Methodology for Simultaneous Noise and Impedance Matching in W-band LNAs

Sean T. Nicolson and Sorin Voinigescu University of Toronto sorinv@eecg.toronto.edu

CSICS-2006, San Antonio, November 15, 2006

Outline

Introduction

Noise matching issues at mm-waves

Mm-wave LNA design methodology

•80-94 GHz CMOS LNA examples

Summary

Motivation

80-100 GHz applications

- Automotive radar (SiGe BiCMOS)
- Active/passive imaging (SiGe BiCMOS, 65nm CMOS)

NF_{MIN} of nanoscale **MOSFETs** is very competitive at mm-waves

(P.Chevalier et al. CSICS-2006)

Issues

Pad capacitance and bondwire or flip-chip bump inductance

SiGe HBT and CMOS LNA Design Philosophy

Active device noise matching

•Bias for minimum F_{MN} $\frac{\partial F_{MIN}(f, J = J_{OPT})}{\partial J} = 0$ •Find optimal $W_f(I_E)$ for given frequency $\frac{\partial F_{MIN}(W_f = W_{fopt})}{\partial W_f} = 0$

◆size N_f or number of transistors connected in parallel for Re{ Z_{sopt} } = Z_0

•Lossless feedback for input impedance matching $Z_{\mathbb{N}}$ and $\text{Im}\{Z_{\text{sopt}}\}$

Cascode with series-series inductive feedback is the preferred topology

Biasing MOSFET LNA Topology for Minimum Noise

•MOSFET, cascode $J_{OPT} = 0.15$ mA/µm irrespective of *frequency*, W_f , and technology node

Biasing SiGe HBT LNA Topology for Minimum Noise

• J_{OPT} depends on topology, increases with frequency and in more advanced technology node

Refinements for mm-wave CMOS LNA design: f_T and NF_{MN} of topology with L_M

Both $f_{\scriptscriptstyle T}$ and $NF_{\scriptscriptstyle MIN}$ improve

Similar impact (15..20%) on bulk and SOI cascode

Sean Nicolson & Sorin Voinigescu, CSICS-2006, November 15, 2006

Selecting MOSFET W, & Gate Contact Geometry

Compromise between gate parasitic capacitance and gate resistance

•gate contacted on one side

$$R_G = \frac{\frac{R_{CON}}{N_{CON}} + \frac{R_{sq}}{L} \left[W_{ext} + \frac{W_f}{3} \right]}{N_f}$$

•gate contacted on both sides

Sean Nicolson & Sorin Voinigescu, CSICS-2006, November 15, 2006

Experiments in 90nm GP CMOS 77GHz 1-stage cascode with variable W_f gate geometry

Refinements at mm-waves: source impedance

$$R_{s} = \frac{Z_{0}}{(1 - \omega^{2} L_{BW} C_{PAD}) + \omega^{2} Z_{0}^{2} C_{PAD}^{2}} \quad X_{s} = j \omega \frac{[L_{BW} (1 - \omega^{2} L_{BW} C_{PAD}) - Z_{0}^{2} C_{PAD}]}{(1 - \omega^{2} L_{BW} C_{PAD}) + \omega^{2} Z_{0}^{2} C_{PAD}^{2}}$$

•Without bondwire

$$R_{s} = \frac{Z_{0}}{k} \qquad Z_{s} = \frac{Z_{0}}{k} - j \frac{\omega C_{PAD} Z_{0}}{k}$$

 $k = 1 + \omega^2 C_{PAD}^2 Z_0^2$

Proposed mm-Wave LNA Algorithmic Design Methodology

 $\bullet Z_s = R_s + jX_s$

•W_f and bias at J_{OPT}

• L_{M} to maximize f_{T} /NF_{MIN} of topology @ J_{OPT}

•Find optimal N_f such that $R_s = \text{Re}(Z_{SOPT}) \textcircled{O} J_{OPT}$

•Find
$$L_s = R_s / \omega_T$$
 such that $R_s = Re\{Z_N\}$

•Find
$$L_G$$
 such that $X_s = Imag\{Z_{IN}\} = Imag\{Z_{SOPT}\}$

•Output matching : L_{D1}, C_D

84-94 GHz xfmr-coupled CS-CG LNA in 90nm GP CMOS

- Peak gain = 1.7 dB (91GHz)
- BW_{3dB}>10 GHz
- S₁₁, S₂₂<-10 dB, S₁₂ <-30 dB
- 1.2 V supply, 23 mA
- 0.35mmx0.4mm

Sean Nicolson & Sorin Voinigescu, CSICS-2006, November 15, 2006

75-94 GHz 2-stage cascode LNA in 90nm GP CMOS

- Peak gain = 4.8 dB (94GHz)
- BW_{3dB}>20 GHz
- S₁₁, S₂₂<-10 dB, S₁₂ <-30 dB
- 1.8 V supply, 16 mA
- 0.35mmx0.4mm

3-stage Cascode Amplifier Schematics in 65nm LP CMOS

Layout and Measured S-params

- $f_T/f_{MAX} = 140/180 \text{ GHz} (W_f = 2\mu m)$
- Peak gain = 8.5 dB (80 GHz)
- S₁₁, S₂₂<-8dB
- Isolation > 30 dB
- 0.4mmx0.4mm (including pads)

15

Conclusions

Algorithmic LNA design methodology at mm-waves developed to account for

pad capacitance and bondwire inductance

Inductive broadbanding in MOS cascode

•First 80GHz and 94GHz CMOS amplifiers

•First transformer in CMOS at 94 GHz

•Low-VT GP 65nm CMOS technology is needed for 80-100 GHz LNAs

•At similar f_{τ} , 80-GHz SiGe HBT LNAs have higher gain for similar power

Acknowledgments

- •T. Chalvatzis and K.Tang for S parameter measurements
- •Dr. M.T. Yang at TSMC
- •Dr. P. Schvan at NORTEL
- •CITO, STM, NORTEL for funding support
- •TSMC, NORTEL and CMC for fabrication
- Jaro Pristupa and CMC for CAD support
- •OIT, CFI, ECTI for equipment

LNA Design Fundamentals

F o M
$$_{LNA} = \frac{G \times ||P 3 \times f}{(F - 1) \times P} = \frac{O ||P 3 \times f}{(F - 1) \times P}$$

Device noise fundamentals:

◆Re{ Z_{sopt} } <> Re{ Z_{IN} } and Im{ Z_{sopt} } approx. Im { Z_{IN} } (within 15%)

◆Re{ Z_{sopt} } = k f_T/(fg_m)

• F_{MIN} is invariant to number of gate fingers N_{f} , and number of transistors *m* connected in parallel, but depends on W_{f} .

Reactive (lossless) feedback does not affect F_{MIN} and Re{Z_{sopt}}

Possible MOSFET Layouts

Sean Nicolson & Sorin Voinigescu, CSICS-2006, November 15, 2006

 gate resistance must be traded off with gate capacitance

