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ABSTRACT 
Event-based computing is vital for the next generation mobile 
services and applications that need to meet user requirements 
irrespective of time and location. The event paradigm is a form of 
asynchronous one-to-many communication and allows clients to 
receive information that matches their interests through filtering.  
Event-based communication is a good candidate for mobile 
computing, because it is asynchronous and supports disconnected 
operation. However, user and terminal mobility present problems 
pertaining to synchronization and delivery that need to be solved.  
In this paper, we examine and analyze mobility in the 
Rendezvous-Notify architecture.  This event-delivery architecture 
is based on two server roles: access servers that maintain 
subscription information and buffered events, and resolution 
servers that are responsible for event channels and routing events 
to access servers. Access to event channels is done using a 
rendezvous mechanism. 
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1. INTRODUCTION 
Event-based computing is vital for the next generation mobile 
services and applications that need to meet user requirements 
irrespective of time and location [1,2,8,12]. The event paradigm is 
a form of asynchronous one-to-many communication and allows 
clients to receive information that matches their interests through 
filtering.  However, user and terminal mobility present problems 
pertaining to synchronization and delivery that need to be solved 
[5,6].    

This paper presents the Rendezvous-Notify architecture, which is 
a distributed event notification infrastructure especially for mobile 
computing. The key concepts in our architecture are event 
channel, session, access server, resolution server, and event 

domain. Access to event channels is done using a rendezvous 
mechanism based on linear hashing. The architecture aims to meet 
the requirements of mobile users by supporting bounded delivery 
times and disconnected operation.  
In Rendezvous-Notify there are two ways that can be used to 
facilitate user and terminal mobility within a domain.  The first 
approach is to allow the sessions to be distributed across the event 
domain.  This approach has extra messaging cost if the session is 
on some other server than the current access server.  The second 
approach is to move the session data to the new server in a 
process called session relocation. This has extra cost during a 
handover because all user sessions are moved to the new server in 
a handover procedure. However, there are no additional costs 
when the client is stationary. We present a cost model for 
mobility in the proposed architecture, compare the two mobility 
mechanisms using simulation results and discuss their 
performance.  
The rest of the paper is organized as follows. In Section 2 we 
present the Rendezvous-Notify and discusses the basic principles 
of mobility in this architecture. In Section 3 we analyze 
theoretical cost estimates for two architectural options. In Section 
4 we give simulation results and discuss the performance of the 
two evaluated session distribution approaches.   

1.1 Related work 
Mobility is a relatively new issue in event-based computing. Only 
a few papers and projects have covered mobility in event systems 
[8,12]. The Siena notification service has been recently extended 
to support mobility [3].  Siena is a scalable architecture based on 
event routing. The extension is called Cometa, and it provides 
support for terminal mobility on top of a routed event 
infrastructure.  The mobility extension has been verified using 
formal methods. 
In addition to Siena, the JEDI framework supports mobile 
components.  JEDI maintains causal ordering of events; however, 
the tree-topology is not scalable to high number of servers 
because the root node may become a bottleneck [6]. Elvin is an 
event system that supports disconnected operation using a proxy 
but does not support mobility between proxies [14].  
Benchmarking of event systems has been discussed in [4].  
Rendezvous mechanisms are used in IP multicast in the sparse 
mode Protocol Independent Multicast (RFC 2362), and peer-to-
peer systems, such as SCRIBE [13]. 

2. Rendezvous-Notify 
The Rendezvous-Notify is an overlay event architecture for 
mobile computing, which is based on two server roles:  access 
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servers that maintain subscription information and buffer events, 
and resolution servers that are responsible for event channels and 
routing events to access servers.  Filtering is done in two phases: 
first on the resolution servers, and in the second phase on the 
access servers.  Resolution servers contain a more generic set of 
filters, and the access servers maintain the full set of filters.  We 
define the concept of an event session, which is an intermediary 
storage for events before the clients download them. Client 
subscriptions are grouped into sessions in order to facilitate multi-
device operation and device mobility. Sessions consist of zero or 
more active or paused subscriptions and they are also generally 
long-lived and may be moved between access servers when 
clients relocate. 
In order for the subscription topology to converge rapidly and to 
meet various non-functional requirements, such as total ordering 
of events, we partition the event world into domains.  Each event 
domain is a separate administrative entity with its own set of 
servers.  This creates two kinds of mobility: mobility within a 
domain, and mobility between domains.  In this paper, we 
consider mobility within one event domain. 
 Access to event channels is done using a rendezvous mechanism.  
A distributed data structure based on linear hashing, such as LH* 
[10], is used to locate the event channel responsible for a given 
event type. This explicit-join rendezvous approach provides near 
constant event channel lookup times, and bounded operation in 
terms of application-level messaging hops within the event 
domain.   
Figure 1 illustrates event notification in Rendezvous-Notify.  First 
(1) a client publishes an event using the client-server protocol. 
The request message is processed at the server local to the client, 
and forwarded based on the access server routing table or lookup 
table. In the case of a distributed hash table, the event type is 
hashed and this hash-based identifier is used to lookup the server 
IP-address. The message is forwarded (2) to the resolution server 
responsible for that particular event channel. The responsible 
server evaluates the subscription information, which consists of 
the event type and filters, set of servers interested in receiving a 
notification and possible authentication information. A 
notification is multicast to interested servers (3), which then 
associate the notification with an active client session, and if 
possible, notify the client or buffer the notification according to 
the session configuration (4). 
 
 
 
 
 
 
 
 
 
 

Figure 1. The Rendezvous-Notify architecture 
 

From the mobility point, we need to consider terminal mobility 
and user mobility. Buffering incoming notifications for all device 
and user pairs supports user mobility.  Applications on different 
terminals belonging to the same user may subscribe and receive 
notifications. Terminal mobility and roaming between access 
servers changes the dynamics of the system drastically.  
We stress the importance of bounded subscription and event 
channel management operations cost both in terms of sent 
messages and in time.  This is important for the system to support 
session exchange and ensure in reasonable timeframe that no 
events have been delayed or lost during mobility.   
The proposed Rendezvous-Notify architecture meets this 
requirement by using a linear addressing mechanism for locating 
event channels responsible for a given event type. 
Implementations may support different algorithms for facilitating 
the lookup, including linear hashing, distributed hash table LH*, 
or a peer-to-peer algorithm similar to Scribe [13] or Tapestry 
[15].  By having a linear addressing space and using an explicit-
join rendezvous scheme, instead of hop-by-hop routing modeled 
with a graph structure, the system supports constant subscription 
group management costs and scalability. Many current event 
systems use hop-by-hop event routing or flooding and may have a 
high subscription cost, which is not reasonable for mobility 
scenarios.  
The proposed approach does not prevent connections between 
event channels; for example, event channels may be connected 
into a hierarchy, where published events are be forwarded 
towards the root of the tree. In this case, the event publication cost 
may become greater; however, the lookup and subscription 
management cost for a single channel is not affected. 
Figure 2 presents a high-level overview of the handover 
procedure in Rendezvous-Notify when session relocation is used. 
The event channel update operation and relocate operation have a 
cost of one operation and use RPC-semantics.  Q denotes the size 
of the session that is transferred to the new server.  Since the 
relocation request to the event channel (or channels) is done from 
the old server that still maintains the session, the client needs to 
know only the origin server of mobility.   
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Handover procedure for session relocation in 
Rendezvous-Notify 

We have verified this protocol with event buffering using Promela 
and Spin [7]. The handover protocol preserves order, does not 
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deadlock and does not lose events given that the underlying RPC 
architecture is reliable. The protocol is similar to the forward 
handoff procedure in the Wireless CORBA specification [11]. 

3. Evaluation of Architectural Options 
In Rendezvous-Notify there are two architectural options: session 
distribution and session relocation. In the former approach, 
sessions are distributed and located on different access servers.  In 
the analysis, we have assumed that a load-balancing algorithm 
uniformly distributes the sessions. The latter approach moves 
session data to a new server so that sessions always reside on the 
same server as the client. For the results in this paper, we assumed 
that the cost of an event channel lookup is one message. This 
parameter may vary depending on the distribution algorithm, 
which may be linear hashing, LH*, or a peer-to-peer routing 
algorithm.    
Servers have two roles: access servers are responsible for 
sessions, that is, buffering events for mobile clients.  Resolution 
servers are responsible for event channels and notifying 
subscribing clients by forwarding events to relevant access 
servers.  Since our purpose is to evaluate mobility, the messaging 
cost is considered only from the viewpoint of the clients.  
Important random variables are mobility interval, mobility 
duration, publication interval, and the target server of mobility.  
The first three are modeled using the exponential distribution and 
the last random variable is modeled using the uniform 
distribution.  
Below we derive the costs of event retrieval and publication for 
the two approaches. The cost metric is the number of external 
messages that are sent and received. The equations are derived 
from the four basic scenarios that are possible: both the event 
channel and session are on the current server, session is and 
channel is not, channel is and session is not, and finally both 
components are not on the current server (Figure 3). Session 
relocation has a messaging cost of 2 when the event channel 
resides on a different server, and 1 otherwise.  Session distribution 
has a cost of 1 when both the channel and the session are on the 
current server, a cost of 2 when either of the two is on a different 
server, and a cost of 3 when the two components are on a 
different server. Here we have assumed that if both the session 
and channel are on a different node, a separate message is sent for 
the two components.  The expected value for publication costs in 
the two scenarios is calculated by summing the probabilities of 
the four scenarios and their cost.  

3.1 Event Retrieval Cost 
Equation 1 defines the cost function of the event retrieval 
procedure, in which events are downloaded from the server, for a 
single client for session distribution given that all clients 
subscribe and produce only one type of event, 

))1(2)(1()1()( 11 kkCE MMSA +−++= . (1)

 This illustrates how the messaging cost metric is structured.  In 
the equation, M denotes the number of servers and k denotes the 
number of notifications that are downloaded or relocated.  The 
1/M gives the probability that the session is on the current access 
server. We calculate the expected cost in terms of messages.  If 
the session is located on the current server, no further cost is 
incurred, and the client has sent one message and receives k 

messages.  If the session is on a different host, an extra message is 
sent to the server hosting the session, and k messages are sent to 
the current server in addition to the previous scenario. In essence, 
in the latter case the cost is doubled (2*(1+k))1.  
Equation 2 is the cost function for session relocation after 
mobility, where the parameter s represents the size of the 
relocated session queue, and (1-1/M) represents the event channel 
update cost; the update cost is 1 if the channel is not located on 
the current server, and 0 otherwise: 

))1(1)(1()1()( 111
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3.2  Publication Cost 
Equations 3 and 4 determine the expected publication cost of 
sending an event to the corresponding event channel for 
publication, for the session and relocation approaches 
respectively: 

211121 )1(3))1((4)()( MMMMSBCE −+−+= , 

3)(lim =∞→ SBM CE , 

(3)
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(4)

This cost does not include the messaging cost that incurs when the 
event channel forwards the notification to subscribing access 
servers. This latter cost is the same in both approaches and, 
therefore, it is not necessary in the comparison.   
We have assumed that the publication procedure updates both the 
session and the event channel.  If the session data does not need to 
be updated the publication estimate is the same for both 
approaches (Equation 4).  In addition, if client mobility is not 
present, the publication cost is the same for both approaches 
(Equation 5): 

)1(2)()( 11
MMRBSB CECE −+== . (5)

 In this case, there is no need to move sessions and approaches use  
either the first or the second scenario identified in figure 3. If 
mobility is present, eq. 4 has smaller coefficients than eq. 3.  
Looking at the publication cost alone, we can say that session 
relocation is more efficient; however, the situation changes when 
we take event retrieval also into account. Eq. 2 grows with the 
size of the session queue. 
Event subscription and unsubscription has an impact on the 
performance of the models; however, the subscription and 
unsubscription cost functions in the two approaches are identical 
to the respective publication cost functions in equations 3 and 4, 
and we do not explicitly model subscription and unsubscription 
using separate parameters. Given the different combinations of 
session and channel locations, the subscription and unsubscription 
processes need to modify both session and channel status. We 
have four possible combinations for a given client and server 

                                                                 
1 We assume implicit ACKs or that NACKs are used. 
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(Figure 3). It follows that the subscription and unsubscription 
processes are identical to the publication process. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Four different configurations for event publication 
cost with mobility.  SD denotes session distribution cost, SR 

session relocation cost 

3.3 Estimates for Session Distribution and 
Relocation 
Equation 6 presents the expected value Sd for event retrieval in 
session distribution, and equation 7 the estimate for event 
retrieval in session relocation Sr: 
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T denotes the simulation end time in minutes; nc is the number of 
clients per server, λp denotes the mean publication interval, λM 
mean mobility interval, and λd the mean duration of mobility in 
minutes. Nm denotes total number of mobility occurrences; Np is 
the number publications during time T, Nf is the expected number 
of event arrivals when a client is connected to a server, and Q is 
the expected number of events in a session after mobility.   
In both equations 6 and 7, nc*E(Np) denotes the total number of 
events that are downloaded during the simulation.  Equation 6 
takes also into account the number of events that are routed 
through the server responsible for the session.  This expectation is 
calculated by multiplying the probability of using the server with 
the session and the cost of initiating the event download (1 
message), and summing it with the complement probability 
multiplied with the cost of routing.  The cost of routing is 
calculated by summing the expected queue size E(Q) after 
mobility with the messaging cost (the download request message 
that is forwarded having cost of 2 messages) and the expected 
number of events that are routed during the time the client is 

connected with the server.  Equation 7 uses a similar strategy for 
calculating the expected cost of session relocation. 
Note that since the simulation is finite and duration of mobility 
may limit the occurrence of departures, we use the expectation 
λM+λd for the mobility interval. In addition, the download request 
message is sent only after mobility. Equation 8 presents the 
performance metric based on the absolute cost in both retrieval 
and publication: 

)(/)( pSBdpRBr NCSENCSEC ++= . (8)

3.4 Impact of Queue Size 
The maximum queue size and event download rate are important 
parameters for the queue relocation cost function. Initially, we 
used infinite event download rate when the mobile nodes are 
connected. If the clients use slow wireless connections, their event 
download rate is limited. This prompts for mechanisms for 
managing the event queues.    
In order to examine the impact of slow download rate, we also ran 
several experiments with different queue download rates and 
maximum queue sizes. The theoretical estimation of these models 
is more difficult.   

3.5 Comparison of Session Relocation with 
Mobility in Event Routing 
There are many ways to implement event routing and especially 
filtering in a routed environment. We have constructed a basic 
model for mobility in a routed environment in order to evaluate 
the performance of session relocation in Rendezvous-Notify.   
The key metric is n; the number of event routers between the 
source and destination of mobility.  The cost function is different 
for subscription semantics and advertisement semantics. In 
subscription semantics, subscription messages are introduced at N 
servers, the number of nodes in the event network. In 
advertisement-based semantics only advertisement messages are 
introduced at every server. 
 The mobility protocol in event routing proceeds in four distinct 
phases: first, the target subscribes all events, then all n servers are 
pinged in order to ensure that the subscriptions have taken effect, 
the source unsubscribes, and finally the events are relocated and 
merged. In addition, there may be further costs triggered by 
changes in the subscription tables of the intermediate routers.  The 
cost structure for this procedure is presented in table 1. The 
unsubscription cost depends also on other active subscriptions on 
the servers and is a worst-case estimate.   
The advertisement-based approach is not reliable and should not 
be used, because if the target sends the advertisement for ping and 
publishes the ping event at the same time, the subscription from 
source has not taken effect yet and the event will be missed if 
buffering is not applied at intermediate servers or the notification 
is not included in the advertisement. 
The approximate cost functions for one event type and client 
relocation for subscription semantics, advertisement semantics, 
and Rendezvous-Notify are as follows: CRoutedSub = 5N + 2n + Q, 
CRoutedAdv = 2N + 4n + z + Q, and CRendezvous-Notify = Q + 2. Q 
denotes the session size, and z the cost of filter subscription. We 
have assumed for the session relocation that the event channel is 
on some other server than the destination server and for the routed 
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costs that the changes in the subscription tables of intermediate 
nodes do not cause additional messaging, which may be the case 
if an advertisement is removed that has subscribers. 
 

Table 1. Cost structure for mobility in event routing 
Phase Subscription 

semantics  
Advertisement semantics 

Source: Subsc. Ping(id) N 0 (no advertisement yet) 

Target: Subsc. Filter N z (0 ≤ z ≤ N) 

Target: Subsc.Pong(id) N 0 (no advertisement yet) 

Target: Pub. Ping(id) n N (adv. + notif.)+n (subs.) 

Source: Pub. Pong(id) n N (adv. + notif.)+n (subs.) 

Source: Unsubscribe2 
(ping,filters) 

N n 

Target: Unsubscribe 
(pong) 

N n 

 
The routed protocol is more complex than the two mobility 
mechanisms examined in this paper and it may not work reliably 
with advertisement semantics; however, the routed protocol works 
with various event systems based on hop-by-hop routing, and may 
support Internet-wide scalability.  In the routed approach the cost 
function depends on the number of intermediate servers, the 
network topology, the queue size, and the processing time of the 
unsubscribe and subscribe operations. Rendezvous-Notify stores 
subscription information (filters) in sessions at access nodes, and 
therefore the client does not need to explicitly re-subscribe or 
know the current state of subscriptions.   
 

4. Simulation Experiments 
The goal of the discrete-event simulation study was to evaluate 
Rendezvous-Notify and session distribution from the mobility 
viewpoint, and the overall model was simplified for this purpose. 
The simulation model consists of clients and servers. Server 
communication has zero latency, and bandwidth is infinite. In the 
basic simulation scenario, there is only one event type that is 
subscribed by all clients, and all clients also publish events of that 
type. The client event download rate is infinite while they are 
connected to servers; queues build up during mobility.  Each 
client has a single session, which are initially uniformly 
distributed over the servers in the simulation.  The simulation was 
implemented using the C-language and the Simlib library [9]. 
Each simulation experiment was run with 5 replications, the 
simulation time was set to 400 hours.  The simulation output was 
compared with the theoretical estimates given in the previous 
section.  The performance index is the absolute cost of messaging 
in the relocation approach divided by the absolute cost of the 
session distribution approach.   

4.1 Different Parameters 
Figure 4 presents the performance index with various simulation 
parameters.  This scenario has a variable number of servers and 
                                                                 
2 If target server subscribes events through the source server, the 

unsubscription message is not propagated. 

20 clients per server. In the figure, p denotes publication 
interarrival time, m = mobility interarrival time, d = mobility 
duration.  Theoretical values are presented with points, and 
simulation output with points and 95% confidence intervals. 
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4.2 Mobility 
Figure 5 shows the impact of mobility and duration on the 
performance ratio of the two models. When the duration of 
mobility grows, the relocation approach has more events to move 
and the ratio grows.  On the other hand, if the mobility interval 
grows, there are fewer relocations and the approach performs 
better.   
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4.3 Queue Size and Download Rate 
Figure 6 presents the impact of maximum queue size and varying 
download rate on the performance index with 10 servers and 20 
clients per server.  The publication interarrival time was 10, 
mobility interarrival time 80 and duration of mobility 200 
minutes.  As the queue size after mobility grows, the relocation 
approach performs worse than the session distribution approach. 
In addition, when the download rate is low, the session 
distribution has fewer messages to forward. 
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Figure 6. The impact of maximum queue size and download 

rate on the performance index 

4.4 Factorial Design 
In order to examine the impact of different parameters, we 
performed a 2k factorial design experiment. We used the factorial 
design [9] to examine different parameters and measure 
interactions.  Appendix A presents the factor-level combinations 
or design points.  Table 2 presents the coding chart for the main 
effects of the study.  Each design point was run for 200 hours of 
simulated time and with 5 replications. 
The response results are presented in Appendix A. The metric is 
the performance index of the absolute cost of messaging in the 
two scenarios (relocation/distributed). The main effect of a factor 
is the average change in the response due to moving from “-“ 
level to the “+” level.  Table 3 presents the values and their 95% 
confidence intervals for the main effects.  The second-level 
effects were not statistically significant.  
 

Table 2. Coding chart 
Factor  name Description - + 

Servers Number of servers 5 50 

Publication 
interval 

Publication interval 
in minutes 

Exp(5) Exp(50) 

Download rate Maximum Number 
of events 
downloadable per 
minute. 

Unlimited 20 

Max queue 
size = 2000 

Mobility 
interval 

Mobility interval in 
minutes 

Exp(10)  Exp(200)  

Mobility 
duration 

Mobility duration in 
minutes 

Exp(10) Exp(200)  

 

Table 3. Main effects 
Effect Value 

Servers 0.118583 ± 0.007117 

Publication interval -0.009727 ± 0.007661 

Download rate 0.391024 ± 0.008868 

Mobility interval -0.593078 ± 0.010297 

Mobility duration 0.590567 ± 0.008901 

 

The performance ratio grows when the number of servers grows 
from 5 to 50. Change between the levels of the publication 
interval and mobility interval reduce the ratio. Change in the 
mobility interval is the largest effect with duration and results in a 
smaller ratio, because the number of relocations becomes smaller.  
From the responses in Appendix A, we can see that the 
performance ratio is over one in four responses when DL rate is 
limited, mobility is frequent, and durations are long, making the 
session relocation approach much better with this parameter 
space. 
 

4.5 Discussion 
In both theoretical and simulated results session relocation has 
consistently smaller absolute messaging cost than session 
distribution, given that the events accumulate only during 
mobility. When the client’s ability to download events is limited 
the queue sizes tend towards their maximum size and session 
distribution has lower absolute cost. The presence of wireless 
clients that have limitations on the download rate of events 
motivates the use of different queue management policies.   
For systems that have a maximum queue size and queue 
management policies session relocation performs better than 
session distribution. However, this approach moves larger 
quantities of data at the end of the relocation, which places 
requirements on the data communication infrastructure used by 
the servers. In this study, we have not taken possible 
communication latencies into account. Session relocation has 
higher bandwidth usage variability than session distribution. 
We compared the client mobility in Rendezvous-Notify with 
mobility in a generic routed event model. Rendezvous-Notify is 
less complex and has a smaller messaging cost function and more 
predictable completion time of the handover protocol. 

5. Conclusions 
This paper has examined the impact of mobility in the 
Rendezvous-Notify architecture and evaluated two different 
approaches for managing client sessions: session distribution and 
session relocation.  We presented a theoretical cost model for 
these two approaches, and discussed the simulation results.  Based 
on both simulation output and the theoretical results, session 
relocation performs better in environments where the queues do 
not build up.  If the queues grow uncontrollably or to a maximum 
size, the relocation approach has more events to relocate, and 
performs worse in high-mobility scenarios. The presence of 
wireless clients that have limitations on the download rate of 
events motivates the use of different queue management policies.  
The session relocation approach was compared with a generic 
model that uses event routing.  Based on this study, the proposed 
session relocation in Rendezvous-Notify approach is better in 
terms of messaging cost and the time needed to complete the 
handover procedure. We plan to continue examining the 
Rendezvous-Notify architecture in a mobile environment. 
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Appendix A:  Design matrix 

 
Design 
Point 

Servers Pubs DL Rate Mobility  Duration Response 

1 - - - - - 0.775550 ± 0.001556 

2 - - - - + 0.967108 ± 0.010629 

3 - - - + - 0.581874 ± 0.001566 

4 - - - + + 0.777847 ± 0.005240 

5 - - + - - 0.783170 ± 0.000782 

6 - - + - + 2.006898 ± 0.061124 

7 - - + + - 0.582255 ± 0.001197 

8 - - + + + 0.783201 ± 0.007873 

9 - + - - - 0.788824 ± 0.001252 

10 - + - - + 0.967660 ± 0.004554 

11 - + - + - 0.584084 ± 0.001895 

12 - + - + + 0.775251 ± 0.008666 

13 - + + - - 0.794142 ± 0.001811 

14 - + + - + 1.889393 ± 0.075864 

15 - + + + - 0.586290 ± 0.004244 

16 - + + + + 0.780576 ± 0.009555 

17 + - - - - 0.752463 ± 0.000054 

18 + - - - + 0.972373 ± 0.000530 

19 + - - + - 0.533294 ± 0.000196 

20 + - - + + 0.754420 ± 0.001484 

21 + - + - - 0.765708 ± 0.000267 

22 + - + - + 3.114041 ± 0.037634 

23 + - + + - 0.533119 ± 0.000471 

24 + - + + + 0.767283 ± 0.002536 

25 + + - - - 0.754136 ± 0.000140 

26 + + - - + 0.971953 ± 0.001164 

27 + + - + - 0.533207 ± 0.000291 

28 + + - + + 0.754553 ± 0.000721 

29 + + + - - 0.766595 ± 0.000271 

30 + + + - + 3.047394 ± 0.032089 

31 + + + + - 0.533537 ± 0.000196 

32 + + + + + 0.767373 ± 0.001300 

 

 


