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Abstract—This paper proposes a new technique for face detec-
tion and lip feature extraction. A real-time field-programmable
gate array (FPGA) implementation of the two proposed techniques
is also presented. Face detection is based on a naive Bayes classifier
that classifies an edge-extracted representation of an image. Using
edge representation significantly reduces the model’s size to only
5184 B, which is 2417 times smaller than a comparable statistical
modeling technique, while achieving an 86.6% correct detection
rate under various lighting conditions. Lip feature extraction uses
the contrast around the lip contour to extract the height and width
of the mouth, metrics that are useful for speech filtering. The
proposed FPGA system occupies only 15 050 logic cells, or about
six times less than a current comparable FPGA face detection
system.

Index Terms—Edge information, face detection, field-
programmable gate array (FPGA), lip feature extraction, lip
tracking, naive Bayes classifier, Sobel.

I. INTRODUCTION

S TATE-OF-THE-ART speech recognition systems, in a
noise-free environment, can achieve word error rates as low

as 5% [1]. In noisy environments, such as an office, the word
error rate jumps to 58% or higher. Noise, due to reverberations
or other speakers, causes mismatches in the models initially
trained on clean speech. Clearly, noise suppression is needed
to improve the performance of speech recognition systems in
practical environments.

Motivated by the fact that humans can use lip motion to
comprehend a speaker in a noisy environment, researchers have
tried to use lip motion to improve the accuracy of speech recog-
nition systems. Lip motion can be used by speech enhancement
systems [3] to remove noise and enhance the speech signal
of interest, or by speech recognition systems directly as extra
information for recognition [2]. Several audio–visual automatic
speech recognition (AV-ASR) systems have been proposed
[3]–[5], [7], [25]. These systems can decrease the word er-
ror rate significantly over purely acoustic speech recognition
[4]–[6].

In addition to audio information, an audio–visual speech
processing system also needs to extract visual information, such
as lip motion, gestures, or facial expressions, to name a few. We
will restrict the focus of this paper to lip motion analysis. For lip
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motion analysis, the system first needs to locate the speaker’s
face. The process of locating faces in an image is called face
detection. Once the face is found, the lips can be located and
their visual features can be extracted. This stage is called lip
feature extraction.

Visual information can be helpful for speech processing
applications, but such information comes at increased system
and computational complexity. In fact, most state-of-the-art
face detection systems are computationally complex and cannot
run in real time. Moreover, for lip feature extraction, we need to
capture the motion of the lips in real time. That is, we need to
process sets of images at a rate of 30 frames per second (fps).

Given the processing requirements and the processing capa-
bilities of today’s computers, a custom hardware implementa-
tion is necessary to be able to localize faces and to detect lip
motion in real time. Moreover, a hardware implementation can
be integrated directly onto the charge-coupled device (CCD)
substrate, which is the heart of digital image acquisition de-
vices. As such, the focus of this paper is on hardware-based
lip motion analysis. Specifically, the hardware optimized algo-
rithms proposed for face detection and lip feature extraction,
and the hardware implementations thereof.

II. BACKGROUND AND PRIOR WORK

A. Face Detection

Face detection by itself is useful not only for AV-ASR
systems but also for such varied applications such as facial
expression recognition, teleconferencing, security, and robotics.
Indeed, humans can find and identify a face in an image
effortlessly. Extenuating circumstances, such as poor lighting
conditions, partially obstructed faces, or side profiles of faces,
do not seem to hinder our ability to find faces in an image. For
machines, the task of face detection is very difficult, since faces
exhibit facial feature variations from person to person and for
a single person over time. Lighting conditions and the presence
or absence of facial hair also compound the detection task.

The face detection techniques proposed in the literature
can be divided into two broad categories: facial feature based
or machine learning based techniques. Facial feature based
techniques use prior knowledge about the face’s features,
such as its shape or skin color [10]–[14]. These systems are
often simple, but do not work well in practice. On the other
hand, machine-learned techniques require no prior, or rela-
tively minimal, knowledge of what constitutes a face. Indeed,
the system itself learns to detect faces. This is accomplished
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by training the system with a large database of preclassified
face samples and nonface samples. Several successful learning
systems have been reported, which use support vector ma-
chines [15], [16], neural networks [17]–[19], and statistical
modeling [20]–[22].

Machine learning techniques, in particular, can achieve high
detection accuracies since they can adaptively change their
understanding of what constitutes a face during training (learn-
ing). For example, the system in [20] achieves a detection
rate of over 90%. However, most machine learning techniques
are complex and computationally expensive. That is, real-time
face detection on a video stream is infeasible. For example,
the neural network based system reported in [18] takes 140 s
to process a 320 × 240 image on a 175-MHz R10000 SGI
O2 workstation, equivalent to more than 20 s on a 3-GHz
Pentium IV. The statistical modeling approach in [21] takes
90 s on a 420-MHz Pentium II, equivalent to more than 13 s
on a 3-GHz Pentium IV.

For a 30-fps video stream, face detection needs to be per-
formed in approximately 33 ms for each frame. Clearly, a hard-
ware implementation is necessary, where the speed-up can be
achieved by parallelizing the algorithm, rather than increasing
the system’s clock frequency. However, most face detection
techniques proposed have focused on improving face detection
accuracy. As such, these implementations often do not have an
efficient hardware implementation. For example, the hardware
system proposed by [26]—implementing the neural network
based technique proposed by [18]—takes more than 30 mm2

of silicon area in a 160-nm technology and consumes more
than 7 W of power. In Section III, we propose a hardware-
efficient statistical modeling technique that uses image gradi-
ent information and a naive Bayes classifier to perform face
detection.

B. Lip Feature Extraction

Lip feature extraction, or lip tracking, is complicated by the
same problems that are encountered with face detection, such
as variation among persons, lighting variations, etc. However,
lip feature extraction tends to be more sensitive to adverse
conditions. A moustache, for example, can be easily confused
to be an upper lip. The teeth, tongue, and lack of a sharp contrast
between the lips and face can further complicate lip feature
extraction.

Recent techniques use knowledge about the lip’s color or
shape to identify and track the lips. Indeed, color differentiation
is an effective technique for locating the lips. A study by [5]
showed that, in the hue saturation value color space, the hue
component provides a high degree of discrimination. Thus, the
lips can be found by isolating the connected area with the same
lip color. Obviously, color discriminating techniques will not
work for grayscale images. Techniques that use information
about the lip’s shape include active contour models [23], shape
models [24], and active appearance models [25]. Unfortunately,
these techniques also require a large amount of storage, which
is unattractive from a hardware perspective. In Section IV, we
propose a lip feature extraction technique, which makes use of
the contrast at the contour of the lips. This technique works

well on grayscale images and can be easily implemented on
hardware.

III. FACE DETECTION

Our proposed algorithm for hardware-based face detection
is described below. The basis for this algorithm is a simple
naive Bayes classifier. We do not claim that this classifier is
optimal in terms of hardware complexity and performance. We
chose this classifier in order to reduce the number of model
parameters that would need to be stored in memory. A classifier
comparison would be a fruitful research endeavor, and we are
currently investigating this matter.

Given an input image, an exhaustive search is performed
using a window scanning technique. Each 20 × 20 search
window is preprocessed and then classified as a face (F) or
nonface (Fc). In order to cope with faces occupying different
fractions of the given image, we also classify down-sampled
versions of the given image: we use a recursive scaling factor
(β) of 4

√
2, or 1.189 as follows:

Algorithm 1 Proposed face detection algorithm
Require: I, an image of a scene

repeat
for all Ψ(20×20) ⊆ I do

Equalize grayscale histogram of Ψ

Compute ∇Ψ, magnitude, and direction of edges
Classify Ψ ∈ {F ,Fc} based on ∇Ψ

end for
Down-sample I by β

until size of I is < 20 × 20

return position of face in I, if exists, determined by where
cluster of Ψ ∈ F exceeds a threshold

A. Preprocessing

In our proposed technique, images are classified based on
the amplitude and direction of edges in the image (gradient
of the image) because of several intrinsic advantages of an
edge-based algorithm. First, an image of a face usually has
discernable patterns of strong edges around the facial features,
such as the mouth and eyes, whereas images of nonfacial
objects usually do not have such strong edges or are in random
locations. Secondly, the image gradient can be quantized more
aggressively, without much loss in image information, espe-
cially if the image’s contrast is maximized first. Third, using
edge representation allows us to concentrate on the shape of the
object instead of its appearance. This minimizes the effect of
different lighting conditions.

The employed naive Bayes classifier is greatly simplified
since we classify images based on the gradient of the image.
However, in order for such a technique to be robust in various
lighting conditions, we need to ensure that any image edge
can be successfully identified. That is, we need to maximize
the contrast for each 20 × 20 pixel search window. This is
accomplished by using histogram equalization.

Many simple edge extraction techniques exist, such as the
Sobel [27] filter or Roberts cross. These techniques are much
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Fig. 1. A face has strong edges around facial features. These edges can be
extracted using a Sobel filter [brighter pixels in (b) indicate strong edges].
(a) Original image. (b) Edge magnitudes.

simpler than principal component analysis (PCA) in terms of
the calculations required. We chose the Sobel filter because of
its proven performance and because of its ease of hardware
implementation.

The Sobel filter uses two convolution kernels to compute the
magnitude and direction of an edge at each pixel, i.e.,

Sx =


 1 2 1

0 0 0
−1 −2 −1


 Sy =


−1 0 1
−2 0 2
−1 0 1


 . (1)

Each 3 × 3 piece of the 20 × 20 search window is convolved
with Sx and Sy to give the magnitude of the edges in the
horizontal and vertical directions, Ex and Ey, respectively.
Given Ex and Ey, the magnitude and direction of an edge at
each pixel can be computed by using

|ei,j | =
√
e2xi,j

+ e2yi,j
∠ei,j = arctan

(
eyi,j

exi,j

)
(2)

where Ex and Ey are obtained by filtering the 20 × 20 search
window using Sx and Sy. That is, given ψi,j , 3 × 3 submatrix
of Ψ centered on the (i, j)th entry

exi,j
= Tr

(
Sxψ

T
i,j

)
eyi,j

= Tr
(
Syψ

T
i,j

)
(3)

where Tr indicates the matrix trace. Edge extraction reduces the
dimensions of the search window from 20 × 20 to 18 × 18.

Fig. 1 shows an example image before and after being
processed by the Sobel filter. All edges with amplitudes below a
certain threshold are eliminated; this threshold was chosen to be
the mean edge magnitude as computed over all training images.
The direction of each edge is quantized to seven directions;
weak edges are denoted as a special eighth direction. We
form an edge vector ξ = [∠e2,2,∠e2,3, . . . ,∠e19,19] for each
20 × 20 search window, which is then classified.

B. Naive Bayes Classifier

Given the edge vector ξ, the naive Bayes classifier evaluates
the likelihood that ξ is representative of a face. Let F indicate
the occurrence of a face and Fc be the converse. To classify
whether ξ is a face, we need to evaluate whether P (F|ξ) or

P (Fc|ξ) is more likely. Clearly, P (F|ξ) > P (Fc|ξ) for ξ to
be a face. This classification rule can be rewritten as

P (ξ|F)
P (ξ|Fc)

> λ (4)

where λ = P (Fc)/P (F). The bias (sensitivity) of the classifier
can be controlled by varying λ. Without prior information, the
naive choice for λ would be 1/2.

If it is naively assumed that there is no relationship between
neighboring image pixels, then the edge directions are indepen-
dent. Hence

P (ξ|F) =
∏

i

∏
j

P (∠ei,j |F) (5a)

P (ξ|Fc) =
∏

i

∏
j

P (∠ei,j |Fc). (5b)

In the log-likelihood domain, the classification criteria of (4),
taking into account the independence of pixels, can be calcu-
lated as∑

i

∑
j

[logP (∠ei,j |F) − logP (∠ei,j |Fc)] > log λ. (6)

Using a large database of preclassified images (faces and
nonfaces) allows the naive Bayes classifier to train itself
within the probabilistic framework described above. That is,
by analyzing training data, the model estimates the values of
P (∠ei,j |F) and P (∠ei,j |Fc), which will be used to classify
images during normal operation.

C. Training

The edge vector ξ represents 324 image edges, quantized
to eight levels: seven of which represent direction and one
to denote a weak edge. Each edge needs to be assigned a
probability value for P (∠ei,j |F) and P (∠ei,j |Fc), which are
calculated, based on the training data {D} = {F} ∪ {Fc}, as

P (∠ei,j |F) ≈ f(∠ei,j ∧ F) =
∑
{F}

[
∠ei,j = ∠e′i,j

]
|{F}|

P (∠ei,j |Fc) ≈ f(∠ei,j ∧ Fc) =
∑
{Fc}

[
∠ei,j = ∠e′i,j

]
|{Fc}|

where ∠e′i,j is the measured and quantized edge angle at
position (i, j) in the training data image. The square bracket
operator is a counting operator, that is,

[a = b] =
{

1, if a = b
0, otherwise.

The training set is supplied by MIT’s Center for Biolog-
ical and Computation Learning [30]. This set consists of a
6977-image training set (2429 faces and 4548 nonfaces) and
a 24 045-image test set (472 faces and 23 573 nonfaces). The
training set we utilized consists of 2400 faces and 15 000
nonfaces all from the training set. To further enrich this set, we
also used the horizontally flipped versions of these 2400 faces.
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Fig. 2. Multiple face detections are used to remove false positives. High concentrations of detected faces are used to indicate the region where actual face exits.
(a) Original. (b) Classifier results. (c) No false positives.

Hence, there are a total of 4800 faces and 15 000 nonfaces.
These images are histogram equalized and converted into edge
vectors in order to train the naive Bayes classifier.

To reduce the training time, we use bootstrapping [28]: the
system is trained on a subset of the training set and then
retraining it incrementally on the rest of the set. The model
parameters P (∠ei,j |F) and P (∠ei,j |Fc) are initially set by
counting the number of times a specific edge appears at every
location in the first 2000 faces and 5000 nonfaces. The system
is then retrained on the entire training set as follows.

Algorithm 2 Training via bootstrapping
while false detection on training set > tolerance level do

for all misclassified faces do
increment P (∠ei,j |F) ∀ei,j in misclassified image

end for
for all misclassified nonfaces do

increment P (∠ei,j |Fc) ∀ei,j in misclassified image
end for

end while

By increasing P (∠ei,j |F) or P (∠ei,j |Fc) for the misclas-
sified images, we effectively increase the likelihood that these
faces will be classified correctly by the new model. The mag-
nitude of the increment can be varied to train the system faster.
Initially, a high increment is used so that the desired perfor-
mance (high detection rate and low number of false positives)
is reached quickly. Once close to the desired performance, the
magnitude of the increment is decreased to avoid overshooting
our performance goal.

Fifteen thousand nonface sample images are just a small
subset of an image space consisting of 256(20×20) ≈ 10960

elements, and they are clearly not enough to achieve a low false-
positive rate. Therefore, the system is further trained on about
500 large nonface images collected from the Internet using
the same bootstrapping approach. The images are pictures of
buildings, clothes, scenery, etc.

D. Issues With Overlapping Search Windows

In this work, a large image is raster scanned for faces using a
20 × 20 search window. Hence, there is a possibility that a face
can be detected at multiple locations in an image and possibly
at different scalings of the original image. This side effect can
actually be exploited to reduce the number of false positives.

Fig. 2 shows an example of how this can be done. The input
image to the system is shown in Fig. 2(a). Detected faces for
different search windows and scaling levels are indicated in
Fig. 2(b) as white squares. Note that in this example the false
positive is detected only once. Thus, clusters of detected faces
in one region can be used to indicate where a face exists in the
overall image.

Using clusters of detected faces was first proposed in [17]. In
this work, a cluster is defined as a collection of detected faces
with more than 70% overlap. The weight of a cluster is defined
as the number of members in the cluster, but can also be defined
as the sum of classification scores for each search window in the
cluster. The representative for a cluster is defined as the search
window with the largest classification score, but can also be
defined as the search window with the largest area.

Two or more clusters can also overlap. In this case, it is likely
that only one of the groups is a true face while the other is a false
positive. In this case, the cluster with a higher total classification
score is chosen and the other clusters are discarded.

Once all overlapping and false clusters are removed, the
positions of all remaining cluster representatives are reported.
Our lip feature extraction assumes that only one face will
ever be present in a given scene; in this case, only the cluster
representative with the highest classification score is reported.

IV. LIP FEATURE EXTRACTION

The proposed lip feature extraction technique uses the con-
trast between the lips and the face to locate the four corners
of the mouth. The position of the four corners in turn gives an
estimate of the mouth’s height and width. The operation of the
proposed technique is shown in Fig. 3. Contrast, in the context
of our lip feature extraction scheme, is defined as the average
difference between pixels in a 2 × 2 pixel region.

Given the location of the face, the proposed technique
searches for the mouth in the lower half of the face, Fig. 3(a).
Fig. 3(b) and (c) shows the contrast and negative contrasts that
exist in this image. In Fig. 3(c), a higher contrast is represented
by white. Notice that the left and right corners of the mouth
are where the contrast is highest. The left corner of the mouth
is located by searching from the leftmost column of the search
area toward the middle. In each column, we take the pixel with
the highest contrast and compare its contrast with a threshold.
If the contrast is greater than the threshold, that pixel is con-
sidered the left corner and we stop the search. If it is not, we
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Fig. 3. Example of lip detection scheme. A contrast image (b) is constructed from the original image (a). Once the corners of the mouth are found (d), the
contrast level is followed (e) to maximal top/bottom locations (f). (a) Lip search area. (b) Contrast. (c) Negated contrast. (d) Mouth corners. (e) Top/bottom search
path. (f) Height/width points.

Fig. 4. Overall architecture of the system.

continue to the next column. The threshold can be made a tun-
able parameter to compensate for different lighting conditions.
The right corner is located in a similar way, resulting in the two
points shown in Fig. 3(d).

To locate the top of the lips, the proposed technique traces
along the edge of the mouth by, starting at the left corner of the
mouth, following neighboring points with the highest contrast.
The search is terminated midway between the left and right
corners of the mouth. The bottom of the lips can be found in a
similar manner. An example of the search paths traced is shown
in Fig. 3(d), the resulting points denoting the width and height
of the lips are shown in Fig. 3(e). Note that the top of the lips
indicated falls on the outside of the upper lip and the bottom of
the lips indicated falls on the inside of the lower lip. This does
in no way affect the ability for other systems to make use of the
lip motion information provided as only the motion of the lips
is important and not the lips’ absolute position.

We found that this technique works better on faces that are
larger than 20 × 20 pixels. We found that the face must be at
least 80 × 80 pixels for this technique to work well. As such, the
hardware implementation detects faces using a 20 × 20 search
window, but performs lip motion extraction on faces that are at
least 80 × 80 pixels.

TABLE I
IMAGE DOWN-SAMPLING FACTORS

V. FIELD-PROGRAMMABLE GATE ARRAY

(FPGA) IMPLEMENTATION

Fig. 4 shows the block diagram of the proposed hardware
system. Video input is captured by a camera and stored in one
of the two input buffer memories, each of which is 128 kB and
can hold one 320 × 240 frame of video. Two input buffers are
needed in order to be able to process a frame, while another is
being buffered.

To detect faces in a frame of video, the original image
is down-sampled by the scaling unit and stored in internal
memory. Each down-sampled image is raster scanned using a
20 × 20 pixel search window. Each search window is histogram

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:33 from IEEE Xplore.  Restrictions apply. 



NGUYEN et al.: REAL-TIME FACE DETECTION AND LIP FEATURE EXTRACTION USING FPGAs 907

Fig. 5. Histogram equalization. Hardware to build pixel intensity histogram.

Fig. 6. Histogram equalization. Parts 2 and 3.

equalized and classified. If a search window’s likelihood (score)
is greater than a threshold, then the search window’s informa-
tion (its location, scale, and score) is stored in a resulting FIFO,
to be processed by the overlap elimination (OE) block.

The OE block organizes overlapped faces into clusters and
stores the locations of the detected faces into the resulting
memory block. Since the OE block has to scan through each
face cluster in the resulting memory block and the number of
groups can vary during operation, the processing time of the OE
block can vary. Hence, the resulting FIFO is needed to ensure
that the main computing block does not have to wait for the
OE block. The lip extraction block picks the face, from the
resulting memory block, that has the highest score and searches
for the four lip parameters. Finally, the display unit takes the
output from the lip extraction block and displays the results on
a monitor. To achieve real-time operation, all processing units
were designed to process one column of data (20 pixels) in
parallel per cycle. Let us now look at each processing block
in more detail.

A. Scaling Unit

The scaling unit takes a 320 × 240 pixel input video frame
from one of the two input buffers and produces a selectively
down-sampled image. There are seven down-sampling factors
that are used (shown in Table I). This scaled image is then stored
in the internal memory block.

Image down-sampling is performed using the simple nearest
neighbor technique. That is, pixel (i′, j′) in the scaled image is
assigned the value of the pixel closes to β(i, j) in the original
image, where β is the scale factor used. Scaling is performed
by simply coping the corresponding image pixels from the
input buffer into the internal memory block. The scaling factors
and the corresponding image sizes are fixed parameters in this
implementation and are stored in a read-only memory (ROM).

B. Organization of the Internal Memory Unit

Memory access proved to be a substantial bottleneck, as
reading a 20 × 20 search window would take 400 clock cycles
from a single ported memory. Hence, to reduce access time,
we use 20 smaller memories that are accessed in parallel. Each
memory block is 256 B and stores a single row of the scaled
image such that one column of the search window can be read
from the memory subsystem in parallel.

C. Histogram Equalization Unit

Histogram equalization allows the system to work well in
different lighting conditions. This is the most complex block in
the system because it has to perform three operations. First, it
has to build the intensity histogram of the input window. Next,
it has to build the cumulative density function (CDF) of the
pixels. Finally, it has to build the new image based on the input
and the scaled CDF.
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Fig. 7. Sobel filter unit.

The histogram builder counts the appearance of intensity
values in the search window. This is a sequential task, but the
proposed system processes the pixels in one column of the
image in parallel. Hence, we first assign pixel intensities to
histogram bins and then count the number of pixels assigned
to each bin. To further speed up histogram equalization, the
dynamic range of pixel intensities is down-sampled by 16 and
only every other pixel intensity is examined. Compressing the
dynamic range of pixel intensities reduces the number of his-
togram bins required: whereas, reducing the number of pixels
examined reduces the number of parallel processing elements
required. The resulting architecture is shown in Fig. 5.

For each 20-pixel column, only the ten odd or even pixels
intensities are examined (ones marked with a gray dot in Fig. 5).
These are selected using ten 2-to-1 multiplexers. The down-
sampled intensity of the ten pixels are one-hot encoded using
the 4-to-16 decoders. Each bit corresponds to the histogram bin
that should increment its value. Each histogram bin examines
the one-hot encoded bits it receives that are active and generates
a binary increment using the 10-to-4 encoders. Each bin’s
decoded binary increment is added to the bin’s running total,
stored in register file 1 (RF1). Thus, a possible 400-clock cycle
histogram operation now requires only 20 clock cycles.

To build the scaled CDF, we need to calculate the cumulative
frequency of each intensity value starting at the lowest intensity.
This is easily accomplished with a ladder of adders, as shown
in Fig. 6, which cumulatively sum up the outputs of RF1. The
output of each addition is scaled by a constant factor c such
that the result falls within the range 0–15. The results of these
operations are stored in RF2.

The equalized image is constructed a column at a time
using the original image’s down-sampled pixel intensities to
select a corresponding normalized intensity from RF2. This
is done using twenty 16-to-1 multiplexers. As each column is
processed, it is passed over to the Sobel filter.

D. Sobel Filter Unit

The Sobel filter unit extracts and quantizes edges from the
equalized image, the search window. The block diagram for this
block is shown in Fig. 7.

This block uses 20 FIFO memory blocks to store the search
window, one FIFO block per row of the search window. Each
FIFO is 20 entries deep, deep enough to store a complete row

Fig. 8. Nonlinear edge direction quantization chart.

of the search window; each entry is 4 bits wide. The search
window is shifted into this FIFO after having its histogram
equalized. The last three entries in each FIFO are connected
to the 18 Sobel processing elements (PE), which extract the
quantized direction of an edge per 18 of the rows. Data are con-
tinuously shifted toward the right in Fig. 7, thereby processing
a column of edges per clock cycle.

Each PE computes the horizontal and vertical edges present
(exi,j

and eyi,j
) using eight adders. The net direction of each

corresponding pair of edges is then evaluated, as per (2), and
quantized. Edge direction is not computed using an implemen-
tation of an inverse tangent function, as such an implemen-
tation is typically iterative or requires substantial resources.
Instead, the quantized direction is computed directly based
on the values of exi,j

and eyi,j
using the chart shown in

Fig. 8. These quantization levels are not divided evenly over the
half-circle, but in such a way that the quantized direction level
can be easily evaluated based on exi,j

and eyi,j
. This allows

for the computation of the quantized direction using only three
comparators and a small logic element.

The magnitude of an edge is computed as the sum of exi,j

and eyi,j
using two multipliers and one adder. The square root

of this sum is not computed, as it is easier to just square the
threshold value a priori. If the squared sum is less than the
threshold, then the edge is characterized as a weak edge.

E. Score Computing Unit

The score (likelihood that a search window is a face) is
obtained by using the quantized edge directions to look-up
the precomputed likelihood (P (∠ei,j |F)) associated with that
edge. A precomputed likelihood associated with all possible
eight edge directions needs to be stored. These likelihoods are
stored in a look-up table (LUT). The 18 LUTs for a row of
search window pixels are in turn grouped into a single ROM.
That is, each row of the search window has an associated
ROM in which 18 LUTs are stored. This allows for paral-
lel processing of a column of the search window, as shown
in Fig. 9.

As a column of edge directions is received from the Sobel
filter unit, they are buffered into the input shift registers. Each
three-bit quantized edge direction is used to look-up the likeli-
hood value associated with that edge direction. This is done in
parallel for each row of the column being analyzed. A counter
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Fig. 9. Score (face likelihood) computing unit.

is used to offset each column to point to its respective LUT in
the ROM in order to obtain the correct likelihoods for each of
the 18 × 18 pixels in the search window. Hence, the counter
points to an LUT in the ROM and the edge direction indexes a
single entry in the LUT. The outputs of each row of ROMs are
summed for all search window columns processed.

Each edge direction likelihood (LUT entry) is represented by
a 16-bit fixed-point number. One bit is reserved for the sign
of the number and the decimal point is to the right of the
first mantissa bit, representing values in the range [−2, 2). The
precision of this representation is 2−14.

F. Overlap Elimination Unit

This block organizes detected faces into clusters. The loca-
tions and scores of detected faces, if any, are read from the
resulting FIFO. For each detected face in the resulting FIFO,
we search the resulting memory for a cluster that the detected
face belongs to. If a corresponding cluster exists, information
about that cluster is updated to include the current detected
face. Otherwise, a new group is created. This unit is the main
performance bottleneck in this system.

G. Lip Tracking Unit

The face that has the highest score from the resulting memory
is used for lip feature extraction. The video frame is read from
the active input buffer and the left and right corners of the mouth
are located using the contrast information for the lower half of
the face. The top and bottom of the mouth are found by tracing
along the lip border.

The design can be broken into two main blocks: one to search
for the left and right corners of the mouth and the other one to
search for the top and bottom of the mouth. Both blocks use
a common block to compute the contrast of the image, which
uses several adders. The left–right search block accepts the
starting point and search direction as its input. The top–bottom
search block takes the search direction (up or down) and the
starting and ending points, which were found previously using
the left–right search block. The result from the lip tracking
block can be either displayed on a monitor or sent to a host
computer.

TABLE II
IMPLEMENTATION CHARACTERISTICS

VI. RESULTS

A. Implementation Characteristics

The system was implemented on a Microtronix Stratix
Development Kit that houses an Altera Stratix 40 000 logic
element FPGA. The characteristics of this implementation are
summarized in Table II.

The design uses 268 kB of memory, most of which (256 kB)
is devoted to the two input buffers. The design takes up 15 050
(38%) logic elements. Approximately 300 000 clock cycles
are required to process each frame through the face detection
subsystem. Lip feature extraction takes only a few thousand
clock cycles. Synthesis results indicated that the design can
operate at a maximum clock frequency of 41 MHz. Hence,
this implementation can potentially process 136.6 fps, 30 fps
operation can be achieved using a 9-MHz clock frequency.

B. Face Detection Accuracy

The proposed face detection was tested on the Yale test set
[31] to measure the effectiveness of the system under various
lighting conditions. The test set consists of 164 images, each
face with different expressions (angry, surprised, etc.) under
different lighting conditions. The proposed system achieved a
detection rate of 86.6%, with no false positives. A sample of im-
ages from this test case is shown in Fig. 10. This demonstrates
that our system is able to detect faces over a wide range of light-
ing conditions and only fails under extreme lighting conditions.

The targeted application of our proposed system is audio–
visual speech processing, specifically for teleconference ap-
plications. To gauge the performance our system with respect
to the intended target application, we collected approximately
1600 images of different speakers sitting in front of a camera
and talking. That is, each image only has one face in the frame.
The speakers were free to move their head naturally while they
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Fig. 10. Results from the Yale test set. The upper row shows correctly detected faces, and the bottom row shows missed faces.

TABLE III
FACE DETECTION RESULTS

Fig. 11. Error distributions for the automatic height and width measurements
compared to manual measurements.

conversed. The system achieved a 99.2% detection rate, with
only two false positives. Table III summarizes the performance
of our system with respect to the Yale test case and our own test
scenario.

C. Lip Feature Extraction Accuracy

The lip feature extraction technique was tested on four
speakers. A video of 200 frames was recorded for each speaker.
The videos were processed by the lip extraction system, from
which the lip widths and heights were calculated. We compared
these automatically extracted measurements against manual
measurements. Our system achieved a root mean squared (rms)
error of 2.04 pixels for the height measurements and an rms of
3.48 pixels for the width measurements. The error distributions
are shown in Fig. 11.

In order to use lip motion analysis for speech processing, the
system needs to detect periods where the speaker of interest
is silent, where the lips are not moving [3]. To test how the
proposed system is able to detect silent speakers, we recorded

Fig. 12. Standard deviations of the height estimates in the speaking and
silent cases.

TABLE IV
COMPARISON TO PREVIOUS FPGA IMPLEMENTATION

another set of videos where the speakers are silent and do not
move their lips. The standard deviations of lip height measure-
ments for speaking and nonspeaking speakers are plotted in
Fig. 12. Note that there is a clear distinction between talking
and silent cases.

The results shown above are derived from a small test sample
and are intended that the simple lip detection proposed does
indeed work and the results are thus far promising.

D. Comparison to Alternative FPGA-Based Systems

Table IV compares the proposed system to the FPGA-based
face detection system proposed in [29]. Note that our system
requires six times less logic elements. There might exist a slight
discrepancy between the number of logic elements between our
proposed implementation and the implementation in [29] as the
latter is based on an older FPGA.

Our system performs better in various lighting conditions be-
cause we use a histogram equalization technique that improves
our system’s ability to detect edges in an image. Our system
can run at a higher clock frequency and can therefore process a
higher rate of frames per second. However, for this comparison,
we used the same clock frequency as the implementation in [29]
(12.5 MHz), and our system was still able to process 41.7 fps,
as opposed to 30 fps.
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VII. CONCLUSION

This paper proposes a new face detection technique that
utilizes a naive Bayes classifier to detect faces in an image
based on only image edge direction information. This technique
allows for a compact FPGA-based implementation that can
operate in real-time at frame rates of over 30 fps. A simple
lip feature extraction technique is also proposed, which uses
contrast information in the image to locate the corners, top,
and bottom of the mouth. This implementation was also im-
plemented on the same FPGA. We showed that our combined
face detection and lip feature extraction system could discern
whether a speaker was speaking or silent. Information on when
a speaker of interest is silent can be used to gather information
about the interfering noise(s); this information can be used to
improve the fidelity of the signal originating from the speaker
of interest.
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