mm-wave performance





### LNA breakouts – Die Photos



490 um x 300 um (pad) → 120 um x 170 um (core)





### Mixer breakout – Die Photo



### 470 um x 560 um (pad) → 190 um x 160 um (core)





### Receiver – Die Photos





### IND-feedback Receiver XFMR-feedback Receiver 460 um x 500 um (pad) $\rightarrow$ 160 um x 370 um (core)



University of Toronto 2007



- Requires 2.2 V V<sub>DD</sub> for 8 9 dB gain
- 4 5 dB below simulation



### Measurements for 2<sup>nd</sup> Spin with Modified Layout

Series resistance in ground metallization of LNA was found in the first spin.

A second spin of the design was fabricated with:

- Wider metal lines in ground mesh at top level
- Increased number of vias (even between M5 and M6)
- LNA inductance values adjusted to match @ 80 GHz







#### • Measured gain @ $1.5 V V_{DD} = 13 dB$





• Meas. gain @  $V_{DD} = 1.5$  V is 1 - 2 dB below sims.

S<sub>11</sub> < -20 dB from 80 – 90 GHz (xfmr-feedback)</li>





### Meas. Mixer – Conversion Gain





### Meas. Mixer – NF<sub>DSB</sub>



- Includes ~2 dB transformer loss
- Lowest NF<sub>DSB</sub> mixer at 80 90 GHz in silicon







LO @ 75 GHz due to equipment limitation



### Estimated LNA NF



$$G_{LNA} = G_{RCVR} - G_{MIXER}$$
$$F_{LNA} = F_{RCVR} - \frac{F_{MIXER} - 1}{G_{LNA}}$$

LNA gain peaks at
 frequency higher than
 measured (output pad
 capacitance removed)

LNA NF<sub>50</sub>  $\sim$ 6 – 7 dB





## Summary of Results

|                         | V <sub>DD</sub><br>[V] | LNA               |      | IF Buffer         | Receiver          |      |        |                 |
|-------------------------|------------------------|-------------------|------|-------------------|-------------------|------|--------|-----------------|
| 1 <sup>st</sup><br>Spin |                        | P <sub>diss</sub> | Gain | P <sub>diss</sub> | P <sub>diss</sub> | Gain | NF     | S <sub>11</sub> |
|                         |                        | [mW]              | [dB] | [mW]              | [mW]              | [dB] | [dB]   | [dB]            |
|                         | 1.8                    | 38                | 5.8  | 47                | 95                | 11.6 | 9 – 10 | < -10           |
|                         | 2.2                    | 57                | 7.8  | 75                | 150               | 13.5 | 8 – 9  | (80-95+ GHz)    |
| Ond                     | 1.2                    | 24                | 11.1 | 20                | 48                | 6.1  | 9 – 10 | 10              |
| Spin                    | 1.5                    | 34                | 13.4 | 30                | 71                | 13.6 | 7 – 8  | < -10           |
|                         | 1.8                    | 48                | 14.9 | 45                | 104               | 17.7 | 6 – 7  | (74-95* GHZ)    |

 Dramatic increase in performance just with better top-level ground mesh and vias

• ~  $\frac{1}{2}$  of P<sub>diss</sub> used in IF buffer to drive 50 $\Omega$  off-chip

# Conclusion

- 74 94 GHz receiver with 8 dB NF and 13 dB gain demonstrated in 65 nm GP CMOS technology.
- Inductive-feedback and transformer-feedback LNA topologies presented:
  - Similar performance achieved by different matching procedures
- Layout style significantly affects circuit performance.
- Post-layout simulation at top-level, with ground mesh must be carried out.





# Acknowledgement

- Katya Laskin for measurements on the second-spin
- Alex Tomkins for inductor and transformer measurements
- Jaro Pristupa and CMC for CAD tools
- Bernard Sautreuil of STM for facilitating the technology access
- CITO for funding
- ECTI, NSERC, CFI and OIF for equipment









LO power



