Special Topics in Software Engineering: Dependable Software

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE 1724F, Fall 2006
Topics

- Overview
- What are dependable systems?
 - Why do we care about them?
- Why do systems stop?
 - What can we do about it?

- Topics
- Class format
Overview

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Sign up for class by joining class mailing list
 - Instructions available from class website
- Seminar style course
 - Reading, discussion, presentation
- Zero or more assignments
- Project, presentation
- No quizzes or final exams
What are Dependable Systems?
Dependable Systems

- Hard to define, but examples are easy to find
 - Transportation, e.g., cars, airplanes
 - Appliances, e.g., toaster, fridge, TV
 - Medical devices, e.g., MRI, X-rays, prosthesis
Dependable Systems

Hard to define, but examples are easy to find
- Transportation, e.g., cars, airplanes
- Appliances, e.g., toaster, fridge, TV
- Medical devices, e.g., MRI, X-rays, prosthesis

Properties
- Traditionally, have redundancy, keep running
- Easily understood operation model
- Allow monitoring for (well-documented) errors
- Degrade gracefully

Bug free? Secure? No configuration?
Computer Systems

- Tightly intertwined with our lives
 - Increased networking, e.g., wireless
 - Cheap devices, e.g., cell phones
- Complex, failure-prone and insecure
- Hard to manage
- Dependability problems dominate TCO
 - Total cost of ownership
Current Challenges

“The products of forty years of OS research are sitting in everyone's desktop computer, cell phone, car, etc., — and it is not a pretty picture.”

— Researchers from Microsoft, 2005.
Current Challenges

“The products of forty years of OS research are sitting in everyone's desktop computer, cell phone, car, etc., — and it is not a pretty picture.”

— Researchers from Microsoft, 2005.

Some key problems

- *Dependability*: frequent unexpected behavior
- *Security*: systems protect users from each other, not from outside threats
- *Configuration*: DLL hell
Insight

- Performance is not the only concern today
 - Few applications require all available resources

- Use resources to improve dependability

Examples

- Store all data versions to guard against data loss
 - Read “A Conversation with Jim Gray” (acmqueue.org)
- Replicate processes, data
- Use intrusion detection methods
Why Do Systems Stop?

Jim Gray, 1985
Conventional TP Systems

- On average, fail for 90 min every 2 weeks

- Restart time includes
 - Detection time
 - Time to take snapshot for later analysis
 - OS, database, communication n/w reboot
 - Client (e.g, ATM machines) reboot
 - Users take time to refocus on job

- 99.6% availability (2 weeks / (2 weeks + 90 min))
 - Sounds wonderful, isn't!
Highly Fault-Tolerant System

- Analyzed failure reports of 2000 systems running a fault-tolerant Tandem system
- Analysis covered 10M system hours
 - 1300 system years!
- 166 failures reported
- Mean time between failure (MTBF) = 7.8 years!
- Where did the failures occur?
Breakup of Failures

59 “infant mortality” failures
- Recurrent failures due to new software or hardware
- Bugs should have been fixed before deployment

Contributors to the other 107 failures

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>42.00%</td>
</tr>
<tr>
<td>Software</td>
<td>25.00%</td>
</tr>
<tr>
<td>Hardware</td>
<td>18.00%</td>
</tr>
<tr>
<td>Environment</td>
<td>14.00%</td>
</tr>
</tbody>
</table>

Maintenance, operations, configuration

Fire, flood, >4 hr power loss
Implications

- Reliability requires tolerating *software faults* and *administration errors*
- Hardware becomes more reliable over time
 - Hardware fault tolerance is feasible
- New and changing systems have higher failure
 - If it's not broken, don't fix it
- High % of outages caused by known bugs
 - Install software and hardware fixes ASAP
- Contradiction?
H/W Fault Tolerance

- Modularize hardware to limit faults
- Make each module fail-fast
 - Either it does the right thing or stops
- Detect faults promptly
 - Have module signal failure
- Configure extra backup modules
- Resulting MTBF is in years to decades!
S/W Fault Tolerance

- Use techniques similar to h/w fault tolerance?
 - Software modularity via processes and messages
- Fail-fast modules
- Process-pairs to tolerate transient software faults
 - Bohrbug/Heisenbug hypothesis
- Transactions to provide data integrity
 - Combine process-pairs and transactions
Administration Errors

“Dealing with system configuration, operations and maintenance remains an unsolved problem”

Topics
Main Topics

- Dependability Challenges
 - Faults and Defects
 - Security
 - Configuration

- Growing realization that avoidance is hard!

- Focus on
 - Detection
 - Isolation
 - Recovery
Faults and Defects

- Bug detection
- Fault isolation
- Failure recovery
Security

- Intrusion analysis and detection
- Safe execution
- Intrusion response
Configuration

- System misconfiguration
- Performance misconfiguration
Class Format
Overview

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Sign up for class by joining class mailing list
 - Instructions available from class website
- Seminar style course
 - Reading, discussion, presentation
- Zero or more assignments
- Project, presentation
- No quizzes or final exams
Reading and Discussion

- Advanced
- Background in OS, N/W, distributed systems
- 2-3 papers per week
 - Unless marked optional, all papers are required reading
- Will take about 3-6 hours per week!
- Allows discussion in class
- It will show if you don't do the reading!
For discussion, you must prepare five questions

- One slide for each question
- Then one slide for each of your answers

Detailed instructions on website

Please follow carefully

- E.g., make sure you number slides!
- Fonts should be reasonably large (>24)

Follow this style
Choosing A Paper

- First-come, first served
- Pick paper from website
- Send mail with your first choice to mailing list
- If you send me a paper choice that is taken, then you will be asked to send me another choice by mail and your mail will be queued at the back!
Assignments

- Instructor will decide whether assignments are needed
Project

Choose a project based on topics covered

Sample topics will be posted on website

Options

- Implement and evaluate a system
- Evaluate existing system
- Write a research paper

Write up your work

- 8-10 pages

Present your work
Grading Policy

- Class presentation: 20%

- Assignments: 20%
 - If no assignments, then presentation has 40%

- Class project: 50%

- Class participation: 10%
Please join class mailing list at

http://www.eecg.toronto.edu/~ashvin

Thanks!