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Abstract
Intrusion analysis is a manual and time-consuming opera-
tion today. It is especially challenging because attacks of-
ten span multiple sessions which makes it is hard to diag-
nose all the damage caused by an attack. One approach for
determining dependencies between the sessions of an at-
tack is system-call taint analysis, but this method can gen-
erate large numbers of false dependencies due to shared
objects such as a password file. In this paper, we pro-
pose a novel solution to this problem that replays sessions
with tainted and untainted inputs and reasons about multi-
session dependencies by comparing the session’s outputs
in the two cases. We present some initial experiments that
show that this approach is promising and may allow build-
ing powerful intrusion analysis and recovery systems.

1 Introduction
Computer virus and worm attacks are increasingly being
used to infect systems that are then used for criminal ac-
tivities such as spamming services, denial of service and
extortion. While some attacks are easily detectable (e.g,
cause system crashes), most are “low level” or stealthy.
These attacks often span multiple sessions (e.g., an ftp
session followed by a login session) and can be difficult
to pinpoint and correct. In corporate environments, the
diagnosis may require that support services take down a
system or a high-profile web site to fix the problem, which
can be time-consuming and error-prone. In the meantime,
the company site loses customer confidence, loyalty and
revenue.

Our long-term goal is to design a system that allows
fast and accurate post-intrusion analysis and recovery. We
have implemented a recovery system called Taser [11] that
can revert the file-system operations that are performed
in a session, such as a login or ftp session. This sys-
tem works well when an attack occurs in a single session
and has a small footprint on the system (e.g, stealth at-
tacks). However, attacks often span multiple sessions and
correlating these sessions is a challenging problem. One
approach for determining multi-session dependencies is
system-call based taint analysis [14, 11]. In this method,

for example, when a process B reads a file written by a
tainted process A, then process B is also marked tainted.
The intuition is that process B in the second session is
causally related to process A in the first session via a file
dependency. Unfortunately, this method causes false de-
pendencies due to heavily shared objects, such as a pass-
word file that may have been written by an attacker but is
read by all login sessions.

In this paper, we propose a novel method for reason-
ing about multi-session attacks. Our approach consists
of two parts: 1) replaying sessions (or applications) with
tainted as well as untainted versions of inputs, such as
files, and 2) comparing the outputs of the sessions in the
two cases to verify valid dependencies. Consider the pass-
word example above. We replay the sessions that started
after the password file was modified by the attacker with a
pre-modified version of the password file. Assuming that
the attacker’s following sessions depend on the password
file modifications, these sessions will behave “differently”
during replay (e.g., the attacker is unable to login). Con-
versely, the legitimate sessions will likely not depend on
the modifications and will behave “similarly” during the
replay and the original runs.

We detect differences (or similarities) in session behav-
ior between the replay and the original run by observing
outputs. The basic assumption in this approach is that at
the point of replay, the attack is no longer latent, i.e. its
effects can be detected in the session’s outputs. These
outputs can be defined in multiple ways. They can be
application-independent such as the sequence of writes,
sends or even system calls and/or the arguments issued by
an application, or they can be application-dependant, such
as the result of a computation. To improve the accuracy
of detecting differences in behavior, we replay sessions
multiple times with the original tainted inputs for train-
ing and then test with the pre-tainted inputs. If this test
determines that the session behavior is different, the ses-
sion is considered tainted with respect to the tainted input
(e.g., password file modifications). This behavioral model
for correlating multiple sessions is a black-box method
that ignores the structure, operations or dynamics of ap-
plications. Instead, it determines dependencies between
sessions based on correlating inputs and outputs.



This paper outlines the design of a taint verification
framework for automatically determining an attacker’s
sessions based on replaying applications. The framework
raises several issues: how should the replay be imple-
mented so that it allows running applications with un-
perturbed or perturbed inputs, what inputs and outputs
need to be captured, how is non-determinism in applica-
tion behavior and interactions between applications han-
dled, and how should the outputs be compared. We dis-
cuss these issues in the context of our framework and then
present some initial analysis results. While we borrow
well-known techniques from various areas such as recov-
ery [15, 1, 18] and replay [5, 21, 19, 7, 4], the novelty of
our approach is in combining these techniques with a view
towards achieving our goal of automating post-intrusion
analysis and recovery.

The rest of the paper describes our approach in more
detail. Section 2 provides an overview of the Taser in-
trusion recovery system. Section 3 describes the design
of our taint verification framework. Section 4 provides
initial results to validate our approach. Sections 5 and 6
present some related work, conclusions and topics for fu-
ture work.

2 Overview of Taser

We have designed and implemented a prototype intrusion
recovery system called Taser [11] that supports analysis
and recovery from intrusions, such as those caused by
worms, viruses and rootkits. The Taser system recov-
ers file-system data after an intrusion by reverting the
file-system modification operations affected by the in-
trusion while preserving the modifications made by le-
gitimate processes. The goal of recovery is to make
the target system “intrusion-free” and, at the same time,
not lose current work or data due to the recovery op-
erations. This approach has similarities with system
software upgrade where a buggy upgrade can be selec-
tively rolled back without affecting the rest of the sys-
tem. More details about Taser are available in our pre-
vious work [11, 10, 12].

Taser determines the file-system operations that were
affected by an intrusion by deriving taint dependencies
between kernel objects based on information flow that oc-
curs as a result of system calls. This analysis starts with
an externally supplied set of tainted objects known as de-
tection points. Then the analysis uses dependency rules to
taint other processes, files and sockets based on system-
call operations such as read, write, fork, exec, and direc-
tory operations. For example, when a process reads from
a tainted file, it is marked tainted. While this tainting ap-
proach is efficient, it is coarse grained and can cause sig-
nificant false dependencies especially when objects such

as the password file are heavily shared by applications.
To reduce this problem, Taser provides tainting policies
that ignore some of the dependency rules, and it also al-
lows using whitelists to avoid tainting certain activities.
However, it may require significant human effort to verify
whether the policies yield correct results which can make
this solution unsatisfactory.

3 Taint Verification via Replay
We propose verifying dependencies between applications
(and sessions) by replaying applications and then observ-
ing whether perturbing an input to the application during
replay changes the output of the application. In this black-
box model, the application is assumed to be independent
of the input perturbation if the output is unchanged.

Taser creates taint dependencies between processes,
files and sockets based on reads and writes. A file or
socket becomes tainted when a tainted process writes to
the file or socket, and a process becomes tainted when it
reads from a tainted file or socket. We verify dependen-
cies caused by file read operations only. We assume that
writes create a valid taint dependency, i.e. once a process
is tainted then all its operations are considered tainted.
We also assume that reading from a socket creates a valid
taint dependency because sockets, unlike files, are tran-
sient and typically not shared across processes. Our ex-
perience shows that these assumptions do not cause false
dependencies [11].

The verification process replays a process that origi-
nally read a tainted file with a pre-tainted version of the
file. If the output of the process during replay is differ-
ent from the original output, then we detect a taint depen-
dency between the file and the process. The replay and
the taint detection steps are discussed below.

3.1 Application-Level Replay

Currently, we are implementing a system-call based
application-level replay system for taint verification. Our
system will capture program input and output at the sys-
tem call boundary and then replay a process by provid-
ing inputs captured during the original run [21, 19, 7].
Compared with whole system replay [5], an important
benefit of this approach is that it allows replaying non-
deterministically with perturbed application inputs [18].
When a process is replayed, our system will only provide
network, file-system and user-input data that was read by
the process during the original run (this data is available
from Taser). The process will be allowed to run non-
deterministically for all other inputs (e.g., system calls
that do not return I/O data), which will allow replay with
perturbed file inputs. This replay approach can fail (e.g.,



crash the program), but such a failure would be reflected
as changed output and hence a valid dependency.

3.2 Taint Detection

Conceptually, a dependency between a tainted input file
and a process is verified by replaying the process with a
pre-tainted version of the file and then by comparing the
original and the replay outputs of the process. If these
outputs are different, then the process is assumed to de-
pend on the tainted modifications to the input file. Unfor-
tunately, this behavioral verification can lead to false de-
pendencies because our replay method is inherently non-
deterministic. It allows all non-read operations as well
as interacting processes to proceed undirected, and as a
result, the outputs can differ either due to the perturbed
input file or due to other non-deterministic behavior.

To minimize the effects of non-deterministic behavior,
we replay the process with the original tainted file mul-
tiple times for training and then replay the process with
the pre-tainted file for testing. If the output of the test-
ing run is significantly different from the outputs of the
training runs, we detect a taint dependency between the
tainted file and the process. Next, we describe a simple
comparator tool we have implemented for taint detection.

Comparator Tool

The comparator tool replays a process or a session one or
more times with the original inputs in training runs and
then replays with the modified inputs for testing. Cur-
rently, it defines the output of a run as the trace of sys-
tem calls issued by the application (all processes and sub-
processes in the session) as logged by strace. This defi-
nition of output is simple to implement because it does not
require defining output operations precisely. However, it
introduces noise due to non-output operations (e.g., sys-
tem call arguments that are inputs to the application) dur-
ing comparison, and hence our evaluation results are con-
servative.

We use the comparator tool to calculate two ratios cr

and dr to determine whether the testing run is significantly
different from the training runs. The tool first calculates,
for each iteration of training or testing run, two metrics
c and d that are the total number of common and differ-
ent lines between the output logs of the current iteration
and the original run. Each line consists of a system call
and its arguments and is considered common if the system
call, its arguments (as recorded by strace) and its return
value are exactly the same (or different otherwise). The
comparator calculates the metrics using the diff pro-
gram. Then, the training runs are used to calculate the
min, max, mean and the deviation of the c and d values.
Based on these values and the c and d values obtained

during the test run, the comparator tool calculates the two
ratios cr and dr as shown below:

cr = ctest/cmin + cdev/cmean

dr = dtest/dmax − ddev/dmean

Ignoring the deviation and the mean values, when cr <
1, it indicates that the test run has less in common with
the original run than any of the training runs. Similarly,
when dr > 1, it indicates that the test run has more differ-
ences with the original run than any of the training runs.
When both cases are true, the comparator tool considers
the dependency to be valid. The deviation and the mean
values ensure that variations in the training runs are taken
into account while testing for a dependency.

4 Initial Evaluation

In this section, we present some preliminary results that
validate our verification approach. These results were ob-
tained by using our comparator tool. We are currently im-
plementing and incorporating the replay system into our
Taser recovery system and hence the replay itself was per-
formed manually.

To test the feasibility of our idea, we performed two
types of experiments, unit tests and a multi-session attack.
The unit tests show the sensitivity of the metrics, while the
multi-session attack shows that attack and legitimate ses-
sions can be distinguished under realistic conditions. In
all experiments, the applications were replayed four times
for training. All the experiments that we performed and
the results obtained for these experiments are presented
below.

4.1 Unit Tests

We perform two types of unit tests. The first type of tests
use the Ark 1.0.1 and Tuxkit 1.0 rootkits to determine
whether backdoor programs (i.e., malicious programs that
attempt to remain hidden from casual inspection) can be
detected. The training data for the user-level Linux rootk-
its was generated using uninfected application binaries
and the test runs were carried out using the trojaned bi-
naries from the two rootkits. The Ambient RootKit (Ark)
installs trojaned binaries for syslogd, login, sshd, ls, du,
ps, pstree, killall, top, and netstat. These modified binaries
allow an attacker to hide his presence from a naive system
administrator. Our verification tests whether a user run-
ning these binaries versus the default binaries performs
the same operations. The resulting cr ratios for the pro-
grams ranged from 0.001 to 0.92 and dr values ranged
from 1.25 to 13.95. In all cases, running the trojaned bi-
naries would be detected as a verified dependency. Tuxkit
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Figure 1: Multi-session attack scenario

also installs various trojaned binaries. We ran our experi-
ments with all these binaries and the corresponding num-
bers were similar to Ark and ranged from cr = 0.01 to
0.83 and dr = 1.58 to 14.95.

The second type of tests vary inputs (e.g., user inputs,
file inputs) to common services to determine whether our
metrics are sensitive to these changes in input. We used
the telnet/login, ftp, samba, and HTTP/Photo Gallery [16]
network services for these tests. For the telnet/login dae-
mon, we trained the program using a valid username and a
password. Then we ran the program using an invalid user-
name or an invalid password. In both cases, cr < 0.83 and
dr > 4.53. For the ProFTPD FTP daemon, we trained the
program using the same username, password and down-
loading of the same file as the original run. The test cases
include downloading a different file (0.94, 8.11), using
a different (VSFTPD) daemon (0.15, 4.2), minor version
upgrade in Glibc (0.64, 2.88) and minor version change
in ProFTPD (0.85, 2.3). We performed experiments us-
ing Samba also and obtained similar results. Finally, we
conducted an experiment with a web server that hosts the
Gallery photo album organizer [16]. The training con-
sisted of several runs using the same username, password
and photo file. The testing run uploads a different file
(0.85, 5.16) and uses an updated Gallery version (0.49,
29.39). All these test cases would have established a de-
pendency, which shows that our verification approach is
sensitive to small variations in input.

4.2 Multi-Session Attack
The ftp server in this multi-session WU-FTPd attack is
initially configured to run with anonymous reads enabled.
The attack and a normal user’s activity are shown in
Figure 1. All logins in the figure (sessions 1, 2, and
3) are telnet sessions. For this attack, Taser by default
would have marked all the sessions following the ini-
tial attacker’s session as tainted because of dependen-

Session Result (cr, dr)
Session 2, legitimate telnet session (1.02, 0.93)
Session 3, attacker’s telnet session (0.7, 7.87)
Session 4, attacker’s FTP session (0.53, 1.99)
Session 5, legitimate FTP session (1.02, 0.94)

Table 1: Results for multi-session attack scenario

cies caused by the /var/log/wtmp, /etc/passwd,
/etc/ftpaccess files and the restarting of the
Xinetd daemon. These dependencies are shown by ar-
rows in the figure. During training, all sessions but the
first session of the attacker (session 1) are replayed using
the password file modified by the attacker. Then during
the test run the password file is restored to the unmodified
original and the same sessions are replayed. The results
are shown in Table 1. These results show that the latter
two attacker’s sessions would have been marked as depen-
dent on the attacker’s first session while the two legitimate
sessions would be considered independent (i.e., there are
no false positives or negatives).

4.3 Discussion
While the results for the tests we have performed are
promising, our approach raises several concerns. Our re-
play method is non-deterministic because it allows vary-
ing inputs such as files, user-input and network I/O. How-
ever, timing and scheduling affects can introduce ad-
ditional non-determinism that an attacker could use as
“chaff” to vary outputs and confuse analysis. We plan
to evaluate a larger class of applications to study these ef-
fects. In general, it should be possible to handle increased
non-determinism with additional training.

A more serious concern relates to the robustness of our
approach against an attacker that knows about our system.
For example, an attacker could modify the system call log



to counter our analysis. To reduce the risk of such intru-
sions, we use a kernel-level system-call logging system
called Forensix and perform analysis on a separate, se-
cured backend system [11, 10]. Forensix uses LIDS [23]
to reduce the possibility of tampering with the kernel im-
age or binary.

Finally, the choice of any deviation metric clearly af-
fects which sessions are considered correlated. While
these results may be inaccurate, they will still be useful
for intrusion analysis where an investigator can quickly
narrow in on pertinent activity and determine with further
analysis whether any dependencies have been missed or
are false. This final manual analysis can then be followed
by accurate recovery.

5 Related Work

This work builds on a large body of literature related to
recovery and replay, some of which is discussed below.
Chen et al. [15, 2] explore the feasibility of failure trans-
parent generic recovery and describe the relationships be-
tween the various recovery techniques that have been pro-
posed. Rx [18] is a generic recovery technique that rolls
back applications to a checkpoint and then, similar to this
work, re-executes the program in a modified environment.
Rx seeks to introduce non-determinism by inserting envi-
ronmental changes such as padding buffers, zero-filling
new buffers, or by increasing the length of a scheduling
time-slot.

The Undoable E-mail Store [1] is an application-
specific recovery method. It is based on three R’s:
Rewind, Repair, and Replay. In the rewind stage, the sys-
tem is physically rolled back to a point before the failure.
It is then repaired to prevent the problem from occurring
again. The replay is logical and uses a proxy that requires
application-specific knowledge to handle concurrency and
visible outputs.

Replay has been used for various purposes including
intrusion analysis and debugging. ReVirt [5] allows com-
plete and precise replay at the machine level using a vir-
tual machine monitor. This replay can be used to analyze
intrusions and vulnerabilities in detail. King [14] uses Re-
Virt to implement analysis of intrusions via backtracking.
A similar analysis method is used in our Taser system.

Flashback [21] provides fine-grained rollback and re-
play for debugging using system-call based replay. It uses
shadow processes to efficiently rollback the in-memory
state of a process and logs a process’s interactions with
the system to support deterministic replay. Liblog [7] is
a user-level deterministic replay tool for debugging dis-
tributed C/C++ applications that does not require kernel
patches and supports unmodified application executables.

The RolePlayer [4] is able to replay the client and the

server sides of a session for a wide variety of applica-
tion protocols when it is given examples of previous ses-
sions. This proxy-based system captures and modifies
identifiers such as the IP address and ports within pack-
ets during replay. These techniques should be helpful in
replaying any network input to applications. Nagaraja et
al. [17] provides an infrastructure for validating config-
uration changes prior to deployment. Their approach is
also based on replaying the requests of network clients
and comparing the server’s responses as in RolePlayer.

While we use learning for intrusion analysis, there is a
large body of related work on model-based intrusion de-
tection [13, 8, 20, 6, 9]. These systems pre-compute a
model of expected program behavior either dynamically
or statically and use an execution monitor to verify that
a stream of events, often system calls, generated by the
executing process do not deviate from the model. The
ability of the system to detect attacks with few or zero
false alarms relies on the precision of the model. The ini-
tial approaches examined sequences of system calls with-
out considering arguments. Sekar et al. [20] use a training
phase to generate a program model that constrains system-
call arguments and then use the model to safely execute
untrusted code. Giffin et al. [9] construct static program
models that are sensitive to the program environment.

Our current implementation uses a simple heuristic for
detecting similarity between sessions. Cohen et al. [3] use
signatures to detect and classify recurrent applicant bugs.
PeerPressure [22] is a black-box approach that compares
the Windows registry entries across a pool of Windows
machines to identify configuration anomalies. Our com-
parator also takes a black-box approach. However we do
not have access to machines running similar tasks, and
hence we rely on replay to gather data for comparison.

6 Conclusions

This paper proposes using application-level replay and an
input-output model of application behavior to determine
related sessions of system activity and track the sessions
of an attacker. We plan to use this information as input
to the Taser intrusion recovery system to help accurately
revert the effects of a multi-session attack. Our initial ex-
periments show promising results, and as a result, we are
currently implementing the replay system and incorporat-
ing it within Taser. At the same time, our approach raises
several questions worth investigating: how long should
applications be replayed to correlate sessions accurately,
how does our non-deterministic replay approach affect ac-
curacy, and how well does our system work with real in-
trusions.
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