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ABSTRACT
We have been developing a framework, called Recon, that
uses runtime checking to protect the integrity of file-system
metadata on disk. Recon performs consistency checks at
commit points in transaction-based file systems. We define
declarative statements called consistency invariants for a file
system, which must be satisfied by each transaction being
committed to disk. By checking each transaction before it
commits, we prevent any corruption to file-system metadata
from reaching the disk.

Our prototype system required writing the consistency in-
variants in C. In this paper, we argue that using a declara-
tive language to express and check these invariants improves
the clarity of the rules, making them easier to reason about,
verify, and port to new file systems. We describe how file sys-
tem invariants can be written and checked using the Datalog
declarative language in the Recon framework.

1. INTRODUCTION
Existing file-system reliability methods, such as check-

sums, redundancy, or transactional updates, provide limi-
ted defenses against in-memory file-system corruption [10,
9, 15]. Whether the corruption occurs due to bugs in the
file system or operating system code or random memory er-
rors, it can result in data loss, the return of corrupt data
to the user, persistent application crashes, or even security
exploits [13].

We have been developing a framework, called Recon, that
aims to protect file-system metadata integrity in the face of
arbitrary operating system system bugs or memory errors.
Recon interposes at the block level between the file system
and the storage device, and uses a set of high-level rules
called consistency invariants that help enforce file-system
consistency at runtime. For example, a consistency invari-
ant in the Linux ext3 file system is that a transaction that
makes a data block live (i.e., by adding a pointer to the
block) must also contain a corresponding bit-flip (from 0 to
1) in the block bitmap within the same transaction. Consis-
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tency invariants differ across file systems because each file
system provides unique features and uses different metadata
structures. Recon therefore provides a general framework
for interpreting file-system specific metadata. For example,
when data is appended to a file, Recon helps determine that
one of the updated blocks is an ext3 indirect block and a
pointer value has been updated in it, and another updated
block is a bitmap block and certain bits have been flipped in
the block. Our previous work describes how the framework
addresses three issues: when to check metadata consistency,
what properties to check, and how to check them [1]. Sec-
tion 2 provides an overview of the framework.

This paper focuses on expressing consistency invariants
correctly. It is vital that a software layer designed to en-
hance reliability, such as the Recon framework, does not
itself destabilize the system. Consistency invariants need to
be stated clearly so that they can be reasoned about and
implemented reliably. The language used to write invari-
ants should enhance our confidence that the invariants are
correct and complete. Our previous implementation of the
Recon framework, for the ext3 file-system, required writ-
ing invariants in hand-crafted C code. Using a low-level
language to express high-level invariants is fundamentally
error-prone, because it is hard to enforce a clean separation
between the metadata interpretation code and the invariant
checking code, when both are written in the same low-level
language. For example, Gunawi et al. show that the Linux
e2fsck utility, which intermingles metadata interpretation
and checks (both written in C), has bugs that cause addi-
tional file-system damage when repairing an inconsistent file
system [5]. Their solution is SQCK, an offline consistency
check tool that translates the checks and repairs performed
by e2fsck into SQL. In fact, our C implementation of the
ext3 invariants was based on the SQCK statements, since
they were much easier to reason about than the e2fsck code
from which they were derived.

In this work, we explore using a declarative language for
online file-system consistency checking because declarative
languages are naturally designed for making runtime asser-
tions. For example, each consistency invariant is written as
a set of declarative statements and run independently of the
other invariants. The invariant code is thus much easier to
reason about than invariants written in a low-level language
that are intermingled with each other and with the metadata
interpretation code. We chose to use Datalog (a derivative
of Prolog) for checking invariants because it has been used
successfully for specifying correct behavior in several sys-
tems [8, 3, 11]. Moreover, it is a better match for checking



file systems than SQL. For example, Datalog supports re-
cursion and thus allows expressing properties of recursive
file-system data structures more easily. By choosing a lang-
uage that fits the nature of the problem, we can improve
the clarity of the invariants that we wish to express. This
feature is particularly important since we expect that it will
make it easier to identify commonality in the invariants used
by different file systems.

We evaluate the feasibility of using declarative invariants
in the Recon framework. To facilitate this evaluation, we
have created a simplified user-space implementation of an
FFS-like file system called TestFS, and a user-level imple-
mentation of Recon that uses the Datalog language for the
specification of its invariants. We contrast the simplicity of
the Datalog invariants against those written in C and dis-
cuss the extent to which invariants written for our test file
system are applicable to ext3 in Section 3. The main draw-
back of using declarative languages for checking invariants
is performance overhead, which we examine in Section 4.

2. BACKGROUND
In this section, we review existing techniques for improv-

ing file system reliability. We then describe our approach
for checking file-system consistency at runtime.

2.1 File System Reliability
File-system corruption can be caused by crash failures,

storage hardware errors, file-system/OS bugs and memory
corruption. Storage systems have primarily focused on the
first two problems. Journaling [6], copy-on-write [7], and
soft updates [2] address crash failures. Checksums and re-
dundancy reduce the probability of data loss due to hard-
ware or low-level software failure [4].

The complexity of modern file systems leads to bugs that
can be hard to detect, even under heavy testing [10, 14].
When a file or operating system bug corrupts file-system
data, it requires complex recovery procedures. Current solu-
tions fall in two categories, both of which are unsatisfactory.
Disaster recovery methods, such as backups and snapshots,
can result in loss of recent data. The alternative is to use an
offline consistency check mechanism, provided by most file
systems, for restoring file system consistency. Since a con-
sistency checker operates on a current snapshot of the file
system, and a corruption may have occurred a while ago,
correct repair may simply be impossible. Both solutions re-
sult in significant downtime, and put data at risk because
they are run after the failure may have corrupted significant
file-system state. To truly prevent downtime and data loss,
corruption must be prevented from propagating to disk.

2.2 Checking Consistency at Runtime
The Recon system achieves its goal of preventing file-

system metadata corruption by interposing between the file
system and the storage device at the block layer and check-
ing a set of consistency invariants before permitting writes
to reach the disk. Next, we describe the three challenges
that arise when checking file-system consistency at runtime,
and how we address them in the Recon framework.

When to check consistency:. The in-memory copies of
metadata may be temporarily inconsistent during file sys-
tem operation, and so it is non-trivial to check consistency
properties at arbitrary times. In a journaling file system,

transaction commits are well-defined points at which the
file system believes itself to be consistent. Hence, transac-
tion boundaries serve as convenient vantage points for verify-
ing consistency properties. A consistency violation at these
points indicates a bug or a memory corruption.

What properties to check:. We can derive an informal
specification of metadata consistency properties from offline
file-system consistency checkers, such as the Linux e2fsck
program. These consistency properties define what it
means to have consistent metadata on disk. Our aim is to
ensure that any metadata committed to disk will maintain
these same consistency properties. Unfortunately, consis-
tency properties are global statements about the file sys-
tem. For example, a simple check implemented by e2fsck is
that “all live data blocks are marked in the block bitmap”.
Checking these global properties requires a full disk scan.

Instead, we manually derive a consistency invariant from
each consistency property. The invariant is a local assertion
that must hold for a transaction to preserve the correspond-
ing file system consistency property. For example, the con-
sistency invariant for the “all live data blocks are marked in
the block bitmap” property is that a transaction that makes
a data block live (i.e., by adding a pointer to the block) must
also contain a corresponding bit-flip (from 0 to 1) in the
block bitmap within the same transaction, i.e., the invari-
ant is “block pointer set to N from 0⇔ bit N set in bitmap”.
This invariant can be checked by examining only the up-
dated blocks, i.e., the updated pointer block, the allocated
block and the updated block bitmap must all be part of the
same transaction. It is possible to transform consistency
properties into invariants because file systems keep them-
selves consistent without examining the entire disk state. In
other words, our invariant checking should not require much
more data than the file system itself needs for its operations.
This is backed up by our experience with implementing in-
variants in C for the ext3 and btrfs file systems.

How to check invariants:. Checking consistency invari-
ants requires examining the current state of the file system
and the metadata updates at each transaction commit point.
The invariants are expressed in terms of logical file-system
data structures (e.g., current and updated values of block
pointers, bits in block bitmap). However, Recon observes
physical block updates below the file system, because it can-
not trust a buggy file system to provide the correct logical
data structure information. We bridge this semantic gap
by reinterpreting the metadata from the updated physical
blocks, similar to semantically smart disks [12].

Figure 1 shows the architecture of the Recon system for
the ext3 and btrfs file systems. Recon uses the Linux device
mapper framework to interpose on all file system requests at
the block layer, allowing it to track all file-system metadata
accessed from disk. The read cache allows accessing the
pre-update file-system state (i.e., disk state) efficiently. The
post-update state is derived by superposing the write cache
on the read cache. When a transaction commits, Recon
interprets metadata by invoking file-system specific Recon
API calls. The file-system specific code determines the types
of the updated blocks and the data structures within them
by starting from known block types and determining the
types of the unknown blocks iteratively. This process is
possible because the file-system has a known root and is
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Figure 1: The Recon Architecture

arranged in a connected graph. If a corruption breaks these
assumptions, we would detect it as an invariant violation.

Once the type for each block in the write cache is known,
the file-system specific code performs a data-structure level
diff between the block in the write cache and its correspond-
ing version in the read cache to generate change records at
the granularity of data-structure fields.1 A change record
has the following general format:

[type, id, field, oldval, newval]

The type specifies a data structure (e.g., inode, directory
block), the id is the identifier of a specific object of the given
type (e.g. inode number), and field is a field in the struc-
ture (e.g. inode size). The values oldval and newval are the
old and new values of the corresponding field. The change
records are used for checking invariants, as described in de-
tail in the next section. When all invariants are checked suc-
cessfully, the transaction is allowed to commit, after which
the write cache is merged with the read cache, updating
Recon’s view of file-system state.

3. INVARIANT CHECKING IN DATALOG
The consistency invariants in the Recon framework are

structured as assertions on a set of facts. These facts come
from two sources, the Recon read cache that describes the
pre-update state of the file system, and change records that
describe the logical metadata updates made by a transac-
tion.

Datalog is a natural fit for expressing assertions on these
facts, because it is built around the notion of facts and pred-
icates. Its declarative approach allows the specification to
more closely match the domain, making it easier to reason
about the checks. In addition, Datalog can handle recur-
sive predicates, which fits naturally when operating over
file-system data structures. Our eventual aim is to gain
a broad understanding of file system consistency. We ex-
pect that high-level, compact representations of consistency

1Change records are also generated for metadata blocks that
were valid in the read cache but are not valid after the com-
mit.
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Figure 2: Integrating Datalog in the Recon Frame-
work

invariants will help clarify the commonalities between file
systems, even though they may have significantly different
data structures.

To assess the feasibility of our approach, we have imple-
mented a simplified version of ext3 as a user-space file system
called TestFS. A user-space file system avoids the need to
port the Datalog interpreter to the kernel. Most of the con-
sistency invariants that apply to TestFS are derived directly
from those of ext3. The main differences concern ext3 or-
phan list handling and corner cases involving unused inodes.
TestFS consists of four main structures, a superblock, allo-
cation bitmaps, inodes, and directory entries. There are two
bitmaps in TestFS, the block and inode allocation freemaps.

When TestFS Recon generates change records, they are
added as facts to the Datalog environment, as shown in Fig-
ure 2. We encode a change record [type, id, field, oldval,
newval] as a straightforward Datalog fact in the format:
change(type, id, offset, old, new). A directory con-
sists of a list of directory entries, requiring a slight modifi-
cation: change(type, action, dir_inode_id, name, in-

ode_id, name_size), where action is add or remove.
Before a file system commits a transaction, Recon invokes

the interpreter to evaluate all the invariants. The invari-
ants can use the facts generated from the change records,
or they can use two custom primitives, written in C, to
query the read cache. These custom primitives are: 1)
dir get entry(DIN, NAME, IN), which given as input a dir-
ectory inode DIN, and name NAME, returns the inode num-
ber of the directory entry in the IN argument, and 2) in-
ode get(IN, FIELD, VALUE), which given as input an in-
ode IN, and a field number FIELD in the inode, returns
the value of the field in the read cache in VALUE. TestFS
requires 12 consistency invariants, while ext3 requires 33,
mainly because it has more features. However, each of the
TestFS Datalog invariants corresponds to one of the ext3 C
invariants.

If the transaction does not violate any consistency in-
variants, then the change-record based facts in the Data-
log environment are discarded before the next transaction is
checked, because these facts are incorporated in the read
cache (because the write cache is merged with the read
cache). Next, we present two examples to show the ben-
efits of specifying invariants declaratively.

3.1 Block Bitmap and Block Pointers
We express invariants in Datalog with predicates that re-

turn a true value when an invariant violation occurs. Re-
call that the ext3 block allocation invariant, described in
Section 2.2, is “block pointer set to N from 0 ⇔bit N set
in bitmap”. We express this biconditional invariant in a
straightforward way using 2 predicates, R1 violation and



R1_violation(IN,BN) :- block_allocated(IN,BN), not(change(b_freemap ,_,BN,_,1)).
R2_violation(BN) :- change(b_freemap ,_,BN ,0,1), not(block_allocated(_,BN)).

Figure 3: Block Allocation Invariants

get_block_type(IN, TYPE) :- change(inode , IN, 0, _, TYPE).
get_block_type(IN, TYPE) :- inode_get(IN, 0, TYPE).

dir_get_parent(IN, PIN) :- change(dir_block , add , IN , ’..’, PIN , _).
dir_get_parent(IN, PIN) :- IN \= 0, dir_get_entry(IN, ’..’, PIN).

path(IN,PIN) :- dir_get_parent(IN, PIN).
path(IN,AIN) :- dir_get_parent(IN, PIN), path(PIN , AIN).

cycle(IN) :- path(IN, IN).

cycle_violation(PIN , NAME , IN) :- change(dir_block , add , PIN , NAME , IN, _),
NAME \= ’.’, NAME \= ’..’,
get_block_type(IN, TYPE), TYPE = "DIR",
cycle(PIN).

Figure 4: Directory Cycle Invariant

R2 violation, in which IN is an inode number and BN is
a block number, as shown in Figure 3. When either pre-
dicate succeeds, the allocation invariant is violated. The
R1 violation predicate succeeds when 1) a block BN is al-
located to inode IN, and 2) a change record fact, stating
that a bit corresponding to block BN is set to 1 in the block
bitmap, is not seen in the transaction.2 Block deallocation
requires similar invariants.

In contrast to the Datalog invariants, it is hard to reason
about the correctness of our C implementation of this con-
sistency invariant for ext3 because the code is divided into
several parts. Invariant checking in C generally starts by us-
ing custom code that pattern matchs change records based
on the premise of the invariant. When such a match oc-
curs, some invariants accumulate bookkeeping information
until the end of the transaction, as described in the exam-
ple below. Finally, the assertion is implemented in a final
processing phase.

In the example above, the C implementation obtains al-
located blocks by matching [ , , block pointer field, 0, X]
change records. When such a match occurs, it inserts a flag
with key X into a rule-specific bookkeeping table indicating
a new pointer has been set to X. It also matches for [block
bitmap, Y, , 0, 1] change records. In this case, it inserts a
different flag into the same table with key Y, indicating bit
Y in the allocation bitmap is set. During final processing,
the implementation verifies that for each key in the table,
both flags are set. Otherwise the invariant has been vio-
lated. While none of this code is complex, it is scattered
across several phases of processing, making it difficult to in-
fer this rule from the code, or be assured that the rule is
implemented correctly.

3.2 Directories
Another consistency property in ext3 and TestFS is that

a directory must not be part of a cycle (or else it may not be

2The character in the argument of a Datalog predicate
matches any value. Also, the block allocated() predicate,
consisting of two simple clauses, is not shown.

Original With Checking Overhead

User 17.8±0.2s 36.4±0.1s 2.04X
System 22.5±0.1s 23.1±0.1s 1.03X
Sleep 545.4±9.1s 604.9±9.0s 1.11X
Total 585.8±9.2s 664.4±9.1s 1.13X

Table 1: Cost of Datalog Invariant Checks

connected to the root). The corresponding invariant must
be checked whenever a directory’s parent changes, since it
is possible that the directory was made the child of one of
its children, creating a cycle.

Figure 4 defines a predicate called cycle(), which returns
true if a directory with inode number IN is part of a cycle.
This predicate uses the recursive path(IN, AIN) predicate,
which returns true if a path (with edges consisting of “..”
entries) exists between inode IN and an ancestor inode AIN.
The path predicate uses dir get parent() to find the parent
directory inode of an inode. The dir get parent() predicate
matches an appropriate dir block change record or uses the
dir get entry() primitive to access the Recon read cache.

The cycle violation() invariant looks for cycles in newly
created or moved directories. It ensures that we do not
inspect a newly created ’.’ or ’..’ entry (which are created
when a new directory is created), and that the entry is in
fact a directory (which uses the inode get primitive to access
the Recon read cache). Other directory invariants, e.g., a
directory must remain connected to the root, or has exactly
one ’.’ and one ’..’ entry, can also be expressed easily. The
C implementation of these invariants requires much more
code, and is spread across different processing phases.

4. EVALUATION
To get an idea of the costs of using Datalog, we stressed

TestFS by running a metadata update-intensive workload,
consisting of roughly 203K directory and file create, file
write, remove, and directory change operations. We expect
to see higher overheads than a full implementation would in-



cur for two reasons. First, TestFS performs much less work
than a full-featured file system. Second, we have embed-
ded the DES Datalog interpreter in TestFS-Recon, without
making any optimizations for the types of invariants used in
our implementation.

TestFS uses a regular file as its storage device; we open
this file with the O SYNC flag to mimic a write-heavy file
system since the entire file system is small enough to fit in
memory. Our test machine has an Intel Xeon X430 quad-
core processor at 2.4 GHz with 4GB of RAM; it is running
Debian Linux version 6.0, kernel version 2.6.32.

Table 1 shows the average of 28 trials, both with and with-
out checking (we performed a total of 30 trials and removed
the fastest and slowest run from each set), including 95%
confidence intervals.3

As expected, checking invariants has a large impact on
user time while the effect on system time is negligible, since
we have a user-space implementation. The inflation in sleep
time (which includes I/O wait time) is surprising, and we
are still investigating the cause. The overall 13% overhead
is encouraging, and we expect that an optimized datalog
interpreter developed for Recon will reduce overhead further.

5. CONCLUSIONS
Our ongoing research towards improving file system relia-

bility is exploring the use of declarative languages to express
and check consistency invariants. We showed that Datalog
is a natural fit for this problem. The prior file-system state
and metadata updates are facts and the consistency invari-
ants are assertions on these facts. Invariants expressed in
Datalog are clearer, easier to write, and reason about than
their counterparts in a low-level language like C.

Currently, we are tuning the Datalog interpreter to re-
duce its overheads. We are implementing the full set of ext3
and btrfs invariants in Datalog, which will help determine
whether Datalog provides sufficient expressiveness for im-
plementing invariants for widely-used file systems. We are
also investigating whether certain invariants can be auto-
matically derived by using learning algorithms.
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