
Client Mobility in Rendezvous-Notify
Sasu Tarkoma

Helsinki Institute for Information
Technology

P.O. Box 9800,
FIN-02015 HUT, Finland

sasu.tarkoma@hiit.fi

Jaakko Kangasharju
Helsinki Institute for Information

Technology
P.O. Box 9800,

FIN-02015 HUT, Finland
jaakko.kangasharju@hiit.fi

Kimmo Raatikainen
Helsinki Institute for Information

Technology
P.O. Box 9800,

FIN-02015 HUT, Finland
kimmo.raatikainen@hiit.fi

ABSTRACT
Event-based computing is vital for the next generation mobile
services and applications that need to meet user requirements
irrespective of time and location. The event paradigm is a form of
asynchronous one-to-many communication and allows clients to
receive information that matches their interests through filtering.
Event-based communication is a good candidate for mobile
computing, because it is asynchronous and supports disconnected
operation. However, user and terminal mobility present problems
pertaining to synchronization and delivery that need to be solved.
In this paper, we examine and analyze mobility in the
Rendezvous-Notify architecture. This event-delivery architecture
is based on two server roles: access servers that maintain
subscription information and buffered events, and resolution
servers that are responsible for event channels and routing events
to access servers. Access to event channels is done using a
rendezvous mechanism.

General Terms
Performance, Experimentation

Keywords
Distributed events, mobile computing, session handover

1. INTRODUCTION
Event-based computing is vital for the next generation mobile
services and applications that need to meet user requirements
irrespective of time and location [1,2,8,12]. The event paradigm is
a form of asynchronous one-to-many communication and allows
clients to receive information that matches their interests through
filtering. However, user and terminal mobility present problems
pertaining to synchronization and delivery that need to be solved
[5,6].

This paper presents the Rendezvous-Notify architecture, which is
a distributed event notification infrastructure especially for mobile
computing. The key concepts in our architecture are event
channel, session, access server, resolution server, and event

domain. Access to event channels is done using a rendezvous
mechanism based on linear hashing. The architecture aims to meet
the requirements of mobile users by supporting bounded delivery
times and disconnected operation.
In Rendezvous-Notify there are two ways that can be used to
facilitate user and terminal mobility within a domain. The first
approach is to allow the sessions to be distributed across the event
domain. This approach has extra messaging cost if the session is
on some other server than the current access server. The second
approach is to move the session data to the new server in a
process called session relocation. This has extra cost during a
handover because all user sessions are moved to the new server in
a handover procedure. However, there are no additional costs
when the client is stationary. We present a cost model for
mobility in the proposed architecture, compare the two mobility
mechanisms using simulation results and discuss their
performance.
The rest of the paper is organized as follows. In Section 2 we
present the Rendezvous-Notify and discusses the basic principles
of mobility in this architecture. In Section 3 we analyze
theoretical cost estimates for two architectural options. In Section
4 we give simulation results and discuss the performance of the
two evaluated session distribution approaches.

1.1 Related work
Mobility is a relatively new issue in event-based computing. Only
a few papers and projects have covered mobility in event systems
[8,12]. The Siena notification service has been recently extended
to support mobility [3]. Siena is a scalable architecture based on
event routing. The extension is called Cometa, and it provides
support for terminal mobility on top of a routed event
infrastructure. The mobility extension has been verified using
formal methods.
In addition to Siena, the JEDI framework supports mobile
components. JEDI maintains causal ordering of events; however,
the tree-topology is not scalable to high number of servers
because the root node may become a bottleneck [6]. Elvin is an
event system that supports disconnected operation using a proxy
but does not support mobility between proxies [14].
Benchmarking of event systems has been discussed in [4].
Rendezvous mechanisms are used in IP multicast in the sparse
mode Protocol Independent Multicast (RFC 2362), and peer-to-
peer systems, such as SCRIBE [13].

2. Rendezvous-Notify
The Rendezvous-Notify is an overlay event architecture for
mobile computing, which is based on two server roles: access

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DEBS ’03, June 8, 2003, San Diego, California.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

Session

Session

servers that maintain subscription information and buffer events,
and resolution servers that are responsible for event channels and
routing events to access servers. Filtering is done in two phases:
first on the resolution servers, and in the second phase on the
access servers. Resolution servers contain a more generic set of
filters, and the access servers maintain the full set of filters. We
define the concept of an event session, which is an intermediary
storage for events before the clients download them. Client
subscriptions are grouped into sessions in order to facilitate multi-
device operation and device mobility. Sessions consist of zero or
more active or paused subscriptions and they are also generally
long-lived and may be moved between access servers when
clients relocate.
In order for the subscription topology to converge rapidly and to
meet various non-functional requirements, such as total ordering
of events, we partition the event world into domains. Each event
domain is a separate administrative entity with its own set of
servers. This creates two kinds of mobility: mobility within a
domain, and mobility between domains. In this paper, we
consider mobility within one event domain.
 Access to event channels is done using a rendezvous mechanism.
A distributed data structure based on linear hashing, such as LH*
[10], is used to locate the event channel responsible for a given
event type. This explicit-join rendezvous approach provides near
constant event channel lookup times, and bounded operation in
terms of application-level messaging hops within the event
domain.
Figure 1 illustrates event notification in Rendezvous-Notify. First
(1) a client publishes an event using the client-server protocol.
The request message is processed at the server local to the client,
and forwarded based on the access server routing table or lookup
table. In the case of a distributed hash table, the event type is
hashed and this hash-based identifier is used to lookup the server
IP-address. The message is forwarded (2) to the resolution server
responsible for that particular event channel. The responsible
server evaluates the subscription information, which consists of
the event type and filters, set of servers interested in receiving a
notification and possible authentication information. A
notification is multicast to interested servers (3), which then
associate the notification with an active client session, and if
possible, notify the client or buffer the notification according to
the session configuration (4).

Figure 1. The Rendezvous-Notify architecture

From the mobility point, we need to consider terminal mobility
and user mobility. Buffering incoming notifications for all device
and user pairs supports user mobility. Applications on different
terminals belonging to the same user may subscribe and receive
notifications. Terminal mobility and roaming between access
servers changes the dynamics of the system drastically.
We stress the importance of bounded subscription and event
channel management operations cost both in terms of sent
messages and in time. This is important for the system to support
session exchange and ensure in reasonable timeframe that no
events have been delayed or lost during mobility.
The proposed Rendezvous-Notify architecture meets this
requirement by using a linear addressing mechanism for locating
event channels responsible for a given event type.
Implementations may support different algorithms for facilitating
the lookup, including linear hashing, distributed hash table LH*,
or a peer-to-peer algorithm similar to Scribe [13] or Tapestry
[15]. By having a linear addressing space and using an explicit-
join rendezvous scheme, instead of hop-by-hop routing modeled
with a graph structure, the system supports constant subscription
group management costs and scalability. Many current event
systems use hop-by-hop event routing or flooding and may have a
high subscription cost, which is not reasonable for mobility
scenarios.
The proposed approach does not prevent connections between
event channels; for example, event channels may be connected
into a hierarchy, where published events are be forwarded
towards the root of the tree. In this case, the event publication cost
may become greater; however, the lookup and subscription
management cost for a single channel is not affected.
Figure 2 presents a high-level overview of the handover
procedure in Rendezvous-Notify when session relocation is used.
The event channel update operation and relocate operation have a
cost of one operation and use RPC-semantics. Q denotes the size
of the session that is transferred to the new server. Since the
relocation request to the event channel (or channels) is done from
the old server that still maintains the session, the client needs to
know only the origin server of mobility.

Figure 2. Handover procedure for session relocation in
Rendezvous-Notify

We have verified this protocol with event buffering using Promela
and Spin [7]. The handover protocol preserves order, does not

client
client

client

client

client

Server

lookup
sessions
filters

event channel
subscribing servers
event log

1.
2.

3.

4.

4.
role:access

role:resolution

Channel

1. Relocate
(blocking)
Cost: 1

2.Update subscriptions
(blocking)
Cost: 2

4. Send session
data
Total cost: 2+Q

3. New notification path

Old server

New server

deadlock and does not lose events given that the underlying RPC
architecture is reliable. The protocol is similar to the forward
handoff procedure in the Wireless CORBA specification [11].

3. Evaluation of Architectural Options
In Rendezvous-Notify there are two architectural options: session
distribution and session relocation. In the former approach,
sessions are distributed and located on different access servers. In
the analysis, we have assumed that a load-balancing algorithm
uniformly distributes the sessions. The latter approach moves
session data to a new server so that sessions always reside on the
same server as the client. For the results in this paper, we assumed
that the cost of an event channel lookup is one message. This
parameter may vary depending on the distribution algorithm,
which may be linear hashing, LH*, or a peer-to-peer routing
algorithm.
Servers have two roles: access servers are responsible for
sessions, that is, buffering events for mobile clients. Resolution
servers are responsible for event channels and notifying
subscribing clients by forwarding events to relevant access
servers. Since our purpose is to evaluate mobility, the messaging
cost is considered only from the viewpoint of the clients.
Important random variables are mobility interval, mobility
duration, publication interval, and the target server of mobility.
The first three are modeled using the exponential distribution and
the last random variable is modeled using the uniform
distribution.
Below we derive the costs of event retrieval and publication for
the two approaches. The cost metric is the number of external
messages that are sent and received. The equations are derived
from the four basic scenarios that are possible: both the event
channel and session are on the current server, session is and
channel is not, channel is and session is not, and finally both
components are not on the current server (Figure 3). Session
relocation has a messaging cost of 2 when the event channel
resides on a different server, and 1 otherwise. Session distribution
has a cost of 1 when both the channel and the session are on the
current server, a cost of 2 when either of the two is on a different
server, and a cost of 3 when the two components are on a
different server. Here we have assumed that if both the session
and channel are on a different node, a separate message is sent for
the two components. The expected value for publication costs in
the two scenarios is calculated by summing the probabilities of
the four scenarios and their cost.

3.1 Event Retrieval Cost
Equation 1 defines the cost function of the event retrieval
procedure, in which events are downloaded from the server, for a
single client for session distribution given that all clients
subscribe and produce only one type of event,

))1(2)(1()1()(11 kkCE MMSA +−++= . (1)

 This illustrates how the messaging cost metric is structured. In
the equation, M denotes the number of servers and k denotes the
number of notifications that are downloaded or relocated. The
1/M gives the probability that the session is on the current access
server. We calculate the expected cost in terms of messages. If
the session is located on the current server, no further cost is
incurred, and the client has sent one message and receives k

messages. If the session is on a different host, an extra message is
sent to the server hosting the session, and k messages are sent to
the current server in addition to the previous scenario. In essence,
in the latter case the cost is doubled (2*(1+k))1.
Equation 2 is the cost function for session relocation after
mobility, where the parameter s represents the size of the
relocated session queue, and (1-1/M) represents the event channel
update cost; the update cost is 1 if the channel is not located on
the current server, and 0 otherwise:

))1(1)(1()1()(111
MMMRA skkCE −+++−++= . (2)

3.2 Publication Cost
Equations 3 and 4 determine the expected publication cost of
sending an event to the corresponding event channel for
publication, for the session and relocation approaches
respectively:

211121)1(3))1((4)()(MMMMSBCE −+−+= ,

3)(lim =∞→ SBM CE ,

(3)

() 11)1(2))1((3)()(1211121 +−=−+−+= MMMMMRBCE ,

2)(lim =∞→ RBM CE .

(4)

This cost does not include the messaging cost that incurs when the
event channel forwards the notification to subscribing access
servers. This latter cost is the same in both approaches and,
therefore, it is not necessary in the comparison.
We have assumed that the publication procedure updates both the
session and the event channel. If the session data does not need to
be updated the publication estimate is the same for both
approaches (Equation 4). In addition, if client mobility is not
present, the publication cost is the same for both approaches
(Equation 5):

)1(2)()(11
MMRBSB CECE −+== . (5)

 In this case, there is no need to move sessions and approaches use
either the first or the second scenario identified in figure 3. If
mobility is present, eq. 4 has smaller coefficients than eq. 3.
Looking at the publication cost alone, we can say that session
relocation is more efficient; however, the situation changes when
we take event retrieval also into account. Eq. 2 grows with the
size of the session queue.
Event subscription and unsubscription has an impact on the
performance of the models; however, the subscription and
unsubscription cost functions in the two approaches are identical
to the respective publication cost functions in equations 3 and 4,
and we do not explicitly model subscription and unsubscription
using separate parameters. Given the different combinations of
session and channel locations, the subscription and unsubscription
processes need to modify both session and channel status. We
have four possible combinations for a given client and server

1 We assume implicit ACKs or that NACKs are used.

Session

(Figure 3). It follows that the subscription and unsubscription
processes are identical to the publication process.

Figure 3. Four different configurations for event publication
cost with mobility. SD denotes session distribution cost, SR

session relocation cost

3.3 Estimates for Session Distribution and
Relocation
Equation 6 presents the expected value Sd for event retrieval in
session distribution, and equation 7 the estimate for event
retrieval in session relocation Sr:

()

,)(,)(,)(

,)(2)(111)()()(

p

cM
f

p

c
p

dM

c
m

fmpcd

nNETnNETnNE

NEQE
MM

NENEnSE

λ
λ

λλλ
==

+
=

++

 −++=

(6)

()()[]

.)(

,3)(1)(()(111)

p

cd

MMMmpcr

nQE

QENENEnSE

λ
λ

=

−+−++=

(7)

T denotes the simulation end time in minutes; nc is the number of
clients per server, λp denotes the mean publication interval, λM
mean mobility interval, and λd the mean duration of mobility in
minutes. Nm denotes total number of mobility occurrences; Np is
the number publications during time T, Nf is the expected number
of event arrivals when a client is connected to a server, and Q is
the expected number of events in a session after mobility.
In both equations 6 and 7, nc*E(Np) denotes the total number of
events that are downloaded during the simulation. Equation 6
takes also into account the number of events that are routed
through the server responsible for the session. This expectation is
calculated by multiplying the probability of using the server with
the session and the cost of initiating the event download (1
message), and summing it with the complement probability
multiplied with the cost of routing. The cost of routing is
calculated by summing the expected queue size E(Q) after
mobility with the messaging cost (the download request message
that is forwarded having cost of 2 messages) and the expected
number of events that are routed during the time the client is

connected with the server. Equation 7 uses a similar strategy for
calculating the expected cost of session relocation.
Note that since the simulation is finite and duration of mobility
may limit the occurrence of departures, we use the expectation
λM+λd for the mobility interval. In addition, the download request
message is sent only after mobility. Equation 8 presents the
performance metric based on the absolute cost in both retrieval
and publication:

)(/)(pSBdpRBr NCSENCSEC ++= . (8)

3.4 Impact of Queue Size
The maximum queue size and event download rate are important
parameters for the queue relocation cost function. Initially, we
used infinite event download rate when the mobile nodes are
connected. If the clients use slow wireless connections, their event
download rate is limited. This prompts for mechanisms for
managing the event queues.
In order to examine the impact of slow download rate, we also ran
several experiments with different queue download rates and
maximum queue sizes. The theoretical estimation of these models
is more difficult.

3.5 Comparison of Session Relocation with
Mobility in Event Routing
There are many ways to implement event routing and especially
filtering in a routed environment. We have constructed a basic
model for mobility in a routed environment in order to evaluate
the performance of session relocation in Rendezvous-Notify.
The key metric is n; the number of event routers between the
source and destination of mobility. The cost function is different
for subscription semantics and advertisement semantics. In
subscription semantics, subscription messages are introduced at N
servers, the number of nodes in the event network. In
advertisement-based semantics only advertisement messages are
introduced at every server.
 The mobility protocol in event routing proceeds in four distinct
phases: first, the target subscribes all events, then all n servers are
pinged in order to ensure that the subscriptions have taken effect,
the source unsubscribes, and finally the events are relocated and
merged. In addition, there may be further costs triggered by
changes in the subscription tables of the intermediate routers. The
cost structure for this procedure is presented in table 1. The
unsubscription cost depends also on other active subscriptions on
the servers and is a worst-case estimate.
The advertisement-based approach is not reliable and should not
be used, because if the target sends the advertisement for ping and
publishes the ping event at the same time, the subscription from
source has not taken effect yet and the event will be missed if
buffering is not applied at intermediate servers or the notification
is not included in the advertisement.
The approximate cost functions for one event type and client
relocation for subscription semantics, advertisement semantics,
and Rendezvous-Notify are as follows: CRoutedSub = 5N + 2n + Q,
CRoutedAdv = 2N + 4n + z + Q, and CRendezvous-Notify = Q + 2. Q
denotes the session size, and z the cost of filter subscription. We
have assumed for the session relocation that the event channel is
on some other server than the destination server and for the routed

Session

Channel

Channel

Channel

Session

Channel

Session

2.
 SD = 2

 SR = 2

3.
 SD = 2

 SR = 1

21
1)()(MAP =

)1()(11
2 MMAP −=

)1()(11
3 MMAP −=

21
4)1()(MAP −= 4.

 SD = 3

 SR = 2

1.
 SD = 1

 SR = 1

costs that the changes in the subscription tables of intermediate
nodes do not cause additional messaging, which may be the case
if an advertisement is removed that has subscribers.

Table 1. Cost structure for mobility in event routing
Phase Subscription

semantics
Advertisement semantics

Source: Subsc. Ping(id) N 0 (no advertisement yet)

Target: Subsc. Filter N z (0 ≤ z ≤ N)

Target: Subsc.Pong(id) N 0 (no advertisement yet)

Target: Pub. Ping(id) n N (adv. + notif.)+n (subs.)

Source: Pub. Pong(id) n N (adv. + notif.)+n (subs.)

Source: Unsubscribe2
(ping,filters)

N n

Target: Unsubscribe
(pong)

N n

The routed protocol is more complex than the two mobility
mechanisms examined in this paper and it may not work reliably
with advertisement semantics; however, the routed protocol works
with various event systems based on hop-by-hop routing, and may
support Internet-wide scalability. In the routed approach the cost
function depends on the number of intermediate servers, the
network topology, the queue size, and the processing time of the
unsubscribe and subscribe operations. Rendezvous-Notify stores
subscription information (filters) in sessions at access nodes, and
therefore the client does not need to explicitly re-subscribe or
know the current state of subscriptions.

4. Simulation Experiments
The goal of the discrete-event simulation study was to evaluate
Rendezvous-Notify and session distribution from the mobility
viewpoint, and the overall model was simplified for this purpose.
The simulation model consists of clients and servers. Server
communication has zero latency, and bandwidth is infinite. In the
basic simulation scenario, there is only one event type that is
subscribed by all clients, and all clients also publish events of that
type. The client event download rate is infinite while they are
connected to servers; queues build up during mobility. Each
client has a single session, which are initially uniformly
distributed over the servers in the simulation. The simulation was
implemented using the C-language and the Simlib library [9].
Each simulation experiment was run with 5 replications, the
simulation time was set to 400 hours. The simulation output was
compared with the theoretical estimates given in the previous
section. The performance index is the absolute cost of messaging
in the relocation approach divided by the absolute cost of the
session distribution approach.

4.1 Different Parameters
Figure 4 presents the performance index with various simulation
parameters. This scenario has a variable number of servers and

2 If target server subscribes events through the source server, the

unsubscription message is not propagated.

20 clients per server. In the figure, p denotes publication
interarrival time, m = mobility interarrival time, d = mobility
duration. Theoretical values are presented with points, and
simulation output with points and 95% confidence intervals.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40 45 50

R
lc

/D
is

servers

p=10,m=10,d=10
theor. p=10,m=10,d=10

p=10,m=10,d=30
theor. p=10,m=10,d=30

p=10,m=30,d=10
theor. p=10,m=30,d=10

p=10,m=60,d=60
theor. p=10,m=60,d=60

Figure 4. Experimentation with various parameters

4.2 Mobility
Figure 5 shows the impact of mobility and duration on the
performance ratio of the two models. When the duration of
mobility grows, the relocation approach has more events to move
and the ratio grows. On the other hand, if the mobility interval
grows, there are fewer relocations and the approach performs
better.

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0 50 100 150 200 250 300 350 400 450 500

R
lc

/D
is

mobility duration or interarrival time (minutes)

p=10,m=30
theor. p=10,m=30

p=10,d=30
theor. p=10,d=30

p=10,m=100
theor. p=10,m=100

p=10,d=100
theor. p=10,d=100

Figure 5. Impact of mobility

4.3 Queue Size and Download Rate
Figure 6 presents the impact of maximum queue size and varying
download rate on the performance index with 10 servers and 20
clients per server. The publication interarrival time was 10,
mobility interarrival time 80 and duration of mobility 200
minutes. As the queue size after mobility grows, the relocation
approach performs worse than the session distribution approach.
In addition, when the download rate is low, the session
distribution has fewer messages to forward.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

R
lc

/D
is

download-rate (events/min)

max=unl.
max=500

max=1000
max=5000

Figure 6. The impact of maximum queue size and download

rate on the performance index

4.4 Factorial Design
In order to examine the impact of different parameters, we
performed a 2k factorial design experiment. We used the factorial
design [9] to examine different parameters and measure
interactions. Appendix A presents the factor-level combinations
or design points. Table 2 presents the coding chart for the main
effects of the study. Each design point was run for 200 hours of
simulated time and with 5 replications.
The response results are presented in Appendix A. The metric is
the performance index of the absolute cost of messaging in the
two scenarios (relocation/distributed). The main effect of a factor
is the average change in the response due to moving from “-“
level to the “+” level. Table 3 presents the values and their 95%
confidence intervals for the main effects. The second-level
effects were not statistically significant.

Table 2. Coding chart
Factor name Description - +

Servers Number of servers 5 50

Publication
interval

Publication interval
in minutes

Exp(5) Exp(50)

Download rate Maximum Number
of events
downloadable per
minute.

Unlimited 20

Max queue
size = 2000

Mobility
interval

Mobility interval in
minutes

Exp(10) Exp(200)

Mobility
duration

Mobility duration in
minutes

Exp(10) Exp(200)

Table 3. Main effects
Effect Value

Servers 0.118583 ± 0.007117

Publication interval -0.009727 ± 0.007661

Download rate 0.391024 ± 0.008868

Mobility interval -0.593078 ± 0.010297

Mobility duration 0.590567 ± 0.008901

The performance ratio grows when the number of servers grows
from 5 to 50. Change between the levels of the publication
interval and mobility interval reduce the ratio. Change in the
mobility interval is the largest effect with duration and results in a
smaller ratio, because the number of relocations becomes smaller.
From the responses in Appendix A, we can see that the
performance ratio is over one in four responses when DL rate is
limited, mobility is frequent, and durations are long, making the
session relocation approach much better with this parameter
space.

4.5 Discussion
In both theoretical and simulated results session relocation has
consistently smaller absolute messaging cost than session
distribution, given that the events accumulate only during
mobility. When the client’s ability to download events is limited
the queue sizes tend towards their maximum size and session
distribution has lower absolute cost. The presence of wireless
clients that have limitations on the download rate of events
motivates the use of different queue management policies.
For systems that have a maximum queue size and queue
management policies session relocation performs better than
session distribution. However, this approach moves larger
quantities of data at the end of the relocation, which places
requirements on the data communication infrastructure used by
the servers. In this study, we have not taken possible
communication latencies into account. Session relocation has
higher bandwidth usage variability than session distribution.
We compared the client mobility in Rendezvous-Notify with
mobility in a generic routed event model. Rendezvous-Notify is
less complex and has a smaller messaging cost function and more
predictable completion time of the handover protocol.

5. Conclusions
This paper has examined the impact of mobility in the
Rendezvous-Notify architecture and evaluated two different
approaches for managing client sessions: session distribution and
session relocation. We presented a theoretical cost model for
these two approaches, and discussed the simulation results. Based
on both simulation output and the theoretical results, session
relocation performs better in environments where the queues do
not build up. If the queues grow uncontrollably or to a maximum
size, the relocation approach has more events to relocate, and
performs worse in high-mobility scenarios. The presence of
wireless clients that have limitations on the download rate of
events motivates the use of different queue management policies.
The session relocation approach was compared with a generic
model that uses event routing. Based on this study, the proposed
session relocation in Rendezvous-Notify approach is better in
terms of messaging cost and the time needed to complete the
handover procedure. We plan to continue examining the
Rendezvous-Notify architecture in a mobile environment.

6. REFERENCES
[1] Bacon, J., Moody, K., Hayton, R., et al. Generic Support for

Distributed Applications. IEEE Computer, March 2000.

[2] Caporuscio, M., Carzaniga, A., Wolf, A. An Experience in
Evaluating Publish/Subscribe Services in a Wireless
Network. In Third International Workshop on Software and
Performance, Rome, Italy, July 2002.

[3] Caporuscio, M., Inverardi, P., Pelliccione, P. Formal
Analysis of Clients Mobility in the Siena Publish/Subscribe
Middleware. Technical Report, Department of Computer
Science, University of Colorado, October 2002.

[4] Carzaniga, A., Wolf, A. A Benchmark Suite for Distributed
Publish/Subscribe Systems. Technical Report. Department of
Computer Science, University of Colorado, 2002. Available
at: http://www.cs.colorado.edu/~carzanig/papers/index.html

[5] Cugola, G., Di Nitto, E., Picco, G. Content-Based
Dispatching in a Mobile Environment, 2000. In Workshop su
Sistemi Distribuiti: Algoritmi, Architetture e Linguaggi
(WSDAAL), 2000.

[6] Cugola, G., Jacobsen, H.-A. Using publish/subscribe
middleware for mobile systems. ACM SIGMOBILE Mobile
Computing and Communications Review, Volume 6, Issue 4
(October 2002).

[7] Holzmann, G. The Model Checker Spin, IEEE Trans. on
Software Engineering, Vol. 23, No. 5, May 1997, pp. 279-
295. Available at: http://spinroot.com/spin/Doc/ieee97.pdf

[8] Huang Y., Garcia-Molina, H. Publish/Subscribe in a Mobile
Environment. ACM Press. Second ACM international
workshop on Data engineering for wireless and mobile
access. Santa Barbara, California, United States, 2001.

[9] Law, A. W. and W. D. Kelton. Simulation Modeling and
Analysis (3rd ed.). New York: McGraw-Hill, Inc. 2000.

[10] Litwin, W., Neimat, M., Schneider, D. LH* - Linear
Hashing for Distributed Files. Hewlett-Packard Labs. 1993.

[11] Object Management Group (OMG). Wireless Access &
Terminal Mobility in CORBA, version 1.0, 2003.

[12] Podnar, I., Hauswirth, M., Jazayeri, M. Mobile Push:
Delivering Content to Mobile Users. In Proceedings of the
1st International Workshop on Distributed Event-Based
Systems (DEBS'02), 2002.

[13] Rowstron, A., Kermarrec, A., Castro, M., and Druschel, P.
SCRIBE: The Design of a Large-scale Event Notification
Infrastructure. Networked Group Communication, Lecture
Notes in Computer Science, Vol. 2233, pp. 30-43, 2001.

[14] Sutton, P., Arkins, R., Segall, B. Supporting
Disconnectedness – Transparent Information Delivery in
Mobile and Invisible Computing. CCGrid 2001 IEEE
International Symposium on Cluster Computing and the
Grid, Australia.

[15] Zhao, B., Kubiatowicz, J., and Joseph, A. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and
Routing. U. C. Berkeley Technical Report UCB//CSD-01-
1141, 2001.

Appendix A: Design matrix

Design
Point

Servers Pubs DL Rate Mobility Duration Response

1 - - - - - 0.775550 ± 0.001556

2 - - - - + 0.967108 ± 0.010629

3 - - - + - 0.581874 ± 0.001566

4 - - - + + 0.777847 ± 0.005240

5 - - + - - 0.783170 ± 0.000782

6 - - + - + 2.006898 ± 0.061124

7 - - + + - 0.582255 ± 0.001197

8 - - + + + 0.783201 ± 0.007873

9 - + - - - 0.788824 ± 0.001252

10 - + - - + 0.967660 ± 0.004554

11 - + - + - 0.584084 ± 0.001895

12 - + - + + 0.775251 ± 0.008666

13 - + + - - 0.794142 ± 0.001811

14 - + + - + 1.889393 ± 0.075864

15 - + + + - 0.586290 ± 0.004244

16 - + + + + 0.780576 ± 0.009555

17 + - - - - 0.752463 ± 0.000054

18 + - - - + 0.972373 ± 0.000530

19 + - - + - 0.533294 ± 0.000196

20 + - - + + 0.754420 ± 0.001484

21 + - + - - 0.765708 ± 0.000267

22 + - + - + 3.114041 ± 0.037634

23 + - + + - 0.533119 ± 0.000471

24 + - + + + 0.767283 ± 0.002536

25 + + - - - 0.754136 ± 0.000140

26 + + - - + 0.971953 ± 0.001164

27 + + - + - 0.533207 ± 0.000291

28 + + - + + 0.754553 ± 0.000721

29 + + + - - 0.766595 ± 0.000271

30 + + + - + 3.047394 ± 0.032089

31 + + + + - 0.533537 ± 0.000196

32 + + + + + 0.767373 ± 0.001300

