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Abstract—This paper presents a hardware implementation of a
sound localization algorithm that localizes a single sound source
by using the information gathered by two separated microphones.
This is achieved through estimating the time delay of arrival
(TDOA) of sound at the two microphones. We have used a TDOA
algorithm known as the “phase transform” to minimize the effects
of reverberations and noise from the environment. Simplifications
to the chosen TDOA algorithm were made in order to replace
complex operations, such as the cosine function, with less expen-
sive ones, such as iterative additions. The custom digital signal
processor implementing this algorithm was designed in a 0.18-pm
CMOS process and tested successfully. The test chip is capable of
localizing the direction of a sound source within 2.2° of accuracy,
utilizing approximately 30 mW of power and 6.25 mm? of silicon
area.

Index Terms—Acoustic arrays, acoustic signal processing, adap-
tive arrays, application specific integrated circuits, array signal
processing, circuit optimization, digital signal processors, micro-
phones.

1. INTRODUCTION

OW-POWER electronics are widely utilized in hand-held

organizers, cell phones, and digital cameras. Hand-held or-
ganizers in particular require a substantial amount of user input,
often provided via a small keyboard or touch screen, neither of
which is user friendly. Voice-activated portable electronics, on
the other hand, provide a more suitable form of user input. To
that end, sound localization in conjunction with speech separa-
tion can increase the accuracy of a speech recognition system
in noisy environments [1]-[3]. Speech separation is the process
of separating sound signals from each other using a multimicro-
phone array. Sound localization is the process of identifying the
spatial coordinates of a sound source based on the sound signals
received by the microphone array. This is in direct contrast with
sound projection [4], which synthetically projects a monaural
sound source in a simulated three-dimensional (3-D) environ-
ment. Sound localization is required for applications such as
video conferencing [5], robot navigation [6], and speech recog-
nition [7], [8]. This paper examines a sound localization algo-
rithm based on the phase transform and examines a way of im-
plementing this algorithm in hardware.
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A simple method of multimicrophone sound localization is
to estimate the time delay of arrival (TDOA) of a sound signal
between two microphones. Many TDOA algorithms are widely
available [7], [9]-[11], among which, the phase transform
weighted version is most suitable for reverberant environments.
There are two approaches to implementing this algorithm via
software or hardware.

Software-based sound localization is not capable of providing
real-time sound localization, due to the processing requirements
of the algorithm. Our own experiments with software imple-
mentations have shown that a 2-GHz Intel® Pentium® 4 pro-
vides only half-rate real-time sound localization estimates. An
off-the-shelf digital signal processor (DSP) solution is not a vi-
able approach as it is not scalable and might require a multi-DSP
communication network.

A custom hardware implementation can provide the pro-
cessing power required by the algorithm while consuming
a reasonable and controllable amount of power. The initial
hardware solution by [12] implemented a sound localization
algorithm on a field programmable gate array (FPGA), which
operates at 10 MHz and consumes an estimated 100 mW per
microphone. This hardware approach can be further enhanced
by implementing a higher precision algorithm in an applica-
tion-specific integrated circuit that is capable of lower power
consumption.

Section II of this paper presents the basics of sound localiza-
tion theory, including the development of the algorithm used in
this work. Section III provides an overview of the architecture
of the TDOA test chip, including some of the design decisions,
challenges, and tradeoffs. Section III also provides an overview
of the test board utilized in testing the TDOA chip. Finally, the
experimental test results are presented in Section I'V.

II. SOUND LOCALIZATION BASICS

The most popular sound localization method utilizes a pair
of microphones to estimate the TDOA of a single-source sound
signal between two microphones [10], [13]. A single TDOA be-
tween two microphones will constrain the location of the sound
source to a hyperbola in two dimensions or a hyperboloid in
three dimensions. The intersection of multiple hyperbolas or hy-
perboloids, from different microphone pairs, will constrain the
location of the sound source to a single point.

The most common TDOA estimation method is known as
the generalized cross correlation (GCC) [11]. Consider two mi-
crophones separated by a distance d and a single sound source
placed in the vicinity of the microphones. The two microphones
will receive signals m(t) and mo(t), respectively. The two
signals are ideally scaled and time delayed versions of each
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other. However, in practical environments, the microphone sig-
nals also contain external noise, reverberation, and microphone-
induced noise. The microphone signals can be modeled as

ml(t) S(t) + TL1(t>
mo(t) = s(t + 7) + na(t)

(1a)
(1b)

where s(t) and s(¢ + 7) are the received signals from the sound
source, and nq(t) and n»(t) are the total noises associated with
the two microphones. The TDOA to be estimated is 7. Attenua-
tion of the sound source has been neglected in order to simplify
the derivation. This simplification, as shown later, does not af-
fect the precision of the estimate as the magnitude of each signal
is discarded by the chosen algorithm.

The Fourier transforms of the received signals are M (w) and
M (w), respectively. The TDOA estimate 7 can be calculated
using frequency cross correlation, by finding the delay (phase
shift) that maximizes the cross correlation between my and mo,
as given by

T = arg max / M (w)My(w)e™%P duw. 2

w=—00

The TDOA estimate 7 is simply the 3 that maximizes the cross
correlation.

Generalized or unfiltered cross correlation (UCC), as shown
in (2), does not perform well in noisy and reverberant environ-
ments [14]. A frequency weighting factor W (w) is introduced
into the cross correlation formula to allow the TDOA estimates
to be less sensitive to noise or reverberations, resulting in

/ W (w)My(w)My(w)e 7P dw  (3)

w=—00

T = arg max
8

where possible weighing functions are given by

Wucoe(w) =1 (4a)
WuL(w) = | My (w)|| M2 (w)]

B If\fl(cu)lilf\/fz(w)l2 + [Na(w) P My (w)[?

(4b)

WegaT(w) (4¢)

[ My(w)|[Ma(w)]
denoting, respectively, unfiltered cross correlation (UCC), max-
imum likelihood (ML), and phase transform (PHAT). Among
these, the PHAT weighting function is most suitable for rever-
berant environments [14].

In discrete time, TDOA estimates are calculated based on
groups of samples, and these groups of samples are termed seg-
ments or windows. Larger segments offer more data on which
to base TDOA estimates; however, this results in a longer cal-
culation latency. A single-segment TDOA estimate using PHAT
in discrete time is given as

M 1 (n)M 2 (n)
| My (n)[| M2 (n)]

N/2

T = arg max
gmax )

n=—N/2

e—jQTranﬂ/N (5)

where Fs is the sampling frequency, n is the index of the dis-
crete time Fourier transform, and N is the number of samples
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Fig. 1. Data flow through the whole chip, showing division between front end

and custom DSP.

in the segment being analyzed. Equation (5) can be further sim-
plified as

N/2
T = arg max Z cos(LMy(n)— LMs(n)—2xFsnf/N) (6)

n=0

where “/” denotes the phase angle of its respective argument.

The PHAT weight treats each frequency’s contribution to
finding the overall TDOA estimate equally by normalizing the
magnitude of each frequency component to be equal to one.
This normalization of magnitude allows PHAT to perform
better in reverberant environments since the signal to rever-
berant noise ratio is similar over all frequencies. For these
reasons, this technique was employed in our work.

III. HARDWARE IMPLEMENTATION

The hardware modules discussed in this section were de-
scribed in the Verilog hardware description language using reg-
ister transfer logic (RTL). The RTL description of the chip was
synthesized by Synopsys® Design Compiler™ into a gate level
net list. The resulting net list was floor planned and routed using
Cadence® Silicon Ensemble®. All simulations and verification
was performed using Cadence® Verilog-XL® logic simulator.
The RTL logic is technology independent and can be easily
ported onto an FPGA or a more aggressive CMOS technology.

The implemented PHAT TDOA estimation technique is
employed for two microphone pairs. Each microphone signal
undergoes amplification, antialiasing filtering, and sampling
at 20 kHz with 8 bits of resolution before being processed by
the TDOA chip. The TDOA chip interfaces directly to two
analog-to digital converters (ADCs).

The overall chip architecture can be broken down into two
major components: a preprocessing front-end and a custom dig-
ital signal processor (DSP) core, as shown in Fig. 1.

A. Preprocessing Front-End

In order to obtain robust TDOA estimates in real-time, all
incoming microphone samples must be processed. In order to
apply (6), a full segment needs to be buffered before the data can
be processed. On-chip memory buffers a segment while another
segment is being processed.

To allow for a tradeoff between TDOA estimate latency and
accuracy, the size of the segment window can be selected at
power up; available window sizes are 256, 512, and 1024 sam-
ples, corresponding to 12.8-, 25.6-, and 51.2-ms segment sizes,
respectively. Segment sizes were chosen to be powers of two in
order to simplify calculation of the fast Fourier transform (FFT).
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Fig. 2. TDOA chip input front end: Serial data is read from each ADC,
multiplied point-by-point by a Hanning window, and stored into an input buffer.

The maximum window size is mainly limited by the largest pos-
sible memory block that can be accommodated on the allocated
silicon die size.

In order to make best use of silicon area, calculations are
spread out sequentially in time so that the time required to cal-
culate a TDOA estimate is slightly less than the time required
to acquire a new segment to be processed. A segment size less
than 256 samples proved to be impractical and too sensitive to
errors [15].

As samples are acquired from the ADC, they are multiplied
by a Hanning window and stored into an input buffer, as shown
in Fig. 2. The input buffer has a fixed depth of 1024 samples.
Each sample is 32 bits wide: 1 sign bit, a 25-bit mantissa, and
a 6-bit exponent. The total memory block size required to store
1024 samples is 4 kB.

To reduce the total silicon area, a 4-kB memory block is
shared between the two microphone channels; each microphone
channel also has two dedicated 4-kB memory blocks. These two
dedicated memory blocks switch between acting as an input
buffer and as storage for computations. Initially, memory block
A acts as an input buffer, whereas the previously buffered seg-
ment in memory block B is being used to compute a TDOA
estimate. When memory block A—the input buffer—is full,
memory blocks A and B switch tasks. Now, memory block A
is being processed, while memory block B is buffering samples
for a new segment. The memory block shared between the two
microphone channels is used as temporary storage for imagi-
nary Fourier transform coefficients.

B. Custom DSP Core

The chip is designed to accommodate a maximum micro-
phone separation distance of approximately 50 cm with full
range (—90° to 90°) sound localization capability. TDOA es-
timates can be obtained with a resolution of 0.1 samples or 5 us
through the processing gain of the transform domain. These de-
sign constraints result in the need to search though 601 possible
TDOA estimates ((s) in order to find the one that results in the
maximum cross-correlation.

The computations carried out in the DSP core can be broken
down into several operations: FFT calculation, phase calcu-
lation, phase difference calculation, and maximal likelihood
search. The data path for these operations is shown in Fig. 3(a).
Fig. 3(b) shows the sequence of the operations. The most
time-consuming operation is the search for the TDOA estimate,
as each possible delay must be checked.

1) FFT Calculation: An N -point in-place radix-2 decima-
tion-in-time FFT is calculated using each microphone’s 4-kB
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Fig. 3. (a) Data flow through different operation blocks in DSP core.

(b) Representative timeline showing the order of and relative time required for
the operations.
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Fig. 4. (a) FFT block utilizes 4 kB of computational storage and the 4 kB
shared memory block to perform an in-place FFT. (b) Two-point FFT butterfly
architecture.

computational storage and the shared 4-kB memory block. NV
represents the window size being used or the number of samples
in the segment being processed. The computational memory
block is used to store the real Fourier transform terms, whereas
the shared memory block is used to store the imaginary terms.

The hardware implementation utilizes the two terminal
input/output butterfly structure shown in Fig. 4(b), which
consists of one complex multiplier and two complex addi-
tion/subtraction units. A finite-state machine controls the
timing of this module; the function of this state machine is
to read two datums from memory, process them using the
aforementioned butterfly, and then write the resulting data back
to the same memory location. Memory address generation and
timing is also controlled by this module’s finite state machine.

Although an extra memory block is required to store the inter-
mediate imaginary results, an in-place FFT algorithm is much
faster than direct calculation of the Discrete Fourier Transform
(DFT). Direct DFT calculation requires O(N?) calculations,
whereas the FFT algorithm requires O(N log, N) calculations.
On the other hand, direct DFT calculation requires only one reg-
ister to store the intermediate imaginary results for each term.
The result can then be converted to polar coordinates and only
the phase (angle), which is the only term required as per (6),
would be stored.

The FFT for each microphone is performed sequentially to
accommodate the sharing of a memory block for storing imagi-
nary terms. Since only the phase of each FFT point is needed for
further processing, the FFT terms are converted to polar repre-
sentation. The magnitude is then discarded to free up the shared
memory block.
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2) Phase Calculation: Cartesian to polar conversion is
performed using the Coordinate Rotating Digital Computer
(CORDIC) algorithm [16]-[19]. CORDIC performs rotations
of the Cartesian vector until the resulting vector is sufficiently
close to the x-axis. By keeping track of the rotations required,
the original phase of the vector can be sufficiently approximated
along with the magnitude of the vector. Although the CORDIC
algorithm introduces dilation of the vector magnitude, the
phase is not affected.

The equations for the CORDIC rotations are

Tiv1 = —Yi-di - 27"

Yirl =Yi + @i di- 27
Zitl = 2 — d; - tan~ 1277
o +1, if Y < 0
di = { —1, otherwise. @

The variables z and y are the Cartesian coordinates of the vector
undergoing rotation, and z is the sum of the rotations performed.
The index ¢ is the iteration counter used for the CORDIC algo-
rithm. The pair (xq, yo) are initialized to be the Cartesian coor-
dinates of a vector, and zy is initially 0. At each iteration, the
algorithm makes a decision based on the current value of y; as
to which direction to rotate the vector in order to make it lie on
the x-axis. After a fixed number of rotations, the phase of the
vector is given by z, whereas the dilated magnitude given by
x;y should be approximately zero by virtue of rotating the orig-
inal vector onto the x-axis but has no defined meaning.

The CORDIC algorithm offers a hardware efficient method
for calculating the phase of a Fourier transform element, since it
utilizes only additions and bit shifts. However, a look-up table is
required to store the values of the arctan(2~%) terms. The length
of this look-up table is determined by the number of iterations
required to reach the required precision: Approximately 1 bit of
precision is gained for each rotation.

The hardware implementation of the CORDIC algorithm is
quite simple; only six addition/subtraction units and four arith-
metic shifters are required for this algorithm. A finite state ma-
chine controls the movement of data to and from memory as
well as the iterative nature of the algorithm.

The space required for the digital logic that implements the
CORDIC algorithm is not a function of the final precision re-
quired. In order to achieve a precision commensurate with the
precision of the floating-point representation, approximately 20
CORDIC rotations are required; two rotations are performed per
clock cycle in this work.

3) Phase Difference: A direct implementation of (6) can be
achieved by a repetitive computation of the phase difference be-
tween the two microphones. Phase differences are calculated
before the maximum likelihood search in order to reduce the
number of overall calculations and memory traffic.

Phases are read from the two computational memory blocks
and subtracted from each other with the result being written
back to one of the computational memory blocks. Flow control
and address generation is provided by a finite state machine.

4) Maximum Likelihood Engine: In order to mitigate es-
timation error introduced by the high-frequency components,
only components in the lower frequency range of 0 to 5 kHz
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sums up the cosine of the phase error over all n. Four such operations occur in
parallel. Each result is compared against the current maximum in order to find
the /3 that results in the maximum likelihood.

are utilized in the maximum likelihood search. Thus, (6) can
be rewritten as

N

7= argm/z?xi: cos[(LMy(n) — LMs(n)) — 2mnB/N] (8)

n=0

where 3 is now in samples instead of in seconds.

The term 27 /N is constant in all calculations. Moreover, by
searching linearly through all possible 3’s, from Oyx to Syviax,
one can restrict the starting angle offset to —27 Gy /N. For
each step A, the term —27Sy\n/N increases by 2rAS/N.
This approach eliminates the need for multiplication in calcu-
lating the phase angle for different 3’s. A similar approach is
utilized, in order to avoid multiplications, for the evaluation of
the changing phase term, in (8), for each different frequency
point.

As shown in the data flow diagram of Fig. 5, another critical
functional block for calculating the PHAT weighted correlation
is the cosine evaluator. By modifying the CORDIC iteration for-
mulas, the same algorithm utilized for phase evaluation can be
used to calculate the cosine of an angle. The resulting formulas
used are

Tig1 =mi —yi-di 27"
=yi+wi-d;i- 27"

Yi+1
Zi41l = Zi — d; - tan~t27¢
-1, ifz <0
di = { +1, otherwise. ©

Note the change in the rotation decision d;. The algorithm ro-
tates a vector from the x-axis by zq until z; is sufficiently close
to zero.

Initially, zg = 1 and zp = 6, where 6 is the argument of the
cosine. By successively rotating z¢o = 1, with the intent to re-
duce z to 0, the cosine of # can be obtained. In fact, x = cos(f)
and y = sin(#) after the desired number of rotations. A total of
20 rotations are performed in order to achieve sufficient accu-
racy: Similar to phase evaluations, two rotations are performed
every clock cycle. Dilation introduced by the CORDIC algo-
rithm into the terms x and y can be compensated by adjusting
the initial value of x; the dilation factor is a constant propor-
tional to the number of rotations performed.

Once the cosine is evaluated, the result is added to previous
cosine evaluation via an accumulator. The cosine of phase errors
is summed over all frequency points, yielding a likelihood for
a particular (8. This likelihood is compared against a running
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Fig. 6. Photograph of TDOA chip die. Locations of memory blocks and space
occupied by digital logic is indicated on the die photograph.

maximum,; if the calculated likelihood is the new maximum,
then it is retained along with the (3 that corresponds to it.

The previous algorithmic modifications described in this sec-
tion reduced the number of on-chip floating point multipliers to
4, which are exclusively used by the FFT block and front-end.
By reducing the number of expensive operations and using small
iterative operations, the area required for the digital logic is ef-
fectively reduced.

The iterative nature of cosine evaluation increases the time
required for calculations, exceeding the time budget allocated
for all calculations, which is only ~50 ms for a 1024 sample
window. Increasing the clock frequency in order to speed up
the operations would not be a viable option since one would
lose the ability to perform a complex floating-point operation in
a single clock cycle. Therefore, four likelihood evaluations are
performed in parallel.

C. Test Board and Prototype Chip

A photograph of the chip die is shown in Fig. 6. The die mea-
sures 2.5 by 2.5 mm. Approximately 42% of the silicon area is
occupied by memory blocks. The 1.8-V chip core consumes an
average power of 28.98 mW.

The test board housing the test chip also includes amplifiers,
antialiasing filters, and analog-to-digital converters, which are
all required to process the microphone analog signal before
sound localization can be performed.

Two microphones are located on the board, approximately
19.8 cm apart. Headers are provided for the ability to connect
external microphones.

A simple bipolar junction transistor (BJT) provides the first
stage of amplification for each microphone signal, followed by
two low-noise operational amplifiers. Antialiasing filtering is
provided by a tenth-order switched-capacitor lowpass filter.

IV. MEASUREMENT RESULTS

Three test scenarios are developed in order to measure the
TDOA chip’s performance. The first test scenario utilizes white
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Fig.7. Testsetup used for testing the TDOA chip. The noise source was kept in

front of the microphone pair, while the speaker of interest was placed in different
positions in an arc about the microphones.

Gaussian noise as the source to be localized and as a noise
source. The second test scenario utilizes various speech sam-
ples for both the source to be localized and for the noise source.
These first two tests are carried out inside a simulated environ-
ment; MATLAB is used to delay and mix the signals and play
them to the test board. The third test scenario places the sources
in a lab environment in order to add reverberations and external
noise sources to the test environment. All of these tests are per-
formed using a PC running MATLAB. The PC is connected to
the test board to receive TDOA estimates via the RS232 port.
MATLAB is used to control the relative intensities of the sound
source to be localized and the noise source. The tests, as well as
their results, are described in more detail in the following sec-
tions.

A. White Gaussian Noise Tests

To verify the basic functionality of the algorithm, white
noise sources are used for both the source to be localized and
the noise source for the first pass/fail test. These tests are also
used to make sure that the peripheral circuitry implemented on
board are not causing errors in TDOA estimation. These tests
are performed in a synthetic environment; MATLAB is used to
delay and mix two separate sound signals and play the resulting
audio signal. The analog audio signal is fed directly into the
antialiasing filters tenth-order lowpass filter), bypassing the test
board’s front-end amplifiers.

The positions of the sound and noise source for the synthetic
test setup is shown in Fig. 7; this test setup does not include
reverberation effects. The two microphones are located 20 cm
apart. A white Gaussian noise source is placed directly in front
of the microphone pair. The white Gaussian noise source to be
localized is placed at different positions in a 1-m arc around
the microphones in increments of 30°. Seven distinct angles are
tested for, as well as eight signal-to-noise (SNR) ratios between
the noise source and the signal of interest.

The accuracy of each TDOA estimate is measured using its
equivalent angular direction of arrival (DOA). The relationship
between the DOA and the time delay or arrival is given by

DOA = sin™" <%) ;  where v is the speed of sound. (10)
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Fig. 9. TDOA estimate accuracy results obtained for a white Gaussian noise
source placed at seven positions in the synthetic environment for different SNR
ratios: 20, 30, 40, and 50 dB.

Results are collected using MATLAB via the RS-232 inter-
face and compared against expected TDOA results. Measure-
ments are collected in terms of DOAs, as defined by (10). The re-
sults shown in Figs. 8 and 9 are the corresponding percentage of
abnormal measurements and the root-mean-squared error of the
measurements over different angular orientations in the range
—90° to 90° for different SNR ratios.

Abnormal measurements are defined as estimates that have a
DOA error (from nominal DOA) greater than 5°. Any measure-
ments that fall within a DOA error of 5° are counted toward the
RMS error. Since the microphone separation distance utilized
is less than the initially assumed 50 cm, there exists a possi-
bility that the TDOA might exceed the time required for sound
to travel 20 cm. These TDOA estimates will cause the resulting
DOA to be imaginary; these estimates are thus discarded and do
not count toward the measurements collected.

To accumulate enough samples to make valid statistical mea-
surements, 10 000 different TDOA estimates were taken for
each source of interest position and SNR ratio.
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Fig. 11. TDOA estimate accuracy results obtained for prerecorded speech
signals played at seven positions in the synthetic environment for different
SNR ratios: 20, 30, 40, and 50 dB.

These tests indicate that the TDOA chip is functional and that
it has an average estimation error of 1.25° RMS over various
DOAs. Moreover, the number of abnormal measurements in-
creases sharply below 3 dB SNR but otherwise remains rela-
tively low, at less than 10%.

B. Voice Tests

The white Gaussian noise tests demonstrates the function-
ality of the sound localization algorithm and the precision of
the localization engine. However, these tests do not provide in-
sight into the performance of the intended application: sound
localization. The test results presented here are obtained using
recorded speech samples that are delayed and mixed, as for the
previous tests, in order to measure the chip’s localization ac-
curacy using speech signals. Figs. 10 and 11 show the results
obtained.
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Fig. 12. TDOA estimate accuracy results obtained for prerecorded speech
signals played at seven positions in a lab environment for different SNR ratios:
0, 3, 6, and 9 dB.

The noncontinuous nature of speech increases the number of
abnormal measurements obtained. Moreover, normalizing dif-
ferent speech samples is difficult as the recorded speakers did
not speak using the same tempo. This made normalizing the
speech samples to obtain precise SNRs difficult. To offset this
shortcoming, four different speech samples in 12 different per-
mutations are used, thereby averaging out problems introduced
by SNR variations.

These results show that the average RMS DOA error is 1.5°
over various DOAs. On the other hand, the number of measure-
ment errors increases gradually with decreasing SNR.

C. Tests in a Room Environment

The previous tests have shown the accuracy of the TDOA
chip in a controlled environment; the following test measures
the performance of the TDOA chip in a lab environment, which
includes uncontrollable noise sources, reverberations, and tem-
perature variations. In this test, computer speakers are placed
in an arc around the test board, as shown in Fig. 7. The room’s
background SNR is approximately 20 dB, and the reverberation
time is approximately 0.1 s.

The same speech samples, angles, and SNR are used as for
the previous tests. Figs. 12 and 13 highlight the results obtained
from these environmental tests.

The large number of abnormal measurements seen in these
results is caused by the variance of the speed of sound with re-
spect to temperature. In the synthetic environment, the delay
of a sound source was controllable to within the 0.1 samples
required. However, the delay in these tests was largely depen-
dent on the precise placement of the computer speakers, the pre-
cise microphone separation distance, and the temperature de-
pendance of the speed of sound. The speed of sound was esti-
mated before each test was started; however, since these tests
were carried out over several days, the temperature in the lab
would vary considerably. This temperature variance is capable
of producing a TDOA error of up to one sample.
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Fig. 13. TDOA estimate accuracy results obtained for prerecorded speech

signals played at seven positions in a lab environment for different SNR ratios:
20, 30, 40, and 50 dB.

The results (see Figs. 12 and 13) show an average RMS DOA
of 2.2° with the same gradual increase in errors with decreasing
SNR as seen in the previous results. Thus, the chosen algorithm
performs well, even with the presence of reverberations in the
room.

V. POWER UTILIZATION

This implementation of the PHAT TDOA algorithm was not
specifically optimized for low power. However, algorithmic
optimizations were considered in order to minimize power and
space. In comparison to other implementations such as the
FPGA implementation by [12], most of the power savings are
a result of utilizing an aggressive target technology.

The TDOA chip when in reset requires 5.2 mA of current
for its 1.8-V core. In normal operation, the chip requires 16.1
mA of current. Thus, the average power consumption is 9.36
mW during reset and 28.98 mW during normal operation.
These power measurements are only for the chip’s 1.8 V core;
the power required for the 3.3-V /O drivers is approximately
0.4125 mW.

To further reduce power consumption peripheral circuitry re-
quired by the test chip would have to be integrated on chip
along with the custom DSP block; a system designed using
off-the-shelf components would use more power than a single
chip solution. Work is currently proceeding on reducing the
overall system power consumption, both on an algorithmic level
and implementation level. Our intent is to be capable of more
rigorously controlling the power consumption of the system as
awhole, thus designing a true low-power sound localization and
sound separation platform.

VI. CONCLUSION

This work implements a phase transform sound localization
algorithm in 0.18-pm CMOS technology. The accuracy of the
resulting chip is demonstrated using three different test sce-
narios. An average 2.2° root-mean-squared direction of arrival
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error is measured when the chip was tested in a room environ-
ment using different combinations of prerecorded voice sam-
ples. The average power consumption of the resulting chip is
28.98 mW. Power reduction was a result of combining algo-
rithmic strength reductions coupled with an custom design im-
plemented in an aggressive technology.
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