Power Estimation for VTR

Jeffrey Goeders

April 18, 2013

The latest version of this document can be obtained here: http://vtr-verilog-to-routing.googlecode.
com/svn/trunk/doc/power/power_manual .pdf

Contents
I_Overview] 2
2 Running VTR with Power Estimation| 3
BT VTREIOW . « . o o oooooo oo e e e e e e e e e e e e 3
2.2 VPR 6.0I. . . . e e e 3
[3 Supporting Tools| 4
3.1 Technology Properties Generation| 4
8.2 ACE 2.0 Activity Estimation| L Lo 4
[4 Architecture Modelling| 5
4.1 Complex Blocks|. o o 5
4.2 Global Routing] e 8
4.3 Input Connection Boxes| 9
4.4 Clock Networkl 9
[Other Architecture Options & Techniques| 11
b.1 Local Wire Auto-Sizing| e 11
b.2 Buffer Sizing] L 12
9.3 Local Interconnect Capacitance| L 12
6 Support 13

http://vtr-verilog-to-routing.googlecode.com/svn/trunk/doc/power/power_manual.pdf
http://vtr-verilog-to-routing.googlecode.com/svn/trunk/doc/power/power_manual.pdf

1 Overview

This document describes the power estimation tool for VTR. This tool provides transistor-level dynamic and

static power estimates for a given architecture and circuit.

illustrates how the VIR flow is modified to add power estimation. The actual power estimation is
performed within the VPR executable; however, additional files must be provided. In addition to the circuit
and architecture files, power estimation requires files detailing the signal activities and technology properties.

details how to run power estimation for VIR. provides details on the supporting tools
that are used to generate the signal activities and technology properties files. provides details about
how the tool models architectures, including different options of modelling methods. provides more

advanced configuration options.

Architecture Verilog
Description File HDL
A\ 4

>[ODIN Il]

v

v
[ABC]

SPICE CMOS
Technology File

Technology
Properties
Generation
(One-time only)

- ACE 2.0
o > (Activity
Estimation)
\ 2
Activities TeChn0|<?gy
(*.act) Properties
(o ™ ‘ (*.xml)
VPR 6.0 I |
> with <
(_ Power Estimation)

A2
Packing (*.net)
Placement (*.place)
Routing (*.route)
Power (*.power)

Figure 1: Power Estimation in the VIR Flow

2 Running VTR with Power Estimation

2.1 VTR Flow

The easiest way to run the VIR flow is to use the run_vtr_flow.pl script. See http://code.google.com/
p/vtr-verilog-to-routing/wiki/Run_VTR_Flow for instructions on how to use the script.

In order to perform power estimation, you must add the following options:

-power
-cmos_tech <cmos_technology_properties_file.xml>

The CMOS technology properties file is an XML file that contains relevant process-dependent information
needed for power estimation. XML files for 22 nm, 45 nm, and 130 nm PTM models can be found here:

<vtr>/vtr_flow/tech/.../*.xml

See for information on how to generate an XML file for your own SPICE technology model.

2.2 VPR 6.0

The easiest way to perform power estimation is to use the run_vtr_flow.pl script. However, if you wish, you
may run VPR directly. The following command-line options are added to the VPR executable to facilitate
power estimation (all are required):

—--power: Use this option to enable power estimation.

-—activity_file <activities.act>: The activity file, produce by ACE 2.0, or another tool.
--tech_properties <tech_properties.xml>: The technology properties XML file.

This requires a activity file, which can be generated as described in

http://code.google.com/p/vtr-verilog-to-routing/wiki/Run_VTR_Flow
http://code.google.com/p/vtr-verilog-to-routing/wiki/Run_VTR_Flow

3 Supporting Tools

3.1 Technology Properties Generation

Power estimation requires information detailing the properties of the CMOS technology. This information,
which includes transistor capacitances, leakage currents, etc. is included in an .xml file, and provided as a
parameter to VPR. This XML file is generated using a script which automatically runs HSPICE, performs
multiple circuit simulations, and extract the necessary values.

Some of these technology XML files are included with the release, and are located here:
<vtr>/vtr_flow/tech/*

If the user wishes to use a different CMOS technology file, they must run the following script. HSPICE must
be included in the $PATHS.

<vtr>/vtr_flow/scripts/generate_cmos_tech_data.pl <tech_file> <tech_size> <Vdd> <temp>

<tech_file>: A SPICE technology file, containing a pmos and nmos models.

<tech_size>: The technology size, in meters. For example, a 90nm technology would have the value 90e-9.
<Vdd>: Supply voltage in Volts.

<temp>: Operating temperature, in Celcius.

3.2 ACE 2.0 Activity Estimation

Power estimation requires activity information for the entire netlist. This ativity information consists of two
values:

1. The Signal Probability, P;, is the long-term probability that a signal is logic-high. For example, a
clock signal with a 50% duty cycle will have P;(clk) = 0.5.

2. The Transition Density (or switching activity), Ag, is the average number of times the signal will
switch during each clock cycle. For example, a clock has Ag(clk) = 2.

The default tool used to perform activity estimation in VTR is ACE 2.0 [ﬂ This tool was originally designed
to work with the Berkeley SIS tool, which is now obsolte. ACE 2.0 was modifed to use ABC, and is included
in the VTR package here:

<vtr>/ace2
The tool can be run using the following command-line arguments:
<vtr>/ace2/ace -b <abc.blif> -o <activities.act> -n <new.blif>

<abc.blif>: The input BLIF file produced by ABC.

<activities.act>: The activity file to be created.

<new.blif>: The new BLIF file. This will be identical in function to the ABC blif; however, since ABC
does not maintain internal node names, a new BLIF must be produced with node names that match the
activity file.

User’s may with to use their own activity estimation tool. The produced activity file must contain one line
for each net in the BLIF file, in the following format:

<net name> <signal probability> <transistion density>

1Julien Lamoureux and Steven J.E. Wilton. “Activity Estimation for Field-Programmable Gate Arrays.” In:
International Conference on Field Programmable Logic and Applications. Aug. 2006, pp. 1-8

4 Architecture Modelling

The following section describes the architectural assumptions made by the power model, and the related
parameters in the architecture file.

4.1 Complex Blocks

The VTR architecture description language supports a hierarchichal description of blocks. In the architecture
file, each block is described as a pb_type, which may includes one or more children of type pb_type, and in-
terconnect structures to connect them. The power estimation algorithm traverses this hierarchy recursively,
and performs power estimation for each pb_type. The power model supports multiple power estimation
methods, and the user specifies the desired method in the architecture file:

<pb_type>
<power method="<est-method>">
</pb_type>

The following is a list of valid estimation methods. Detailed descriptions of each type are provided in the
following sections. The methods are listed in order from most accurate to least accurate.

1. specify-size: Detailed transistor level modelleling. The user supplies all buffer sizes and wire-lengths.
Any not provided by the user are ignored.

2. auto-size: Detailed transistor level modelleling. The user can supply buffer sizes and wire-lengths;
however, they will be automatically inserted when not provided.

3. pin-toggle: Higher-level modelling. The user specifies energy per toggle of the pins. Static power
provided as an absolute.

4. C-internal: Higher-level modelling. The user supplies the internal capacitance of the block. Static
power provided as an absolute.

5. absolute: Highest-level modelling. The user supplies both dynamic and static power as absolutes.
Other methods of estimation:

6. ignore: The power of the pb_type is ignored, including any children.

7. sum-of-children: Power of pb_type is solely the sum of all children pb_types; interconnect between
the pb_type and its children is ignored.

If no estimation method is provided, it is inherited from the parent pb_type. If the top-level pb_type has
no estimation method, auto-size is assumed.

4.1.1 specify-size

This estimation method provides a detailed transistor level modelling of CLBs, and will provide the most
accurate power estimations. For each pb_type, power estimation accounts for the following components (See

Figure 2).

¢ Interconnect multiplexers
o Buffers and wire capacitances
o Child pb_types

pb_type: clb

pb type: ble

pb _type: ble

Riis

Figure 2: Sample Block

Multiplexers Interconnect multiplexers are modelled as 2-level pass-transistor multiplexers, comprised
of minimum-size NMOS transistors. Their size is determined automatically from the <interconnect/>
structures in the architecture description file.

Buffers and Wires Buffers and wire capacitances are not defined in the architecture file, and must be
explicitly added by the user. They are assigned on a per port basis using the following construct:

<pb_type>
<input name="my_input" num_pins="1">
<power ...optioms.../>
</input>
</pb_type>

The wire and buffer attributes can be set using the following options. If no options are set, it is assumed
that the wire capacitance is zero, and there are no buffers present. Keep in mind that the port construct
allows for multiple pins per port. These attributes will be applied to each pin in the port. If necessary, the
user can seperate a port into multiple ports with different wire/buffer properties.

e wire_capacitance="1.0e-15": The absolute capacitance of the wire, in Farads.

e wire_length="1.0e-7": The absolute length of the wire, in meters. The local interconnect capacitance
option must be specified, as described in

e wire_length="auto": The wirelength is automatically sized. See
e buffer_size="2.0": The size of the buffer at this pin. See for more information.

e buffer_size="auto": The size of the buffer is automatically sized, assuming it drives the above wire
capacitance and a single multiplexer. See for more information.

Primitives For all child pb_types, the algorithm performs a recursive call. Eventually pb_types will be
reached that have no children. These are primitives, such as flip-flops, LUTs, or other hard-blocks. The
power model includes functions to perform transistor-level power estimation for flip-flops and LUTs. If
the user wishes to use a design with other primitive types (memories, multipliers, etc), they must provide
an equivalent function. If the user makes such a function, the power_calc_primitive function should
be modified to call it. Alternatively, these blocks can be configured to use higher-level power estimation
methods.

4.1.2 auto-size

This estimation method also performs detailed transistor-level modelling. It is almost identical to the
specify-size method described above. The only difference is that the local wire capacitance and buffers
are automatically inserted for all pins, when necessary. This is equivalent to using the specify-size method
with the wire_length="auto" and buffer_size="auto" options for every port.

This is the default power estimation method. Although not as accurate as user-provided buffer and
wire sizes, it is capable of automatically capturing trends in power dissipation as architectures are modified.

4.1.3 pin-toggle

This method allows users to specify the dynamic power of a block in terms of the energy per toggle (in
Joules) of each input, output or clock pin for the pb_type. The static power is provided as an absolute (in
Watts). This is done using the following construct:

<pb_type>

<power method="pin-toggle">
<port name="A" energy_per_toggle="1.0e-12"/>
<port name="B[3:2]" energy_per_toggle="1.0e-12"/>
<port name="C" energy_per_toggle="1.0e-12" scaled_by_static_prob="enl"/>
<port name="D" energy_per_toggle="1.0e-12" scaled_by_static_prob_n="en2"/>
<static_power power_per_instance="1.0e-6"/>

</power>

</pb_type>

Keep in mind that the port construct allows for multiple pins per port. Unless an subset index is provided,
the energy per toggle will be applied to each pin in the port. The energy per toggle can be scaled by another
signal using the scaled_by_static_prob. For example, you could scale the energy of a memory block by
the read enable pin. If the read enable were high 80% of the time, then the energy would be scaled by the
signal__probability, 0.8. Alternatively scaled_by_static_prob_n can be used for active low signals, and
the energy will be scaled by (1 — signal__probability).

This method does not perform any transistor-level estimations; the entire power estimation is performed using
the above values. It is assumed that the power usage specified here includes power of all child pb_types.
No further recursive power estimation will be performed.

4.1.4 C-internal

This method allows the users to specify the dynamic power of a block in terms of the internal capacitance of
the block. The activity will be averaged across all of the input pins, and will be supplied with the internal
capacitance to the standard equation FPgy, = 1haCV?2. Again, the static power is provided as an absolute
(in Watts). This is done using the following construct:

<pb_type>
<power method="c-internal">
<dynamic_power C_internal="1.0e-16"/>
<static_power power_per_instance="1.0e-6"/>
</power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types. No further recursive
power estimation will be performed.

4.1.5 absolute
This method is the most basic power estimation method, and allows users to specify both the dynamic and
static power of a block as absolute values (in Watts). This is done using the following construct:

<pb_type>
<power method="absolute">
<dynamic_power power_per_instance="1.0e-6"/>
<static_power power_per_instance="1.0e-6"/>
</power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types. No further recursive
power estimation will be performed.

4.2 Global Routing

Global routing consists of switch boxes and input connection boxes.

4.2.1 Switch Boxes

Switch boxes are modelled as the following components (Figure 3)):

1. Multiplexer
2. Buffer
3. Wire capacitance

To Connection

Box 4 >

2

Figure 3: Switch Box

Multiplexer The multiplexer is modelled as 2-level pass-transistor multiplexer, comprised of minimum-size
NMOS transistors. The number of inputs to the multiplexer is automatically determined.

Buffer The buffer is a multistage CMOS buffer. The buffer size is determined based upon output capacitance
provided in the architecture file:

<switchlist>
<switch type="mux" ... C_out="XXX"
</switchlist>

The user may override this method by providing the buffer size as shown below:

<switchlist>
<switch type="mux" ... power_buf_size="16.0"
</switchlist>

The size is the drive strength of the buffer, relative to a minimum-sized inverter.

4.3 Input Connection Boxes

Input connection boxes are modelled as the following components ([Figure 4)):

e One buffer per routing track, sized to drive the load of all input multiplexers to which the buffer is

connected (For buffer sizing see [Section 5.2]).

e One multiplexer per block input pin, sized according to the number of routing tracks that connect to
the pin.

Routing

Buffers i
Tracks Multiplexers

> ’
! }

CLB

_> .

Figure 4: Conneciton Box

4.4 Clock Network

The clock network modelled is a four quadrant spine and rib design, as illustrated in At this time,
the power model only supports a single clock. The model assumes that the entire spine and rib clock network
will contain buffers separated in distance by the length of a grid tile. The buffer sizes and wire capacitances
are specified in the architecture file using the following construct:

<clocks>
<clock ... clock_options .../>
</clocks>
The following clock options are supported:
e C_wire="1e-16": The absolute capacitance, in fards, of the wire between each clock buffer.

e C_wire_per_m="1e-12": The wire capacitance, in fards per m. The capacitance is calculated using an
automatically determined wirelength, based on the area of a tile in the FPGA.

e buffer_size="2.0": The size of each clock buffer. This can be replaced with the "auto" keyword. See

section 5.2[for more information on buffer sizing.

DI JOg 00
N N N N e e
DO gD gy
DO go0 gy g
OD00|000 OoO|o0o0
OD00D|000 000|000
D00D|000 000|000
Do0D'oo00 ooo'ooo

Figure 5: The clock network. Squares represent CLBs, and the wires represent the clock network.

10

5 Other Architecture Options & Techniques

5.1 Local Wire Auto-Sizing

Due to the significant user effort required to provide local buffer and wire sizes, we developed an algorithm
to estimate them automatically. This algorithm recursively calculates the area of all entities within a CLB,
which consists of the area of primitives and the area of local interconnect multiplexers. If an architecture
uses new primitives in CLBs, it should include a function that returns the transistor count. This function
should be called from within power_count_transistors_primitive().

In order to determine the wire length that connects a parent entity to its children, the following assumptions
are made:

o Assumption 1: All components (CLB entities, multiplexers, crossbars) are assumed to be contained in
a square-shaped area.

o Assumption 2: All wires connecting a parent entity to its child pass through the interconnect square,
which is the sum area of all interconnect multiplexers belonging to the parent entity.

IFigure 6] provides an illustration of a parent entity connected to its child entities, containing one of each
interconnect type (direct, many-to-1, and complete). In this figure, the square on the left represents the area
used by the transistors of the interconnect multiplexers. It is assumed that all connections from parent to
child will pass through this area. Real wire lengths could me more or less than this estimate; some pins in
the parent may be directly adjacent to child entities, or they may have to traverse a distance greater than
just the interconnect area. Unfortuantely, a more rigorous estimation would require some information about
the transistor layout.

Parent Entity

\ J
Y

I-interc

» [

L2
N\

1 Child Entities

N N 4

j I-crossbar

Area of all interconnect
multiplexers

Figure 6: Local interconnect wirelength.

11

Connection from Entity Pin to: Estimated Wirelength — Transistor Capacitance

Direct (Input or Output) 0.5 Lintere 0
Many-to-1 (Input or Output) 0.5 Lintere Cinv
Complete m:n (Input) 0.5 Lintere + Lerossbar n-Crinv
Complete m:n (Output) 0.5 Linterce Cinv

Table 1: Local interconnect wirelength and capacitance. (Cryy is the input capacitance of a minimum-sized
inverter.)

details how local wire lengths are determined as a function of entity and interconnect areas. It is
assumed that each wire connecting a pin of a pb_type to an interconnect structure is of length 0.5 - Liptere.
In reality, this length depends on the actual transistor layout, and may be much larger or much smaller than
the estimated value. If desired, the user can override the 0.5 constant in the architecture file:

<architecture>
<power>
<local_interconnect factor="0.5">
</power>
</architecture>

5.2 Buffer Sizing

In the power estimator, a buffer size refers to the size of the final stage of multi-stage buffer (if small, only
a single stage is used). The specified size is the (W4) of the NMOS transistor. The PMOS transistor will
automatically be sized larger. Generally, buffers are sized depending on the load capacitance, using the
following equation:

1 C(Load
* —— 1
2-fre Cinv S

In this equation, C7yy is the input capacitance of a minimum-sized inverter, and fr g is the logical effort
factor. The logical effort factor is the gain between stages of the multi-stage buffer, which by default is 4
(minimal delay). The term (2 - frg) is used so that the ratio of the final stage to the driven capacitance is
smaller. This produces a much lower-area, lower-power buffer that is still close to the optimal delay, more
representative of common design practises. The logical effort factor can be modified in the architecture file:

Buffer Size =

<architecture>
<power>
<buffers logical_effort_factor="4">
</power>
</architecture>

5.3 Local Interconnect Capacitance

If using the auto-size or wire-length options (Section 4.1f), the local interconnect capacitance must be
specified. This is specified in the units of Farads/meter.

<architecture>
<power>
<local_interconnect C_wire="2.5e-15">
</power>
</architecture>

12

6 Support

For support, please check http://code.google.com/p/vtr-verilog-to-routing/wiki/Power, or email
vtr.power.estimation@gmail.com.

13

http://code.google.com/p/vtr-verilog-to-routing/wiki/Power
mailto:vtr.power.estimation@gmail.com

	Overview
	Running VTR with Power Estimation
	VTR Flow
	VPR 6.0

	Supporting Tools
	Technology Properties Generation
	ACE 2.0 Activity Estimation

	Architecture Modelling
	Complex Blocks
	Global Routing
	Input Connection Boxes
	Clock Network

	Other Architecture Options & Techniques
	Local Wire Auto-Sizing
	Buffer Sizing
	Local Interconnect Capacitance

	Support

