
DeDiSys — An European Union aided Research Project**

M. Jandl, A. Szep, R. Smeikal
Vienna University of Technology
Institute of Computer Technology

Gusshausstrasse 27-29/384,
A 1040 Vienna, Austria

+43 1 58801 38448
{jandl|szep|smeikal}@ict.tuwien.ac.at

K. M. Goeschka
Vienna University of Technology
Institute of Information Systems

Argentinierstrasse 8/184-1,
A 1040 Vienna, Austria

+43 1 58801 18412
Karl.Goeschka@tuwien.ac.at

Abstract

Distributed software systems are the basis for many
innovative applications (e.g. pervasive computing,
telecommunication services, and control engineering).
Many business cases focusing on specialized know-how
in the global market of software components, services,
and infrastructures built upon these systems can be
identified. The key for achieving scalable and main-
tainable distributed systems is dependability, because
otherwise the complexity of distribution would leave
the system uncontrollable. Hence, our approach aims
at a concept for optimizing dependability. Similar to
other approaches we use replication as means to pro-
vide transparent fault-tolerance and persistence, but we
especially focus on increasing availability by relaxing
data integrity by using a mixture of asynchronous and
synchronous replication techniques. This trade-off al-
lows for a configurable and application-specific opti-
mum of availability, possibly even controlled during
runtime. ∗∗

1 Project Motivation

Today, dependability is mainly taken into account
for safety critical applications, but it is also required
in the fields of telecommunication, control engineer-
ing, and ubiquitous computing. Unfortunately, the in-
herently complex distributed systems are often unman-
ageable, unless fault-tolerance is already built into co-

∗∗The European Union supports this research project under Frame-
work Programme 6 within the IST priority – Project title: “De-
pendable Distributed Systems”, Acronym: “DeDiSys”, Contract No.:
004152.

herent system parts and not scattered over the system.
There exists no “fault-tolerance”-module that can be
added later on—dependability is an aspect of every part
of the system. Failures can be classified as site fail-
ures (a particular site is not working) and network fail-
ures (in particular network partitions, where a group
of sites is unreachable but still operating). Our re-
search aims at a concept for optimizing dependability in
distributed software systems by relaxing data integrity
(consistency) for availability, since for a class of appli-
cations availability is more critical than volatile incon-
sistencies. The following real-life applications motivate
this trading and envision the exploitation potential for
further improvements.

The Distributed Telecommunication Manage-
ment System (DTMS) is a monitoring and control sys-
tem for a safety-critical Voice Communication Sys-
tem (VCS) in the field of air traffic control (ATC).
Multiple DTMS servers monitor and control their as-
sociated VCSs which store parameter data in objects.
By sacrificing consistency in case of failures, a client
can be provided with an expected level of availability.
The planned models should decide dynamically, basing
on their configuration, how much consistency is to be
traded for availability.

Flight Objects: The European Union prioritizes
the creation of the Single European Sky for ATC [1].
“Flight Objects” are a form of distributed intelligence
which can leverage this vision—they are used to model
all relevant flight data for ATC. Not every user requires
a consistent view on all data, some users are satisfied
with slightly outdated but immediately available data.
Together with replication, such requirements allow for
higher availability as compared to systems with strict
consistency requirements.

2 Solution Approach

Strong consistency is often deployed but not always
desirable, because it also implies strong limitations of
availability. Generally, the trade-off between replica-
tion availability and consistency cannot be configured in
such systems. Therefore, our solution approach allows
for fine-grained tuning of this trade-off. The key idea
is to use a mixture of asynchronous and synchronous
replication techniques, whereby asynchronous replica-
tion is used to replicate persistent object-states, while
operating on objects is implemented synchronously.
Asynchronous propagation of object data prepares for
degraded scenarios. Therefore, the central concept is
the trade-off between availability and consistency and
a mechanism to communicate current limitations to a
client and, even more importantly, allow the client to
react selectively, is required.

3 Contribution and Expected Results

Firstly, the above mentioned trade-off between avail-
ability and consistency shall be measurable and pos-
sibly even configurable during runtime. Secondly,
as location and access transparency are the basis for
most other relevant middleware properties, one possi-
ble system model is the Fault-Tolerance Naming Ser-
vice (FTNS), which comprises the fault-tolerant map-
ping from object identity to reference, which is poten-
tially different on every node because it depends on the
view of the current failure scenario at a particular node
and on the replication algorithm. Besides this, consis-
tency information must also be provided. For example,
a client trying to access a certain object could obtain a
list of locations and consistency levels from the FTNS,
and accesses the location that has the data at an accept-
able consistency level.

While the current DTMS implementation only al-
lows for a rather coarse-grained trading between avail-
ability and constraint consistency, we expect as long-
term goal to move continuously between increasing
availability for consistency and vice versa, if the system
is degraded.

4 State of the Art and Related Work

Complex applications usually demand both transpar-
ent distribution and persistence, and proven frameworks
(EJB, COM+/.NET, CORBA - all with their associ-
ated services) exist. However, these frameworks pro-
vide fault-tolerance only in connection with strong data

consistency. Clustering is a common solution for high
availability in server farms, usually deployed for load-
balancing in a local area network where network par-
titions are extremely unlikely. We on the other hand
explicitly address the problem of accessing objects in
different network partitions.

The TACT project [5] is among the mature research
of the trade-off between availability and replica consis-
tency and further approaches, using group communica-
tion and object groups, exist [3], [4], [6], [7], [2].

However, all of the above mentioned solutions ei-
ther deploy strong consistency or leave replica manage-
ment entirely to the application. Generally, the trade-off
between replica availability and consistency cannot be
configured in such systems. Our approach in contrast
allows for fine-grained tuning of this trade-off even dur-
ing runtime.

References

[1] European Commission. “White Paper – European
transport policy for 2010: time to decide.”, Lux-
embourg, 2001, ISBN 92-894-0341-1.

[2] K.P. Birman. “The process group approach to re-
liable distributed computing”, Communication of
ACM, 36(12):37-53, December 1993.

[3] D. Malkhi et al.“Persistent objects in the fleet sys-
tem.”, In Proceedings of the 2nd DARPA Infor-
mation Survivability Conference and Exposition
(DISCEX II), June 2001.

[4] L. E. Moser et al. “The eternal system: An ar-
chitecture for enterprise applications.”, In Pro-
ceedings of the International Enterprise Dis-
tributed Object Computing Conference EDOC
1999, pages 214-222, September 1999.

[5] H. Yu and A. Vahdat. “Design and evaluation
of a conit-based continuous consistency model for
replicated services.”, ACM Transactions on Com-
puter Systems, 20(3):239-282, August 2002.

[6] R. van Renesse et al. “Horus: a flexible
group communication system.”, Communication
of ACM, 39(4):76-83, April 1996.

[7] K. Birman et al. “The horus and ensemble
projects: Accomplishments and limitations.”, In
Proceedings of the DARPA Information Surviv-
ability Conference and Exposition (DISCEX 00),
January 2000.

2

