Towards a sub-2.5V, 100-Gb/s Serial Transceiver

S.P. Voinigescu ${ }^{1}$, R. Aroca ${ }^{1}$, T.O. Dickson ${ }^{1}$, S.T. Nicolson ${ }^{1}$,
T. Chalvatzis ${ }^{1}$, P. Chevalier ${ }^{2}$, P. Garcia² ${ }^{2}$, C. Garnier ${ }^{2}$, and
B. Sautreuil ${ }^{2}$

1) University of Toronto,
2) STMicroelectronics

Outline

-100GE fundamentals

-Design methodology
*Schematic level approach
*Layout
-90-Gb/s half-rate transceiver
-100-Gb/s full-rate transceiver blocks
${ }^{\bullet}$ Round-up

Why $100 \mathrm{~Gb} / \mathrm{s}$?

Network traffic growth (from IEEE802.3 HSSG)

- Increase of the network traffic capacity is expected to exceed Moore's Law.
- Forecasts expect 10 fold in 4 years
\Rightarrow Factor of 100 in 8 Years
- The traffic of today would be only 1% of that traffic which is expected in about 8 years
\Rightarrow Network build up for this demand
\Rightarrow Need for high-speed interfaces at $100 \mathrm{Gbit} / \mathrm{s}$ or later on at $1 \mathrm{Tbit} / \mathrm{s}$ in the future networks
\Rightarrow Technological breakthrough is required for cost effective solutions

$$
\text { - • T- Trelterom } \text { - •T-Systems }
$$

Network traffic growth (from IEEE802.3 HSSG)

- Increase of the network traffic capacity is expected to exceed Moore's Law.
- Forecasts expect 10 fold in 4 years

$$
\Rightarrow \text { Factor of } 100 \text { in } 8 \text { Years }
$$

- The traffic of today would be only 1% of that traffic which is expected in about 8 years
\Rightarrow Network build up for this demand
\Rightarrow Need for high-speed interfaces at $100 \mathrm{Gbit} / \mathrm{s}$ or later on at $1 \mathrm{Tbit} / \mathrm{s}$ in the future networks
\Rightarrow Technological breakthrough is required for cost effective solutions

What are the applications?

Those that have demonstrated the need for bandwidth beyond existing

capabilities:

*High performance computing
*Video-on-demand delivery
Blade Servers
*Data center
*Internet exchanges
-Metro: over 40km of SMF

1m over a backplane
for inside-the-chassis communications

10m over copper cables for switching within a server rack or row

Pedestal Servers

100m over OM3 MMF
to connect systems across the data center

What are the applications?

Those that have demonstrated the need for bandwidth beyond existing

capabilities:

*High performance computing
*Video-on-demand delivery
*Data center
$*$ Internet exchanges
*Metro: over 40km of SMF
uting

for switching within a
er copper cables
server rack or row

Possible system architectures (R.f. Derksen et al. CSICS-07)

 -107Gb/s serial OOK-Optical modulator not available
*OK now over 10m of coaxial cable

Possible system architectures (R.H. Derksen et al. CSICS-07)

 -107Gb/s serial OOK*Optical modulator not available
*OK now over 10m of coaxial cable
-54GBaud/s= 2*54Gb/s RZ-DQPSK
*More power, still fast electronics
*Optics OK

Possible system architectures (R.H. Derksen et al. CSICS-07) -107Gb/s serial OOK
*Optical modulator not available
*OK now over 10m of coaxial cable
-54GBaud/s= 2*54Gb/s RZ-DQPSK
*More power, still fast electronics
-Optics OK
-27GBaud/s $=4^{*}(27 \mathrm{~Gb} / \mathrm{s})$ Polarization
Multiplex QPSK
*4x 5-6bit, 54GS/s ADCs and DSP

100-Gb/s Serial Transceiver

$100 \mathrm{~Gb} / \mathrm{s}$
should consume less $5 \times 10 \mathrm{~Gb} / \mathrm{s}$ power and cost less than $2 \times 40 \mathrm{~Gb} / \mathrm{s}$

3W, \$250

-10-GE CMOS transceiver 0.8 W from 1.2 V and $<\$ 50$

100-Gb/s Serial Transceiver

$100 \mathrm{~Gb} / \mathrm{s}$
should consume less $5 \times 10 \mathrm{~Gb} / \mathrm{s}$ power and cost less than $2 \times 40 \mathrm{~Gb} / \mathrm{s}$

3W, \$250

-10-GE CMOS transceiver 0.8W from 1.2 V and < \$50
-40+ Gb/s SiGe-HBT ICs too power hungry and 3.3 V supply

100-Gb/s Serial Transceiver

$100 \mathrm{~Gb} / \mathrm{s}$

3W, \$250

Sorin Voinigescu et al., CICC-2007, September 18th, 2007

What are the options?

-Low-voltage (sub-2.5V) BiCMOS logic with 300-GHz HBTs
-1.2V 45-nm GP CMOS CML logic without current source

65-nm LP n-MOS vs. SiGe HBT

- Comparable high frequency performance
- Only difference: $g_{\mathrm{m}} / I(G a i n / l), V_{\text {swing }} \Rightarrow$ HBT wins in dynamic range $=$ length of data link

GP vs. LP 65-nm CMOS

-GP 30\% faster than LP and 300 mV lower $\mathrm{V}_{\text {Gs }}=>$ lower power!

GP vs. LP 65-nm CMOS

-GP 30\% faster than LP and 300 mV lower $\mathrm{V}_{\text {Gs }}=>$ lower power!
${ }^{.}$Peak f_{T} at 0.3 to $0.35 \mathrm{~mA} / \mu \mathrm{m}$

GP vs. LP 65-nm CMOS

-GP 30\% faster than LP and 300 mV lower $\mathrm{V}_{\mathrm{Gs}}=>$ lower power!
.Peak f_{T} at 0.3 to $0.35 \mathrm{~mA} / \mu \mathrm{m}$
-VT variation is large but
 mostly irrelevant

GP vs. LP 65-nm CMOS

-GP 30\% faster than LP and 300 mV lower $\mathrm{V}_{\mathrm{Gs}}=>$ lower power!
${ }^{.}$Peak f_{T} at 0.3 to $0.35 \mathrm{~mA} / \mu \mathrm{m}$
-VT variation is large but mostly irrelevant
f_{T} and $\mathrm{f}_{\mathrm{MAX}}$ increase with V_{DS}

FET/HBT small-signal circuit including degeneration

${ }^{\bullet} R_{s}\left(R_{E}\right)$ included in $R_{G(B)}, g_{\text {meffi' }}, g_{\text {oeffif }}, f_{T}$ and $C_{\text {gseff }} / C_{\text {beeff }}$
$\cdot Z_{\text {in }} \cong R_{g}+R_{s}-j j_{T} /\left(\mathrm{fg}_{\text {meff }}\right) ; \quad g_{\text {meff }}=g_{\mathrm{m}} /\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{s}}\right)$
oln 300-GHz SiGe HBTs $g_{m} R_{E}=3.5$ => built-in feedback, stable over T

2-MOSFET stack topologies (S. Voinigescu et al. CICC-05)

${ }^{*}$ Need $V_{D S}>0.5 \mathrm{~V}$ to operate at $40+\mathrm{Gb} / \mathrm{s}=>$ remove current source

2-MOSFET stack topologies (S. Voinigescu ef al. CICC-05)

${ }^{*}$ Need $V_{\text {Ds }}>0.5 \mathrm{~V}$ to operate at $40+\mathrm{Gb} / \mathrm{s}=>$ remove current source
2 ${ }_{\mathrm{Mg}}$ of data FETs determines V_{DS} of clock FETs => LVT + HVT

High-speed, Iow-power BiCMOS latch (E. Laskin JSSC-Oct. 06)

High-speed, Iow-power BiCMOS Iatch (E. Laskin JSSC-Oct. 06)

-3.3 V to 2.5 V and reduced number of tails

High-speed, Iow-power BiCMOS latch (E. Laskin JSSC-Oct. 06)

 -HBT ECL to BiCMOS CML

-3.3 V to 2.5 V and reduced number of tails
-1.8 V (lower power) at same speed

High-speed, low-power BiCMOS Jatch (E. Laskkin JSSC-Oct. 06)

-HBT ECL to BiCMOS CML
-3.3 V to 2.5 V and reduced number of tails
-1.8 V (lower power) at same speed
-Inductive peaking to increase speed

Outline

-100GE fundamentals
-Design methodology
-90-Gb/s half-rate transceiver
-100-Gb/s full-rate transceiver blocks
-Round-up

GP 65-nm CMOS scales as expected

${ }^{\circ}$ Future node performance is easy to predict from Dennard's 1974 constantfield scaling eqns.
-All MOSFETs (from all foundries) are practically the same.
$0.15 \mathrm{~mA} / \mu \mathrm{m}$ to $0.45 \mathrm{~mA} / \mu \mathrm{m}$ is the
recommended bias range

Scaling of inductors to 100+GHz

- $f=>f \times S, S=$ scaling factor, $f=$ operation frequency
- W -> W/S, W= stripe width
- | -> |/S, I = total length of inductor winding
- d -> d/S, d = inductor external diameter
- $d_{\text {avg }} \rightarrow d_{\text {avg }} / S, d=$ inductor average diameter

- h -> h/S, h = dielectric thickness
- $\mathrm{t}=\mathrm{constant}, \mathrm{t}=$ metal thickness

Frequency scaling equations of inductor x-rnodel

$$
\begin{aligned}
& \mathrm{L} \approx \frac{6 \mu_{0} \mathrm{n}^{2} \mathrm{~d}_{\text {avg }}^{2}}{11 \mathrm{~d}-7 \mathrm{~d}_{\text {avg }}} \quad \longrightarrow \frac{\mathrm{L}}{\mathrm{~S}} \approx \frac{6 \mu_{0} \mathrm{n}^{2}\left[\frac{\mathrm{~d}_{\text {avg }}}{\mathrm{S}}\right]^{2}}{11 \frac{\mathrm{~d}}{\mathrm{~S}}-7 \frac{\mathrm{~d}_{\text {avg }}}{\mathrm{S}}} \\
& \mathrm{C}_{\mathrm{ox}}=\frac{1}{2} \mathrm{IW} \frac{\epsilon_{\mathrm{ox}}}{\mathrm{~h}} \longrightarrow \frac{\mathrm{C}_{\mathrm{ox}}}{\mathrm{~S}}=\frac{1}{2} \frac{1}{\mathrm{~S}} \frac{\mathrm{~W}}{\mathrm{~S}} \frac{\epsilon_{\mathrm{ox}}}{\frac{\mathrm{~h}}{\mathrm{~S}}} \\
& C_{p}=n W^{2} \frac{\epsilon_{\text {ox }}}{h_{\text {M9-M8 }}} \longrightarrow \frac{C_{p}}{S}=n\left(\frac{W}{S}\right)^{2} \frac{\epsilon_{\text {ox }}}{\frac{h_{\text {M9-M8 }}}{S}} \\
& S R F \approx \frac{1}{2 \pi \sqrt{L\left(C_{o x}+C_{p}\right)}} \longrightarrow S \times S R F=\frac{1}{2 \pi \sqrt{\frac{L}{S}\left(\frac{C_{0 x}}{S}+\frac{C_{p}}{S}\right)}}
\end{aligned}
$$

Scaling of inductors to $100+\mathrm{GHz}$ (ii)

Outcome

*Inductors/transformers can be as small and inexpensive as transistors *As in MOSFETs, series resistance does not scale

$$
\begin{aligned}
\mathrm{R}_{\mathrm{DC}} & =\frac{\rho \mathrm{l}}{\mathrm{Wt}} \rightarrow \mathrm{R}_{\mathrm{DC}}=\frac{\rho \frac{\mathrm{l}}{\mathrm{~S}}}{\frac{\mathrm{~W}}{\mathrm{~S}}} \quad \mathrm{R}_{\mathrm{AC}}=\frac{\rho \frac{\mathrm{l}}{\mathrm{~S}}}{\frac{\mathrm{~W}}{\mathrm{~S}} \delta\left[1-\exp \left(\frac{-\mathrm{t}}{\delta}\right)\right]} \\
\delta & =\sqrt{\frac{1}{\pi \mathrm{f} \mu \sigma}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{AC}} & =\frac{\rho \frac{\mathrm{l}}{\mathrm{~S}}}{\frac{\mathrm{~W}}{\mathrm{~S}} \delta\left[1-\exp \left(\frac{-\mathrm{t}}{\delta}\right)\right]} \\
\mathrm{Q} & =\frac{\omega \times \mathrm{S} \frac{\mathrm{~L}}{\mathrm{~S}}}{\mathrm{R}_{\mathrm{DC}}+\mathrm{R}_{\mathrm{AC}}}=\frac{\omega \mathrm{L}}{\mathrm{R}_{\mathrm{DC}}+\mathrm{R}_{\mathrm{AC}}}
\end{aligned}
$$

-The peak Q value remains the same, with PQF at $f x S$

Inductor and interconnect modeling (E. Laskin RFIC-07)

-44-pH inductor for the oscillator tank
-Shunted metals for low loss
-Designed using ASITIC, SRF > 400 GHz

Inductor model verification through 94 GHz

Key design methodlology icleas

-Bias at constant current density to minimize PVT in nanoscale CMOS
${ }^{\bullet}$ Avoid stacked-FET topologies to reduce impact of VT variation.
-Trade off bias current with inductive peaking to minimize tail currents
-Use analytical equations for 1st. cut design of all circuits
-Add gate resistance to digital CMOS model
-Layout in nanoscale CMOS is >> important than schematic

-Minimize footprint by merging transistors in diff. pairs, latching quads

Hierarchical breakout of cell for parasitic extraction (ii)

-Extract RC parasitics at cell level without inductors

Hierarchical breakout of cell for parasitic extraction (iii)

-Extract RC parasitics at cell level without inductors
\bullet Model inductors and long interconnect as $2-\pi$ circuit with ASITIC

Impact of layout on 65 -nm LP CMOS staticic rrequency divider

Modeling power/bias/GND distribution (S. Nicolson et alo, IMIS-2007)

- Wide lines in metal mesh planes (max C, min. L and R)
- Surround bias/signal lines with GND-ed Faraday cage
- Isolate regions of the chip (grounded p-taps and DNW)
- Provide local de-coupling (< 0.5pF for 80 GHz)

Example: Bias/GND mesh satisfying metal density rules

Outline

-100GE system architectures
-Design methodology
-90-Gb/s half-rate transceiver
-100-Gb/s full-rate transceiver blocks
${ }^{\bullet}$ Round-up

2.5-V, 1.4W, 90-Gb/sTransmitter (T.Dickson et al. CSICS-06)

2.5-V, 90-Gb/s BiCMOS Selector

EF for higher bandwidth:

Measured results with external clock: $80 \mathrm{~Gb} / \mathrm{s}$

- Running for more than 1 hour continuously in the lab.

JJitter: 560 fs (rms), Rise/fall time: 4-5 ps, Amplitude: $300 \mathrm{mV}_{\mathrm{pp}}$ per side

Verification of correct multiplexing

Measured $80-\mathrm{Gb} / \mathrm{s}$ Sequence

Using pattern captiture capabilities of the Agilent 86100C DCA

$90 \mathrm{~Gb} / \mathrm{s}$: amplitude control (new spin)

Little degradation in eye quality as amplitude varies from 150 mV to 300 mV per side

显

$80 \mathrm{~Gb} / \mathrm{s} \mathrm{at} 100^{\circ} \mathrm{C}$

Comparison

$130-\mathrm{nm}$ CMOS $+170-\mathrm{GHz}$ SiGe HBT $=2 \times$ speed $+1 / 2$ power of $130-\mathrm{nm}$ CMOS

Technology	$\mathrm{f}_{\mathrm{T}} / \mathrm{f}_{\text {MAX }}$	Data Rate	Supply Voltage	Power
	85/90 G--	40 Gb/s (half-rate)	$1.5{ }^{-1}{ }^{-}$	$2.7 \overline{\mathrm{~W}}_{1}{ }_{1}$
InP HBT	150/150 GHz	$43 \mathrm{~Gb} / \mathrm{s}$ (full-rate)	-3.6/-5.2 V	3.6 W
180-nm SiGe BiCMOS	HBT: 120/100 GHz	$43 \mathrm{~Gb} / \mathrm{s}$ (half-rate)	-3.6 V	1.6 W
180-nm SiGe BiCMOS	HBT: 120/100 GHz	$43 \mathrm{~Gb} / \mathrm{s}$ (full-rate)	-3.6 V	2.3 W
$\begin{array}{\|c} \text { I } 130-\mathrm{nm} \mathrm{SiGe} \\ \text { BiCMOS } \\ \text { I__ } \end{array}$	$\begin{gathered} \text { MOS: } 85 / 90 \mathrm{GHz} \\ \text { HBT: } 170 / 200 \mathrm{GHz} \end{gathered}$	$90 \mathrm{~Gb} / \mathrm{s}$ (half-rate)	2.5 V	1.36 W I

Outline

-100GE system architectures
-Design methodology
-90-Gb/s half-rate transceiver
-100-Gb/s full-rate transceiver blocks
-Round-up

Critical 100-Gb/s full-rate circuiit blocks

-100-GHz flip-flop
$-100-\mathrm{GHz}$ static frequency divider
-100-GHz clock distribution network
-100-GHz low-phase noise VCO

Divide-by-2 block diagram and latch schematics

Divider layout ($20 \times 16 \mu \mathrm{~m} n^{2}$)

90-GHz, 65-nm GP CMOS static divider: 2\% variation

WAFER 17 - SOF MAPPING (GHz)

Power $=19.6 \mathrm{~mW}$ per divider + 22.4 mW for output buffer

Average Self-Oscillation Frequency (SOF) $=39.5 \mathrm{GHz}$ (@ the output)

	1	2	3	4	5	6	7	8	9	10
A										
B					39.25	39.14	39.26	39.3		
C					39.3	39.12	39.325	39.365		
D				39.38	39.4	39.593	39.78	39.173		
E				39.2	39.5	39.5	39.67	39.34	39.14	39.06
F				39.107	39.473	39.473	39.353	39.34	39.16	38.95
G				39.08	39.207	39.333	39.587	39.34	39.36	39.08
H				38.94	39.34	39.536	39.413	39.305	39.22	39.12
1				39.23	39.273	39.5	39.513	39.43	39.307	39.51
J				39.31	39.465	39.67	39.72	39.567	39.107	
K				39.42	39.395	39.455	39.44			
L					40.02	39.895	40.02			

PVT performance of 65-nm GP CMOS divider

${ }^{\circ}$ Operates up to 78.5 GHz at $100^{\circ} \mathrm{C}$ from 1.1 V supply and at 80 GHz at $125^{\circ} \mathrm{C}$ from 1.4 V
-Does not divide below 57GHz

65-nm GP/LP CMOS vs. SiGe HBT and BiCMOS dividers

Sorin Voinigescu et al., CICC-2007, September 18th, 2007

Comparison with published 80+GHz static dividers

Reference	Self-Oscillation Freq.	Max. Divider Freq.	Power Consumption	Technology
This work	45 GHz	51 GHz	$42 \mathrm{~mW}(1.5 \mathrm{~V})$	65 nm LP-CMOS
This work	80 GHz	91 GHz	$20 \mathrm{~mW}(1.2 \mathrm{~V})$	65 nm GP-CMOS
Plouchart ISCC-07	92 GHz	102 GHz	$52.4 \mathrm{~mW}(2.2 \mathrm{~V})$	65 nm HP SOI CMOS
Irotta CSICS-05	65 GHz	110 GHz	$1.35 \mathrm{~W}(-5.2 \mathrm{~V})$	$225-\mathrm{GHz} f_{T}$ SiGe HBT
Hitko CSICS-04	95 GHz	143.6 GHz	90 mW	$400-\mathrm{GHz} f_{T}$ InP
Rylyakov CSICS-04 Laskin BCTM-07	71 GHz	96 GHz	$770 \mathrm{~mW}(-5.0 \mathrm{~V})$	$210-\mathrm{GHz} f_{T}$ SiGe HBT
Nicolson IMS-07	81 GHz	$>105 \mathrm{GHz}$	$75 \mathrm{~mW}(2.5 \mathrm{~V})$	$230-\mathrm{GHz} f_{T}$ SiGe HBT

Comparison with published 80+GHz static dividers

Reference	Self-Oscillation Freq.	Max. Divider Freq.	Power Consumption	Technology
This work	15-12-	Cicut	42minvoricu	65nm D DCMOS
This work	80 GHz	91 GHz	20 mW (1.2V)	65nm GP-CMOS
	92 GHz	102 GHz	$52.4 \mathrm{~mW}(2.2 \mathrm{~V})$	65nm HP SOI CMOS
Trotta CSICS-05	65 GHz	110 GHz	1.35 W (-5.2V)	225-GHz f_{T} SiGe HBT
$\begin{gathered} \text { Hitko } \\ \text { CSICS-04 } \end{gathered}$	95 GHz	143.6 GHz	90 mW	$400-\mathrm{GHz} f_{T} \operatorname{lnP}$
Rylyakov CSICS-04	71 GHz	96 GHz	$770 \mathrm{~mW}(-5.0 \mathrm{~V})$	$210-\mathrm{GHz} f_{T}$ SiGe HBT
Laskin BCTM-07	77 GHz	$>100 \mathrm{GHz}$	122 mW (3.3-3.6V)	$230-\mathrm{GHz} f_{T}$ SiGe HBT
Nicolson IMS-07	81 GHz	$>105 \mathrm{GHz}$	75 mW (2.5V)	$230-\mathrm{GHz} f_{T}$ SiGe HBT

70-100 GHz 65-nm LP CMOS vs. SiGe HBT LNAs as clock buffiers (S. Nicolson et al. IMS-07)

Sorin Voinigescu et al., CICC-2007, September 18th, 2007
U不

105-GHz SiGe HBT Colpitts VCO Schematics

Die size: $0.4 \mathrm{~mm} \times 0.5 \mathrm{~mm}$

104-GHz VCO phase noise: -101 dBc/rlz © 1MMz

Summary

${ }^{*}$ Need simpler topologies with fewer transistors for higher speed

Summary

${ }^{-}$Need simpler topologies with fewer transistors for higher speed -GP MOSFET scaling is predictable and desired for high-speed

Summary

${ }^{*}$ Need simpler topologies with fewer transistors for higher speed
 -GP MOSFET scaling is predictable and desired for high-speed
 -Layout critical in nanoscale CMOS for 100-GHz applications

Summary

- Need simpler topologies with fewer transistors for higher speed
-GP MOSFET scaling is predictable and desired for high-speed
-Layout critical in nanoscale CMOS for $100-\mathrm{GHz}$ applications
$-1.4 \mathrm{~W}, 90-\mathrm{Gb} / \mathrm{s}$ half-rate transmitter in 170-GHz SiGe BiCMOS

Summary

-Need simpler topologies with fewer transistors for higher speed
-GP MOSFET scaling is predictable and desired for high-speed
-Layout critical in nanoscale CMOS for $100-\mathrm{GHz}$ applications
$-1.4 \mathrm{~W}, 90-\mathrm{Gb} /$ s half-rate transmitter in 170-GHz SiGe BiCMOS
${ }^{\circ}$ Full-rate $100-\mathrm{Gb} / \mathrm{s}$ circuits in 65-nm CMOS and SiGe HBT technologies

Surnmary

-Need simpler topologies with fewer transistors for higher speed
-GP MOSFET scaling is predictable and desired for high-speed
-Layout critical in nanoscale CMOS for 100-GHz applications
$-1.4 \mathrm{~W}, 90-\mathrm{Gb} / \mathrm{s}$ half-rate transmitter in 170-GHz SiGe BiCMOS
-Full-rate 100-Gb/s circuits in 65-nm CMOS and SiGe HBT technologies
${ }^{\bullet}$ A $3 \mathrm{~W}, 100-\mathrm{Gb} / \mathrm{s}$ half-rate serial transceiver is feasible in $300-\mathrm{GHz}$ SiGe
BiCMOS technology now

Surnmary

-Need simpler topologies with fewer transistors for higher speed
-GP MOSFET scaling is predictable and desired for high-speed
-Layout critical in nanoscale CMOS for 100-GHz applications
$-1.4 \mathrm{~W}, 90-\mathrm{Gb} / \mathrm{s}$ half-rate transmitter in 170-GHz SiGe BiCMOS
-Full-rate 100-Gb/s circuits in 65-nm CMOS and SiGe HBT technologies
${ }^{\bullet}$ A $3 \mathrm{~W}, 100-\mathrm{Gb} / \mathrm{s}$ half-rate serial transceiver is feasible in $300-\mathrm{GHz}$ SiGe BiCMOS technology now
-At least 45-nm GP CMOS is needed for half-rate 100-Gb/s transceiver

Acknowledgments

- Jaro Pristupa and CMC for CAD support

-OIT, CFI, ECTI for equipment

Back up

Phase frequency detector

36-43 GHz Colpitts VCO

- SiGe HBTs used as negative resistance generators.
- Differential tuning to reject common-mode noise.
- Maximize tank swing, bias HBTs at $\mathrm{NF}_{\text {MI }}$ for low phase noise

VCO Phase Noise

* Agilent 04:09:46 Jan 8, 2007

Freq/Channel

File Operation Status, C:\SCREN031.GIF file saved

$-103 \mathrm{dBc} / \mathrm{Hz}$ @ 1-MHz offset

PLL measurements (T. Chalvatris et all, VLSII-07)

-Locking range: $38-42 \mathrm{GHz}$ -RMS jitter: $\sigma_{t}=496$ fs

Copyright 2000-2005 Agilent Technologies

90nm CMOS retiming DFF (T. Chalvatzis et all. JSSC July 07)

Clock-path biasing scheme

Measurements at 40Gb/s and 1.2V

- Error-free 508-bit pattern olnput (top), output (bottom)

Reference	Technology	Rate	Supply	$\mathrm{P}_{\text {LATCH }}$
[Suzuki,JSSC2004]	$245-\mathrm{GHz}$ InP HEMT	$80 \mathrm{~Gb} / \mathrm{s}$	5.7 V	N/A
[Amamiya,JSSC2005]	$150-\mathrm{GHz}$ InP HBT	$50 \mathrm{~Gb} / \mathrm{s}$	1.5 V	20 mW
[Dickson,CSICS2006]	$150-\mathrm{GHz} \mathrm{SiGe} \mathrm{BiCMOS}$	$43.5 \mathrm{~Gb} / \mathrm{s}$	2.5 V	20 mW
This work	$120-\mathrm{GHz} \mathrm{CMOS}$	$40 \mathrm{~Gb} / \mathrm{s}$	1.2 V	10.8 mW

[^0]
CMOS vs. HBT amplifiers (useful as clock buffers)

65nm LP CMOS ($55 \mathrm{~mW}, 13.5 \mathrm{~dB}$)

290-GHz SiGe HBT
($52 \mathrm{~mW}, 25 \mathrm{~dB}$)
[S.T. Nicolson et al. IMS-07, CSICS-06]

Sirns before and after extraction of transistor layout

Sorin Voinigescu et al., CICC-2007, September 18th, 2007

SOF Variation for 65nm LP Divider (v2): <4\%

	21.9					
		21.84				22.5

Mapping of 10 dies across the wafer shows < 4\% variation in SOF

Average SOF $=22 \mathrm{GHz}$
Power $=24 \mathrm{~mW} /$ latch

Measured sensitivity curves vs. temperature @ $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$

Sorin Voinigescu et al., CICC-2007, September 18th, 2007

Phase Noise and Jitter Performance of 65nm LP Divider (v2) - 38GHz Input

Agilent 09:48:59 Mar 22, 2007

19GHz divided down output
Output swing $=200 \mathrm{mV}_{\mathrm{pp}}$
~200fs of RMS jitter

Phase Noise and Jitter Performance of 65nm LP Divider (v2) - 50GHz Input

* Agilent 09:28:51 Mar 22, 2007

25 GHz divided down output
Output swing $=150 \mathrm{mV}_{\mathrm{pp}}$
~217fs of RMS jitter

Latch layout (12 x $6 \mu \mu^{2}$)

65nm GP CMOS tirne domain measurements

- 76 GHz divided down output signal showing low timing jitter

Output spectrum and phase noise

- 90 GHz divided down spectrum
-1.2 V supply @ $25^{\circ} \mathrm{C}$
- Output phase noise for 78GHz input
-1.2V supply @ $25^{\circ} \mathrm{C}$

[^0]: Aurs

