
 Abstract

The use of Look-Up Tables (LUTs) is extended from
binary to multiple-valued logic (MVL) circuits. A multiple-
valued LUT can be implemented using both current-mode
and voltage-mode techniques, reducing the transistor count
to half compared to that of a binary implementation.

Two main applications for multiple-valued LUTs are
multiple-valued FPGAs and intelligent memories. An
FPGA uses a LUT as a generic logic block to provide
programmability. In an intelligent memory, a multiple-
valued LUT is added in the Y-decoder section to facilitate
simple mathematical operations on the stored digits. An
FFT operation is used as an example in this paper to
illustrate how a multiple-valued LUT can be beneficial.

1. Introduction

Look-up tables are known in the literature [1] as a
method of implementing an arbitrary binary logic function.
A truth table for a general 2-input 1-output combinational
logic function is shown in Figure 1. In a combinational logic
expression, the output is uniquely determined by the current
input bits. Therefore, a truth table like that shown in Figure
1(a) can fully characterize the function. A look-up table
(LUT) is a direct implementation of the truth table. Figure
1(b) shows a LUT implementation for the truth table shown
in Figure 1(a). There is a one-to-one correspondence
between the rows of the truth table and the rows of the LUT.
For any given input bit-pattern, only one of the paths from
input fi to output Z has all of its transistors ON.

Referring to Figure 1(b), the intermediate nodes of rows
0 and 2 have the same voltage independent of the logic
values of A and B. The same is true for the intermediate
nodes of rows 1 and 3. That means the right-most transistors
of rows 0 and 1 can be shared with those of rows 2 and 4,

respectively. The result is shown in Figure 1(c).

The ON path of a binary LUT carries binary information
(i.e. 0 or 1) in the form of voltage or current signal to the
output node. Elliott et al. [2] have shown that if proper
timing is applied to a binary LUT, binary data can be
transferred from one column of an array to a neighboring
column thus accelerating mathematical computations. The
main application of this is in an intelligent memory that
could perform data mining, pattern recognition, or image
processing. In this paper, we show that by using a multiple-
valued LUT, a higher rate of data transfer (relative to a
binary LUT) can be achieved with no area penalty. Section
III of this paper proposes using a multiple-valued LUT in
the Y-decoder section of a memory array to accelerate the
computation of a Fast Fourier-Transform (FFT).

fi ∈ {0, 1}

A B Z

0 0 f0

0 1 f1

1 0 f2

1 1 f3

(a)

A A B B

Z
f0
f1
f2
f3

f0
f2
f1
f3

(c)

A A B B

Z

Figure 1. (a) A truth table for a general 2-input
logic function, (b) A LUT implementation of
the function, (c) A LUT implementation with

reduced transistor count

(b)

Look-Up Tables (LUTs) for
Multiple-Valued, Combinational Logic

Ali Sheikholeslami, Ryuji Yoshimura, and P. Glenn Gulak

Ali Sheikholeslami (sheikh@eecg.toronto.edu) and P. Glenn Gulak
(gulak@eecg.toronto.edu) are with the Department of Electrical and
Computer Engineering, University of Toronto, Ontario, Canada,
M5S 3G4. Phone (416) 978-1652, Fax (416) 971-2286.

Ryuji Yoshimura (ryuji@ele.eng.osaka-u.ac.jp) is with the Dept. of
Electronics, Information Systems Eng., Osaka Univ., Suita 565, Japan.
Phone (+81) 6-879-7781, Fax (+81) 6-897-7792. This work was
supported by Nortel and the Natural Sciences and Engineering
Research Council of Canada.



2. Multiple-Valued LUT

A general truth table for a 2-input 4-valued
combinational logic function is shown in Figure2(a).
Parameters f0 to fF belong to {0, 1, 2, 3}. A CMOS
implementation of the table is illustrated in Figure2(b). The
multiple-valued LUT is a direct extension of the binary
LUT. Similar to the binary LUT, there is a one-to-one
correspondence between the rows of the truth table and the
rows of the LUT. iAi refers to thedelta literal of A, and is
defined by:

(eq. 1)

If the logical value of A and B are 0 and 2, for example,
the pass transistors of row 2 turn on, connecting the output
node to f2 .

A delta literal generates a binary output that is connected
to the gate of an NMOS transistor. Therefore, a pass

transistor turns ON or OFF depending on the literal output
being high or low, respectively.

The core of the LUT shown in Figure 2 uses 8 input wires
and 32 transistors to implement a general 2-input 4-valued
logic function. A binary LUT uses the same number of input
wires but requires twice as many as transistors to implement
the same function. Therefore, a 4-valued LUT requires less
silicon area if the process technology is not metal limited.

The intermediate nodes of rows 0, 4, 8, and 12 have the
same voltage independent of the logic values of A and B.
The same is true for every fourth row of the LUT. Therefore,
the right-most transistors of these rows can be shared
without affecting the logic function of the LUT. Figure3.
shows such an implementation of the LUT with a row
rearrangement. The transistor count for this implementation
is 20.

Although we are using 4-valued logic in this section, the
arguments and the results are easily extendible to higher
radices. The block diagram of an MVL LUT with radix r is
shown in Figure4. The inputs to the LUT can be loaded
from a memory or programmed directly in order to create a
programmable multiple-valued logic function.

2.1 Voltage Mode

Table 1 shows the assigned voltage values for a 4-valued
logic system. A maximum voltage of 1.8V is assigned to
Logic 3, which is well below the full VDD (=3.3V). The
voltage gap between two consecutive digital values is
600mV. This is a sufficient voltage for a typical CMOS

fi ∈ {0, 1, 2, 3}

A B Z

0 0 f0

0 1 f1

0 2 f2

0 3 f3

1 0 f4

1 1 f5

1 2 f6

1 3 f7

2 0 f8

2 1 f9

2 2 fA

2 3 fB

3 0 fC

3 1 fD

3 2 fE

3 3 fF

Z

f0
f1

f8

f3

fA

fB

fC

fD
fE

fF

f5

f4

f2

f6

f7

f9

0A0

1A1

2A2

3A3

0B0

1B1

2B2

3B3

Figure 2. (a) A truth table for a general 2-input
4-valued logic function, (b) A LUT

implementation of the function in (a). The
delta literal iAi is discussed in the text.

(a) (b)

A
i i VDD i f A = i

0 i f A i≠






=

Figure 3. A LUT implementation for a general
2-input 4-valued logic function with reduced

transistor count

Z

f0
f4

f2

fC

fA
fE

f3
f7
fB
fF

f5

f1

f8

f9
fD

f6

0A0

1A1

2A2

3A3

0B0

1B1

2B2

3B3



sense amplifier to discriminate between levels.

The delta literals (Equation 1) generate a full VDD
instead of Logic 3 (1.8V) to drive the gate of an NMOS
transistor. This guarantees the transistor to be fully ON
independent of the logic value of the signal being carried. In
other words, the voltage assigned to Logic 3 is not degraded
by a threshold-voltage drop of the gate-to-source voltage of
the NMOS transistor.

Figure5 shows a CMOS implementation of the delta
literal 1A1. The circuit consists of two voltage-mode
differential pairs that compare A with 0.3V (halfway
between Logic 0 and 1) and 0.9V (halfway between Logic
1 and 2). The output of the two differential amplifiers
NORed together to generate the final output for1A1.

Inputs f0 to fF can be implemented using a voltage
divider technique [3]. As mentioned before, a reusable LUT

can be designed by making the circuits f0 to fF
programmable or downloadable from a memory.

2.2 Current Mode

Table 2 shows the assigned current values for a 4-valued
logic system. The maximum current (3µA) is assigned to
logic 3.

Using a 0.8µm technology, a 3µA current generates a
voltage drop in the order of 100mV across the drain-source
of each transistor. This does not affect the circuit
performance unless the number of transistors in series
exceeds 10.

A current-mode LUT is generally faster than a voltage-
mode LUT. In both cases, only one path turns on depending
on the logic values of A and B. However, a change in logic
values of A and B requires less charge movement in the
current-mode design since all internal nodes have relatively
low voltages (i.e. no charging and discharging is required).

Figures 6 and 7 show two ways of implementing a delta
literal (1A1) in current mode. The input current in Figure6
is sourced to the circuit and compared against two source
currents (0.5µA and 1.5µA). If the input current lies
between these two limits, the output node is pulled to VDD.
Otherwise it is pulled to ground. Figure7 shows a different
implementation in which the input current is compared
against a source and a sink current. This circuit eliminates
the use of an inverter that was necessary in the previous
implementation.

Inputs f0 to fF should be provided as current sources to
the LUT. This is possible by using a current-mode multiple-
valued memory [4] or by using a voltage-mode memory

Logical Value 0 1 2 3

Voltage Value 0V 0.6V 1.2V 1.8V

 Table 1: Voltage values assigned to 4-valued logic

f0 f1 f2 fi fN-1

0A0

A

B

Z

2-input, r-valued LUT

(N = r2)1B1
0B0

r-1Ar-1

1A1

Figure 4. Block Diagram of a general 2-input
r-valued LUT logic function

r-1Br-1

A
0.3V

0.9V

1A1

Ibias Ibias

Figure 5. Circuit diagram of a voltage mode
delta literal 1A1

Logical Value 0 1 2 3

Current Value 0µA 1µA 2µA 3µA

 Table 2: Current values assigned to 4-valued logic

A 0.5µA 1.5µA

1A1

Figure 6. Circuit diagram of a current-mode
delta literal 1A1



with a voltage to current conversion prior to the LUT.

3. Applications

A multiple-valued LUT offers the same function as a
binary LUT but occupies less silicon area. Two applications
that currently use binary LUTs are Field Programmable
Gate Arrays (FPGAs)[1] and intelligent memories [2].
FPGAs provide instant implementing of logic circuits with
negligible cost [1]. Intelligent memories are used to perform
data mining, pattern recognition, or image processing [2].
Both of these applications can benefit from the advantages
of a multiple-valued LUT.

3.1 Field Programmable Gate Arrays

Binary LUTs are widely used as the logic building blocks
for FPGAs [1]. This is because an n-input LUT can easily
be programmed to implement any Boolean function of n
inputs. In other words, a LUT offers a simple hardware
implementation for all combinational logic functions. The
only difference between LUTs that implement various logic
functions lies in the contents of the LUT register. Therefore,
re-programming a LUT to implement a new function is as
easy as loading new contents into the LUT register.

Using a multiple-valued LUT instead of a binary LUT
saves silicon area due to the smaller transistor count,
ignoring the peripheral circuitry. Moreover, a multiple-
valued LUT seems the only reasonable choice for a logical
building block of a multiple-valued FPGA [5].

3.2 Intelligent Memory

A binary LUT is usually used as the y-decoder of a
DRAM. Ignoring the processing elements in Figure 8, the
block diagram illustrates a standard memory in which a
LUT selects one sense amplifier out of many (usually on the
order of 1000) to be connected to the data pin. This is
usually done by allocating a few address bits to the column
select. The rest of the address bits are used to select a row
(wordline) in the array. For example, 16 bits of address are
required to uniquely select one bit out of 64kbits. Assuming

a memory array of 256 rows by 256 columns, 8 bits of
address are allocated to the row select, and the other 8 bits
to the column select. Once a bit is selected, it’s value is put
on the data pin for access by other chips (usually a
microprocessor).

In a memory with 1000 columns, there are 1000 sense
amplifiers that read the data of an entire row. Commercially,
nowadays, 1, 8, or 16 of these sense amplifiers are accessed
via the column select to transfer their data to 1, 8, or 16 data
pins, respectively. The rest of the sense amplifiers are left
unaccessed due to a limited number of data pins on each
memory chip. This leads to a discrepancy between the
internal and the available external bandwidth of a memory,
also known as the von Neumann bottleneck [6]. For
example, a memory chip with a 50ns access time and 1000
columns can provide a bandwidth of 20Gbits/sec internally
while it could only provide a bandwidth of 20Mbits/sec
externally through one data pin— a bandwidth reduction
factor of 1000.

One way to overcome this bottleneck is to build
processing elements close to the sense amplifiers inside the
memory chip (refer to Figure 9) [2]. The processing
elements reside below the sense amplifiers and at the top of
the LUT. A processing element reads the data of the
corresponding sense amplifier, performs a mathematical
operation, and stores the final results in a specified memory
location. Unlike the microprocessor, the processing
elements utilize the full internal bandwidth of the memory.
The only price for this is the silicon area occupied by the
processing elements.

A

0.5µA

1.5µA

1A1

Figure 7. An alternative circuit diagram of a
current-mode delta literal 1A1

wordline

bitline

x-
d

ec
o

d
er

LUT (y-decoder)

to Data pin

address bits

processing elements
control bits

sense amps

Figure 8. Block diagram of an intelligent
memory



LUTs provide cheap inter-column communication
channels for the processing elements, since they already
exist in the memory in the form of the y-decoder. Referring
to Figure1(c), a simultaneous high signal on A andA
provides a communication path between the processing
elements at f0 and f2, and the processing elements at f1 and
f3, respectively.

Intelligent memories can be used to perform
mathematical transforms such as a Fast Fourier Transform
(FFT). An FFT maps a set of discrete time-domain data to a
set of discrete frequency-domain data [7]. A 16-point FFT,
for example, maps time-domain data points (x(0) to x(F)) to
16 frequency-domain data points (X(0) to X(F)). It is well
known [7] that a 16-point FFT can be performed using a
radix-2 or a radix-4 approach. In radix-2 approach, the input
data are arranged in groups of 2, and the FFT operation is
performed on 2 points at a time. The results of the first stage
are then fed to the next stage as shown in Figure10(a) until
the final results are obtained. In radix-4 approach, the input
data are arranged in groups of 4, and the FFT operation is
performed on 4 points at a time as illustrated in
Figure10(b). Note that the radix-4 approach completes the
16-point FFT computations in 2 stages, as compared to 4
stages required in a radix-2 approach.

The structure of a binary LUT and a 4-valued LUT fits
the computational structures of radix-2 and radix-4 FFT,
respectively. In a binary LUT, a single address bit turns on

a path between two neighboring processing elements, hence
providing a communication path for a 2-point operation. In
a 4-valued LUT, a single address digit turns on a path
between four neighboring processing elements, hence
providing a communication path for a 4-point operation.
Moreover, as discussed in Section II, the path provided by a
4-valued LUT is capable of transferring 4-valued data
among the processing elements. This allows using 4-valued
processing elements with the same architectural
complexity. Finally, the memory array in a radix-4 FFT can
be replaced by a 4-valued memory array to reduce the
number of memory fetches by a factor of 2.

In summary, the use of a 4-valued memory array, 4-
valued processing elements, and a 4-valued LUT increases
the density and speed of a radix-4 FFT implementation

LUT (y-decoder)

to Data pin

PE PE PE
processing elements

sense amps

A0 , A0

A1 , A1

A2 , A2

memor y arra y

 ins. sig.

Figure 9. Bloc k dia gram illustrating the
position of pr ocessing elements relative to the
sense amplifier s and the LUT of an intellig ent

memor y

PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE

x0 x8 x4 xC x2 xA x6 xE x1 x9 x5 xD x3 xB x7 xF

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

x0 x4 x8 xC x1 x5 x9 xD x2 x6 xA xE x3 x7 xB xF

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

(a)

(b)

PEPEPEPEPEPEPEPE PEPEPEPE PEPEPEPE

PEPEPEPEPEPEPEPE PEPEPEPE PEPEPEPE

PEPEPEPEPEPEPEPE PEPEPEPE PEPEPEPE

PEPEPEPEPEPEPEPE PEPEPEPE PEPEPEPE

PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE

T
im

e
T

im
e

Figure 10. Flo w graphs of (a) radix-2, 16-point
FFT and (b) radix-4, 16-point FFT . Data flo w is
downwar d onl y. PEs and the LUT are reused at

each sta ge to pr ovide weighted sum of
incoming signals. Branc h weights are omitted

for graph c larity [6]



compared to its binary counterpart. A 4-valued memory
array cuts the number of memory fetches by a factor of 2.
For example, a 32-bit wide data would only require sixteen
4-valued cells (i.e., 2bits/cell) instead of 32 binary cells. A
4-valued LUT uses a single wire (instead of 2 wires in
binary) to carry 4-valued signals, hence reducing the
interconnect area and power consumption.

Fast DCT would benefit from a similar application of
these ideas. 2-D transforms on images would be
implemented by calculating row transforms and then
column transforms.

4. Summary

A voltage-mode and a current-mode implementations of
a multiple-valued LUT is presented in this paper. A
multiple-valued LUT can be used as a logic building block
in a multiple-valued FPGA or as an inter-column
communication channel in a multiple-valued intelligent
memory. In both applications, the use of a multiple-valued
LUT results in less silicon area and faster operation
compared with designs using a binary LUT.

5. References
[1] T. S. Brown, R. Francis, J. Rose, and Z. Vranesic, “Field

Programmable Gate Arrays”,Kluwer Academic
Publishers, 1992.

[2] D. G. Elliott, W. M. Snelgrove, and M. Stumm,
“Computational Ram: A Memory-SIMD Hybrid and its
Application to DSP”, Proceedings of the Custom
Integrated Circuits Conference, pp. 30.6.1-30.6.4,
Boston, MA, May 1992.

[3] K. W. Current, “Memory Circuits for Multiple Valued Logic
Voltage Signals”, Proc. of the 25th International
Symposium on Multiple-Valued Logic, pp. 52-57, 1995.

[4] E. Lee and P.G. Gulak, “Current-Mode Multivalued
Dynamic MOS Memory with Error Correction”,IEE
Electronics Letters, Vol. 28, pp. 1067-1069, May 1992.

[5] Z. G. Vranesic, “The FPGA Challenge”, to be presented at
the 28th International Symposium on Multiple-Valued
Logic, Fukuoka, Japan, May 1998.

[6] J. L. Hennessy and D. A. Patterson, “Computer Architecture,
A Quantitative Approach”, Morgan Kaufmann
Publishers Inc., 1990.

[7] A. V. Oppenheim and R. W. Schafer, “Digital Signal
Processing”,Prentice-Hall Inc., 1975.


