CMOS SOCs at 100 GHz: System Architectures, Device Characterization, and IC Design Examples

S. Voinigescu, S.T.Nicolson, M.Khanpour, K.K.W.Tang, K.H.K.Yau, N.Seyedfathi, A.Timonov, A.Nachman, G.Eleftheriades, P. Schvan¹ and MT. Yang²

University of Toronto 1) Nortel 2) TSMC

Outline

•Why?

•Measured 65nm MOSFETs: are they really that bad (for analog/RF)?

•60-100 GHz circuits in 90nm and 65nm CMOS

Summary

Remote sensing (passive imaging) (E. Laskin et al. RFIC-2007) 80-GHz PLL 160-GHz 160-GHz Receiver Receiver 80-GHz 80-GHz Receiver Receiver

Multiphase/multi-frequency clock distribution

•Quad signals @ 80 GHz. differential at 160 GHz.

Save power by sharing PLL among

80GHz inverse scattering active imager 3-stage IF Low IF: 1MHz-10MHz LNA 80 GHz BUF transceiver array 32 Reference transceiver 2.5 GHz BUF PLL Inhomogeneous VCO PA 80 GHz object to be imaged Switched TX/RX Freq. 2-stage Crosstalk suppression through system architecture Different frequencies in TX and RX modes One transmitter on, all other TXRX in receive mode Need very low power for array integration

Outline

•Why?

•65nm CMOS Device Characterization

•60-100 GHz Circuits in 90nm and 65nm CMOS

Summary

GP and LP 65nm CMOS

•GP 30% faster than LP and 300mV lower V_{GS} => lower power!

•Constant-current-density bias at 0.3-0.4mA/ μ m => robust to I_{DS} variation

•VT variation is large but mostly irrelevant

MOSFET DC gain scaling: think current density!

Outline

- •System Applications
- •65nm CMOS Device Characterization
- •60-100 GHz Circuits in 90nm and 65nm CMOS
- Summary

90nm CMOS Receiver Measurements

90nm CMOS Receiver Measurements (ii)

60GHz 90nm GP CMOS Upconverter

CMOS Upconverter RF Spectrum

🔆 Agilent 13:27:00 Oct 27, 2006

60GHz PA in 90-nm RFCMOS (T.Yao et al. RFIC-06)

- G=5dB, O_{1dB}=6.4dBm, P_{sat}=9dBm
- PAE=7%
- 14dB gain version in 90nm digital GP CMOS also tested

Sorin Voinigescu, ISCAS-2007 May 29, 2007

15

77GHz Colpitts VCO in (digital) 90-nm GP CMOS (K.Tang et al. CSICS-06)

W-band 3-stage cascode LNA in 65nm LP RF-CMOS S. Nicolson (CSICS 2006) $V_{_{DD}}$ $V_{_{DD}}$ $V_{_{DD}}$ Ĺ _{D2} 20x1.5µm $L_{_{D1}}$ 000 000 two-side gate contact $T_{_{D1}}$ $V_{_{GBIAS}}$ V_{casc} of $\mathbf{V}_{\mathrm{casc}}$ V_{casc} $\mathbf{V}_{\mathrm{out}}$ L_M

•Inductive broadbanding (L_{M}) -> also lowers NF₅₀ (CS-CG topologies also fabricated)

000

L

Pad capacitance included in design methodology at mm-waves

V_{GBIAS}

$$R_{in} = Z_0 / [1 + (\omega Z_0 C_{PAD})^2] = R_s + R_g + L_s \omega_T (casc)$$

$$R_{sopt} = Z_0 / [1 + (\omega Z_0 C_{PAD})^2] = R_s + R_g + f_T (casc) / (2fg_m)$$

 $\mathbf{V}_{_{\mathrm{in}}}$

 $T_{_{G}}$

PAD

PAD

000

 L_s

Die photo and measured S-params

•0.4mmx0.4mm including pads

•Overdriven in non-linear mode • S_{11} , S_{22} < -10 dB, S_{12} < -30 dB

Summary

- •CMOS for low-power SOCs up to 100 GHz
- •GP rather than LP CMOS is needed
- •65nm CMOS DC gain is OK
- •We can live with leakage at mm-waves
- •CMOS design based on current density rather than $V_T/V_{eff} =>$ think HBT design
- •60-100 GHz state-of-the-art CMOS circuits in 90nm and 65nm CMOS
- •Temperature and wafer mapping of 60GHz LNA, PA and 90GHz divider show manufacturability of 60-80 GHz radio in nanoscale CMOS
- •SiGe HBT/BiCMOS still higher performance and lower cost than 65nm CMOS

Acknowledgments

- •CITO, NSERC, NORTEL for funding
- •STM, TSMC, NORTEL and CMC for fabrication
- •Theo Chalvatzis and Katya Laskin for 90GHz LNA measurements
- Jaro Pristupa and CMC for CAD support
- •OIT, CFI, ECTI for equipment

60GHz PA Measurements

- Measured S-params on 3 dies
- Peak gain = 5.2dB (60GHz)
- 3-dB BW > 13GHz (52-65GHz)
- S_{22} , S_{11} both matched (60-65GHz)

•
$$OP_{1dB} = 6.4dBm, P_{sat} = 9.3dBm$$

• Maximum linearity @ 0.28mA/µm

85-GHz Buffered Colpitts VCO 90-nm GP CMOS

Measured tuning range and output power

Measured 65nm LP MOSFET performance

60-90 GHz Radio Systems

Classical radio architecture: simple and robust at mm-waves Smaller die, lower cost, higher data rate than 2-10 GHz UWB radio

Crucial front-end blocks/issues:

