
Computer Networks 51 (2007) 1361–1377

www.elsevier.com/locate/comnet
Automatic high-performance reconstruction and recovery

Ashvin Goel a,*, Wu-chang Feng b, Wu-chi Feng b, David Maier b

a Department of Electrical and Computer Engineering, University of Toronto, Canada
b Computer Science, Portland State University, United States

Available online 26 October 2006
Abstract

Self-protecting systems require the ability to instantaneously detect malicious activity at run-time and prevent execu-
tion. We argue that it is impossible to perfectly self-protect systems without false positives due to the limited amount
of information one might have at run-time and that eventually some undesirable activity will occur that will need to be
rolled back. As a consequence of this, it is important that self-protecting systems have the ability to completely and auto-
matically roll back malicious activity which has occurred.

As the cost of human resources currently dominates the cost of CPU, network, and storage resources, we contend that
computing systems should be built with automated analysis and recovery as a primary goal. Towards this end, we describe
the design, implementation, and evaluation of Forensix: a robust, high-precision analysis and recovery system for support-
ing self-healing. The Forensix system records all activity of a target computer and allows for efficient, automated recon-
struction of activity when needed. Such a system can be used to automatically detect patterns of malicious activity and
selectively undo their operations.

Forensix uses three key mechanisms to improve the accuracy and reduce the human overhead of performing analysis
and recovery. First, it performs comprehensive monitoring of the execution of a target system at the kernel event level,
giving a high-resolution, application-independent view of all activity. Second, it streams the kernel event information,
in real-time, to append-only storage on a separate, hardened, logging machine, making the system resilient to a wide vari-
ety of attacks. Third, it uses database technology to support high-level querying of the archived log, greatly reducing the
human cost of performing analysis and recovery.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Self-healing computers; Computer forensics; Operating systems; Auditing
1. Introduction

It is envisioned that self-protecting and self-heal-
ing systems have the ability to perfectly identify
intrusions and recover from them. We argue that
(1) it is impossible to perfectly identify an intrusion
1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2006.09.013

* Corresponding author.
E-mail address: ashvin@eecg.toronto.edu (A. Goel).
while it is happening and (2) that in order to recover
from one after it has happened, one requires a com-
plete and usable log of all system activity. Consider,
for example, an insider who logs in and starts delet-
ing files in the file system. From a system’s stand-
point, it is impossible to recognize malicious intent
until after a certain amount of activity is observed.

The goal of Forensix is to build a com-
puter equivalent to ‘‘TiVo’’ that supports reliable
.

mailto:ashvin@eecg.toronto.edu


1362 A. Goel et al. / Computer Networks 51 (2007) 1361–1377
reconstruction of all computer system activity for
automatic and assisted forensic analysis and recov-
ery. Its overall approach is to log all system activity
of a target machine to a backend database. Queries
are then issued to the backend to quickly determine
the source of malicious behavior and to selectively
‘‘undo’’ such activity on the target machine. Using
the case above, suppose the insider eventually per-
forms an activity that finally indicates destructive
intent, the Forensix system can then be used to
automatically generate the entire activity tree of
the session and use it to roll back all of the
modifications.

To be effective, the system must gather an accu-
rate, high-resolution image of system activities, suf-
ficient for identifying a wide range of intrusions and
answering questions such as ‘‘where did the attack
come from’’, ‘‘what vulnerability was exploited’’,
and ‘‘which files did the attacker modify’’. To sup-
port self-healing and self-recovery, the system must
also be able to generate a selective ‘‘undo’’ log that
allows the target system to be restored as if the
intrusion never happened. In addition, the system
activity log itself should be gathered in a tamper-
resistant way, so that intruders cannot modify it
or remove it to obscure their tracks. The collection
mechanism should also not render the target system
more vulnerable to non-intrusion based assaults
such as denial of service attacks. Ideally, the system
should have a small effect on the performance of the
target system, and should be affordable in terms of
its resource requirements. Finally, it should facili-
tate efficient and effective post-facto analysis, a pro-
cess that is currently ad-hoc, time-intensive, manual
and error-prone. In order to support such proper-
ties, this paper describes the design and implementa-
tion of Forensix: a high-resolution, analysis and
reconstruction tool.

2. Motivation

Currently, when a system is compromised, inves-
tigators manually sift for clues based on the current
state of the system and the log files that record the
state of the system as it was under attack. This oper-
ation method is inherently ‘‘lossy’’, in that vital
information about where the hacker connected
from, how the hacker entered and what the hacker
did after he entered was not collected or may have
been deleted by the hacker. This manual, error-
prone process is unacceptable when considering
the goals of automatic self-protection and self-heal-
ing. Consider a compromise in which the hacker has
modified sensitive files to set up a backdoor into the
system.

Upon discovery, it would be ideal if system
administrators could issue simple queries to the
forensic system such as:

Query 1: Generate a list of sessions and processes
that have written to the compromised
files.

Query 2: Generate a system activity log for each
session that was returned from Query 1
in order to ‘‘undo’’ the activity.

There are many approaches for logging and
auditing system usage, including application and
system log files, process accounting mechanisms,
network traffic traces, and file system checkers.
While each has its strengths, none of them provide
enough information by themselves to accurately
recreate what happened in the system. For example,
application and system log files only track events
based on what the applications and system adminis-
trators think are necessary to log. Process account-
ing mechanisms only provide information as to how
commands are executed and can fail to track what
programs are doing internally. If a hacker down-
loads a binary onto the system and executes it, pro-
cess accounting alone will not be able to show what
the binary has done. For example, in the well-docu-
mented Mitnick case, a program called zap2 was
downloaded and compiled on the compromised sys-
tem. The program was then executed multiple times
in order to delete login entries from the system [26].
Network traffic traces alone are also problematic in
that sessions are typically encrypted. In addition,
even when they are not encrypted, they are targets
for insertion and evasion attacks, thus making what
has happened ambiguous [30]. It is also extremely
difficult to correlate network forensic information
directly to higher-level application behavior that
elucidates the actual damage done to the target sys-
tem. Finally, file system activity logs can only detect
modifications to files and thus are unable to address
attacks in which running processes are compro-
mised directly [11].
3. Design goals

To adequately perform analysis and recovery, the
following goals must be met:



Processing
Batched Record

System
Target

Backend
Storage
System

Forensic Analysis

Authenticated System Call
Logging Facility

Application Server

Operating System

Append Only Files

Database backend

Logging Pinhole

Private network

Public network

Fig. 1. Forensix system architecture.

A. Goel et al. / Computer Networks 51 (2007) 1361–1377 1363
1. Completeness: The system should collect and log
enough information to completely capture user
activity in order to efficiently reconstruct attacks.
The system should also be able to glue the who
(the user) and the what (all of the user’s activities)
together. Such a system needs to ensure that all
activity is logged independent of system load.
In addition, the system should be able to support
fail-closed operation when logging is compro-
mised or disabled in order to prevent loss of
any necessary logging information.

2. Authenticity: No one should be able to spoof log-
ging messages or tamper with the logging facility.
Unlike the unauthenticated world of TCP/IP ses-
sions, a strong authenticated relationship must be
built between the logging facility and the storage
system for the log data. The system should sup-
port logging immutability that prevents history
from being rewritten. As seen in many cases,
log files can be altered, which allows a hacker
to change logging history and makes self-healing
impossible.

3. Reproducibility: The forensic system should allow
users to accurately determine who and what for a
wide variety of system activities such as incoming
and outgoing network connections as well as files
read or written by processes. It should allow cor-
relating data based on time as well as system
abstractions such as processes or sessions. The
reconstruction process should be fast and should
be independent of the length of time the system
has been running.

4. Efficiency: The amount of data collected and its
encoding size should be minimized. Although
one method for achieving the previous goal of
completeness is a simple brute-force log of every-
thing, this approach can hinder the ability to per-
form accurate, high-performance replay and
reconstruction, even when the power and capac-
ity of current hardware and software systems is
fully leveraged. For self-healing to be practical,
systems must be able to recover quickly to reduce
the downtime of the system and increase
availability.

4. The Forensix approach

Fig. 1 shows the architecture of Forensix, a sys-
tem that attempts to meet the design goals listed
above. With Forensix, the target system’s kernel is
instrumented with a logging facility. In its current
implementation, the logging facility streams sys-
tem-call traces over a private network interface to
a highly-secure backend storage system. While sys-
tem call logging is prone to such problems such as
race conditions, we are currently adapting our sys-
tem architecture and approach to incorporate other,
more accurate forms of logging such as logging
within well-placed locations within the kernel and
virtual-machine based logging [14]. This design is
driven by the observation that a successful attack
can only be caused by system-calls issued by pro-
cesses running on the attacked system (provided
the system is built correctly). Hence, if all system-
call activity is captured and can be attributed to
users, processes or connections, then it should be
possible to accurately reconstruct all security inci-
dents, immaterial of the type of attack. As a result,
this approach helps satisfy our goal of complete-
ness. In addition to completeness, system call log-
ging provides compactness since Forensix does not
record other, application-specific, events that do
not impact system state. Other methods for improv-
ing compactness include data compression and sup-
pressing system-call logging under certain
conditions, such as reads to load common shared
libraries.

For tamper-proof and immutable operation,
Forensix logs system-call activity over a private net-
work interface to a separate, append-only backend



Connections

Connection
Network

Console
Login

Files

connect(), listen()
accept(), shutdown()
send(), recv()

open(), close()
read(), write()
link(), unlink()

Processes

exec()
fork()

Incoming
Session

...
...

...

Fig. 2. The relationships between system activities.

1364 A. Goel et al. / Computer Networks 51 (2007) 1361–1377
storage system with console-only login access.
Immutability is achieved via the file system or via
CD-R or DVD-R burning while tamper-proof oper-
ation is achieved by authenticating each target sys-
tem at startup and by exporting only a minimum
set of network services needed for securely logging
system-call data. To support efficient and flexible
querying, the backend periodically loads log data
to a relational database. This forms the basis for
accurate and high-performance replay. Queries are
efficient because the database allows indexing
frequently queried fields such as the user ID, the
command executing the system call, and the starting
time of the system call. In essence, the database
holds a data warehouse for forensic analysis and
query.While the amount of data being collected
can be large, we argue that the system is feasible
given the capacity of networking, CPU, and storage
capacity available today. As a result, sacrificing
some host and networking resources in order to
add an automatic healing capability will be a fairly
attractive proposition. The following subsections
describe the logging facility and the backend storage
system in more detail.

4.1. Kernel logging facility

To address the problems associated with the
piecemeal logging approaches discussed in Section
2, Forensix logs within the kernel. In its current
implementation, all activity across the system-call
interface is captured and logged. By collecting all
system-call activity and attributing this activity to
individual connections and sessions, the forensic
backend will be able to recreate security incidents
in an accurate, application and attack-independent
manner. As attacks and attack signatures change,
capturing activity at this point thus addresses the
problem at a more fundamental, unified level. If
the system is built correctly, the hacker will need
to figure out a way to compromise a system without
using a process, file, or connection in order to go
undetected. For accurately attributing system activ-
ity to users, processes or connections, the key issue
for the logging facility is the type and the amount

of information needed.
The overall design of our logging system is

founded on the notion that all intrusions start with
a network connection or a console login, are pro-
cessed by a daemon (httpd, in.telnetd,
in.ftpd, sshd, login, etc.) and cascade into
multiple system activities including other processes,
file accesses, and outgoing connections. Our high-
level goal is to assign these system activities to the
initiating session, which helps to simplify and
enhance the intrusion analysis and recovery process.

Fig. 2 shows a diagram of various system activi-
ties and their relationships. The basic idea for cap-
turing these relationships is to assign the identifier
or the PID of the process that executes the activity
as ownership information to each link of the graph.
For example, incoming sessions, file accesses and
outgoing connections are all associated with a pro-
cess, while process creation via exec or fork is
associated with the parent process.

For single-thread processes, this relationship
attributes activities unambiguously. For example,
one can derive the precise set of files accessed as a
result of an incoming connection. Unfortunately,
the relationship is more complicated for multi-
threaded daemon processes. Consider a modern
web server employing a process-mob architecture
of pre-forked processes for handling requests. As
several incoming sessions can be active at any one
time, assigning ownership of a suspicious activity
to a particular active session is difficult because
threads can communicate via non-system call chan-
nels such as shared memory accesses. Forensix uses
system-call tracing for achieving compactness, and
while this approach may preclude complete disam-
biguation, the timing of an activity can be used as
an effective discriminant. For example, the set of
files accessed during the lifetime of a connection
can be discovered. Similarly, the set of connections
whose lifetimes were within the lifetime of a given
connection and that accessed the previous set of files
(the set of suspicious connections) can also be easily



A. Goel et al. / Computer Networks 51 (2007) 1361–1377 1365
determined using the relationship graph. Based on
the observations above, at a minimum, each sys-
tem-call trace record has an associated PID and a
time-stamp that helps to construct the activity rela-
tionship. Section 5 shows that this information
allows constructing powerful forensic queries. In
the future, we plan on examining other low-over-
head mechanisms for unambiguously assigning
ownership of activities to individual sessions.

Unlike previous approaches, which use system
call sequences strictly for intrusion detection pur-
poses [12,17,20,39,24,4,35], Forensix captures each
system call, its timing, parameters, return values,
the process issuing the call, and the owner of that
process, throughout the lifetime of the server. This
type of information is difficult to collect due to its
size and semantic content. However, it is absolutely
necessary, as described in the previous section, to
recreate system activity.

To get an idea of the type and amount of infor-
mation that can be collected, Fig. 3 shows the sys-
tem call trace that results when the kill

command is performed on a process. While the
trace is large, it is easy to identify the small number
of system calls that clearly modify system state and
should be logged (i.e., the initial execve call and
the second to last kill call). The trace also demon-
strates the power of system-call traces over process
Fig. 3. kill syste
accounting mechanisms. A wily hacker could down-
load a binary implementing kill and name it
something innocuous, thus avoiding detection.
When logging system calls, it will become extremely
difficult to hide such an activity.

It is clear that a limiting factor of our approach is
the storage space for information being collected.
As the capacity for processing and storing auditing
information grows, the capacity of the server being
traced and its network connection will as well. For-
tunately, given the massive amount of unused local
networking and storage resources and the ability to
acquire such resources at relatively modest costs, we
believe that the amount of data being collected is
manageable. The fundamental reason for this is that
it is clear that Moore’s law governing advances in
hardware systems is outpacing user and resource
usage growth on the Internet. For example, consider
a popular web site such as http://slashdot.org. While
the site receives 50 million hits per month, its traffic
growth has been outpaced by storage advances [38].

4.2. Backend storage system

The main job of the backend is to receive trace
data from the network and store it in a form that
allows issuing forensic queries. A simple form of
storage is append-only log files. While such log files
m-call trace.

http://slashdot.org


1366 A. Goel et al. / Computer Networks 51 (2007) 1361–1377
will contain all information needed for performing
intrusion analysis, they will not necessarily be in a
form amenable for efficient searching and manipula-
tion. For example, we anticipate the need to make
forensic queries such as

• Show all user sessions that executed /bin/sh

from daemon processes other than sshd, tel-
netd, or login and group sessions by user.

• Show all activity for a particular user session S,
specified by a source IP address and port, a user
ID, and a connection timestamp.

To get some degree of efficiency, it is desirable to
index data and ideally provide complete DBMS
query processing capabilities to run the types of
queries described above. To do so, Forensix stores
the trace data in a relational database. While the
keys chosen for building indexes depend on the
types of queries that are likely to be executed, we
have identified three candidate keys, process ID,
time, and incoming connection identifier, based on
our model of attributing ownership to activities.

In addition to fast queries, the backend must pro-
vide high throughput storage or else it can become a
bottleneck for the target system. The reason is that
Forensix ensures that logging information is not
lost, i.e., fail-closed behavior, by matching target
system performance to the ability to log data and
blocking the target system when the backend is
unable to keep up. A naive approach for building
the backend is to continually insert records from
the log files into the database. However, this
approach places restrictive limits on rates that log
file data can be absorbed, particularly because of
the indexing overhead typically seen on multiple,
small updates. To address this problem, we use bulk
loading facilities available in most DBMSs for
inserting large batches of traces with deferred index-
ing. Our experiments show that this approach
removes much of the cost of fine-grain index
updates. We are currently examining ways to avoid
copying data from the log file to the database during
loading by constructing log files so that they can be
directly mapped into the data space of a specific
DBMS.

5. Implementation

Forensix has been implemented on Linux and is
freely available [1]. The implementation consists of
(1) an auditing module and a sender daemon run-
ning on the target system, (2) a receiver daemon
and a database injector running on the backend,
and (3) database queries and scripts that allow
replay of system activities for forensic purposes.
Each is described below.

5.1. Target system

The auditing module of the target system consists
of a Linux kernel module that traps system calls and
logs data in a kernel buffer. The module code
hijacks the system call table and adds stub code
around several system calls to capture the system
call, its timing, its parameters, its return value and
the PID of the process making the call.

Based on our model of attributing system activity
(see Fig. 2), the system calls traced fall broadly in
the three categories: networking, process manage-
ment and file system. Network calls include such
calls as connect, accept, listen and shut-

down. Process management calls include fork,
exec, kill, exit and setuid. Important file
system calls include open, read, write, close,
symlink, link, mount, unmount, dup and
chown.

For tracing, Forensix adds stub code around sys-
tem calls but does not change the calls themselves.
This approach allows building the auditing code
as a separate module but can introduce race condi-
tions so that system activity cannot be completely
reconstructed [18]. For example, a race condition
exists between writing to a file A via a symbolic link
and modifying the symbolic link to point to a differ-
ent file B. Our stub approach may not accurately
capture whether the file A or the file B was written
because the precise timing of the two operations
(writing the file and modifying the symbolic link)
is not known to the tracing system. A solution to
this problem is to capture the output of pathname
resolution while reading the symbolic link during
the write operation. While this solution is simple
and similar techniques can in principle be applied
to resolve most timing-related race conditions, the
code will be more intrusive than our auditing code.

The sender daemon is a kernel process that reads
data from the kernel buffer and sends it over a pri-
vate network to the backend. For fail-closed behav-
ior, if this process is unable to retrieve or send data,
then the auditing module stops system activity when
the kernel buffer becomes full. This approach
should provide automatic hardening provided ker-
nel code can be trusted more than user-level code.



Table 1
Examples of Forensix queries

Query name Arguments Output

Active_Processes start_time, end_time List all active processes within a given time interval
Immediate_Children PID List all immediate children of a process
Children PID List all children of a process
Immediate_Parent PID List immediate parent of a process
Parents PID List all parents of a process
FDs_written PID, start_time, end_time List all file descriptors written by a process within a given

time interval and the time they were written
All_FDs PID, filename, fd_list,

time

List all file descriptors that refer to a filename or to other file
descriptors in fd_list at a given time

Did_Process_Write PID, filename,

start_time, end_time
Did process write to filename within a given time interval?

Writers filename, start_time,
end_time

List all processes that wrote to filename within a given time interval

IO PID, fd_list List the timing and the data for I/O performed on file descriptors in
fd_list by a process

Replay_Shell PID Run IO query on file descriptors 0, 1 and 2 for a shell process

A. Goel et al. / Computer Networks 51 (2007) 1361–1377 1367
Finally, the kernel buffer is statically sized based on
the total available memory in the system, such as
10% of memory. While we believe that this tech-
nique will work well for most systems, other sophis-
ticated approaches, such as buffer tuning for TCP
sockets [37], could be applied in the future if the buf-
fer often becomes a bottleneck.
5.2. Backend

The receiver daemon on the backend is a simple
process that reads data from the network and stores
it to human-readable, tab-separated, log files that
are periodically loaded into a database. In Forensix,
the database is optimized (1) for bulk loading (with
index generation) and (2) for queries. In particular,
data is read-only after it has been loaded and thus
transactional guarantees are not essential.

The database stores several tables for the system
call traces. The main table is called events, which
stores common attributes, such as id, time, PID and
return value, of every system call event. Data from
system calls that is unique to specific calls is stored
in separate tables to reduce redundancy and mini-
mize the chances of inconsistency.Examples of such
tables include io, dup and connections. The io
table stores all reads and writes, while the dup table
stores file opens, closes and file descriptor duplica-
tions. The connections table stores network-
related system calls. In addition to these basic
tables, Forensix constructs special database tables
upon batch insertion to accelerate subsequent query
processing. These ‘‘interval’’ tables precompute
time-based attributes of files, connections, and pro-
cesses that are common to many of the queries being
performed.
5.3. Queries

In order to be useful, a powerful set of queries
must be supported for post-facto analysis. Table 1
lists some examples of queries we have imple-
mented. Simple queries are implemented using
SQL directly.
6. Evaluation

A viable auditing and replay system should have
low auditing overhead, reasonable space require-
ments and should be able to replay system activity
in near-time. Hence, to evaluate Forensix, we per-
formed two types of experiments that measure the
performance and space overhead induced by audit-
ing and the time taken to run queries. To measure
system overhead, we ran two benchmarks on the
target system: (1) Linux kernel build and (2) Web-
stone. The kernel build benchmark is mainly CPU
bound and does not stress the system much. How-
ever, it determines the viability of Forensix when
running similar applications in a regular desktop
environment. The second benchmark, Webstone,
stresses a web server and is representative of a
loaded server environment.

Our experiments were run on 1.8 GHz Intel Pen-
tium-4 processors with 1 GB of memory. Both the
target and the backend machines had the same



Table 3
Webstone throughput

Auditing
off

Auditing on

Network off Network on

Throughput (Mb/s) 296.8 276.2 (93%) 186.87 (63%)

1368 A. Goel et al. / Computer Networks 51 (2007) 1361–1377
configuration. In addition, for Webstone, the client
process was run on a third similar machine. All the
machines are connected with a gigabit network. The
connection between the target machine and the
backend machine was on a separate VLAN so it
was not affected by other traffic, such as the client
to target machine traffic during the Webstone
benchmark. All machines run Redhat Linux 2.4.20
with the ext3 file system and the target machine
runs the Forensix auditing module. The backend
machine uses the MySQL version 3.23 database.
6.1. Target system

Table 2 shows the results of the kernel build
benchmark. The base result for building a kernel
under Linux without Forensix auditing is shown
under the ‘‘Auditing off’’ column. The second
‘‘Auditing on, Network off’’ column shows the
results when auditing is turned on in the kernel
and the sending daemon retrieves data from the ker-
nel but does not stream it to the backend. In the
final column, data is also streamed to the backend
and stored in log files. The numbers in the table
are generated by running the time command on
the kernel build process.

The table shows that the benchmark completion
time in our unoptimized implementation increases
by 6% when auditing and by 8% when auditing
and transmitting data. We believe that this overhead
is a small price to pay for the ability to accurately
and systematically reconstruct system state to cap-
ture the increasing number of system compromises
we see today. Note that, as expected, almost all
the additional time is spent in system activity.

The Webstone benchmark stresses a standard
Apache web server running on the target system
by issuing back-to-back client requests. Table 3 pre-
sents the key results for this benchmark, the
throughput achieved by the web server. All the
Webstone tests were run for approximately
Table 2
Kernel build times

Auditing off Auditing on

Network off Network on

Total time 233.2 s 247.1 s (6%) 252.0 s (8%)
System time 14.0 s 26.3 s 30.7 s

The total time represents the time to complete compilation of the
Linux kernel. The numbers in parenthesis represent the increase
in completion time under Forensix versus standard Linux.
36 min. The ‘‘Auditing off’’ column is the base
throughput under Linux without Forensix auditing.
The next column shows the throughput when audit-
ing data and retrieving it from the kernel. The
decrease in throughput in this case is 7%, which is
similar to the overhead observed earlier for the ker-
nel build benchmark.

The final column shows the result when data is
also streamed to the backend and stored in log files.
In this case, the throughput decreases by as much as
36%. Currently, we are in the process of profiling the
kernel to investigate the reasons for this decreased
throughput. However, we believe that there are
two obvious optimizations that will help improve
our results. First, our implementation is unoptim-
ized and uses a very simple memory allocation mech-
anism for storing trace data. We expect that
improving the auditing module’s memory allocator
will significantly reduce performance overhead. Sec-
ond, for simplicity, the auditing module copies code
from the kernel to the user space which is then cop-
ied back to the kernel to be sent to the backend. To
minimize copies, data can be sent to the backend
directly from the kernel. This optimization will also
help reduce pressure from the memory subsystem.

6.2. Backend system

To evaluate the throughput of the database, we
measured the row insertion rate of the database,
i.e., the actual number of rows that can be inserted
per second in the database. For the Webstone log
files, the MySQL database could be bulk loaded at
approximately 7400 rows/s. We also measured the
row generation rate or the number of rows that
are generated per second as data is captured in log
files in real-time. For the Webstone test, the row
generation rate is 17,900 rows/s. This result indi-
cates that for near-time intrusion analysis, where
database loading takes less time on average than
data generation, the web server can be heavily
loaded for no more than 40% of the time during
the day. We expect that this limitation will not be
a problem in practice because of typical diurnal ser-
ver activity [8].



Fig. 4. File-accesses for ftpd attack.

A. Goel et al. / Computer Networks 51 (2007) 1361–1377 1369
Next, we measured the space requirements of the
compressed log files for the kernel build and the
Webstone benchmarks. For the kernel build bench-
mark, the log files grow at 8.8 GB/day, while for the
Webstone benchmark they grow at 30 GB/day.
There are several reasons that these numbers are sig-
nificantly larger than comparable data generated by
ReVirt [14]. The first is that, unlike Forensix, ReVirt
does not log filesystem I/O, relying instead on peri-
odic checkpoints whose storage costs are not
reported. Moreover, if checkpoints are infrequent,
then replaying system activity for forensic analysis
can take a long time, as much as the time period
since the last checkpoint. The second reason is that
we use a Gigabit network in our Webstone experi-
ments and thus produce much more data than the
100 Mb/s network used in evaluating ReVirt. Nor-
malizing for network speed, the Webstone log-file
growth rate for Forensix is comparable to ReVirt.

6.3. Queries

In order to be useful, queries must be efficiently
supported in near real-time. For evaluation, the
Webstone benchmark was re-run and at the same
time a user edited the /etc/passwd file on the tar-
get machine. We executed the Replay_Shell
query (which uses the IO query, see Table 1) with
the PID of the shell process in which the password
file was modified. This complex query took under
10 s to run under MySQL, which we believe is a rea-
sonable time to replay this system activity.

7. Forensix in practice

In this section, we describe results from experi-
ences in using Forensix on a honeypot target system
that was attacked multiple times during the course
of a week. Then we show that our analysis tools that
can be used interactively even on large data sets.
Finally, we evaluate the performance overhead of
the system and show that complete auditing imposes
a small performance overhead and it is economi-
cally feasible to store all audit data for several
months.

7.1. Setup

Our honeypot setup consists of a target and a
backend machine both running AMD Athlon MP
2600+ machines with 512 MB RAM. The target
runs stock RedHat 7.2 that has well-known vulner-
able services including Apache httpd with SSL, Wu-
ftpd, Sendmail, SAMBA and the ptrace exploit. We
used the Snort network intrusion detection tool to
detect potential intrusions. The backend machine
is connected to the target on a separate network
and has a firewall with a single open port that only
allows a single connection from the target machi-
ne.The backend machine uses the MySQL version
4.1.10 database.

The target was run with the vulnerable services
for approximately a week from May 11th until
May 18th, 2005. During this time, the target was
attacked externally with the Wu-ftpd remote root
exploit around 5pm on May 12th. We shut down
the machine later that evening and reinstalled a
new target system the next morning.

7.2. Analysis of Ftpd attack

In a typical ftpd intrusion, a remote attacker
gains root access to the vulnerable system. On
May 12 around 17:10 Snort reported an anonymous
FTP login followed by command overflow attempts
that contained shellcode. While Snort helps with
detecting attacks, it provides little information
about what actually happened on the system. To
look for any recent changes in the file system, we
ran a file-access tracking query to list all the files
or directories modified between 17:00 and 19:00 of
that day. A partial report, shown in Fig. 4, lists
the modified files grouped by root directories and
their last modification times. The numbers in the
second column show the number of modified files.
Based on this report, we suspected that a rootkit
had been installed.

Next we ran queries to calculate a dependency
graph using the modified /usr/bin/killall (shown
above) as one of the detection points. A partial
resulting graph is shown in Fig. 5. It shows the bash
process that was spawned by the ftp daemon, the



xinetd

xinetd

in.ftpd

bashftp.pids-all

bash

useradd

group+
group

passwd+
passwd

shadow+
shadow

bash

passwd

npasswd
passwd

bash

wget

rk.jpg

bash

tar

tar killall

gzip

pipe

69.167.XXX.XXX

65.113.XXX.XXX

Fig. 5. Tracking the FTP intrusion.

1370 A. Goel et al. / Computer Networks 51 (2007) 1361–1377
use of the passwd command and downloading of
the rk.jpg file.

We then queried the backend for any instances of
/dev/pts/x creations between 17:00 and 19:00. This
query returned one row that showed that an interac-
tive shell was used from 17:12 until 18:40. A query
to obtain the process owner showed that this attack-
er’s shell was run as root. Next, we used queries to
obtain IO data in order to replay the shell. Key out-
put from the shell session is shown in Fig. 6.

Using our IO tracker, we recreated the removed
psyBNC.tgz file that acts as both an IRC bot and
an IRC bouncer or anonymizer. Its executable files
are disguised as crond. The attacker runs the Suc-



Fig. 6. Shell replay for the ftpd attack.

A. Goel et al. / Computer Networks 51 (2007) 1361–1377 1371
KIT rootkit that is loaded through /dev/kmem and
does not need a kernel with support for loadable
kernel modules [34]. With the rootkit, the attacker
tried to hide the fake crond process but since we
use LIDS [46] on the target system to disable writes
to /dev/kmem, the attacker was not successful
(Fig. 6).

Based on the dependency tracker graph, we rec-
reated the removed rk.jpg file that installs a back-
door and then clears its traces from log files. To
find out more about the backdoor, we issued a
query on the connection and the process interval
tables to find out about open ports between 17:00
and 18:00 and found a process called sendmail that
was listening on port 212 from 17:12 and was used
to run the interactive shell. Based on the analysis
of this attack, it seems to be similar to the report
available from the Honeynet Project [45].
Table 4
Time taken for each query

Ftpd attack analysis Time taken (s)

List all the modified files
and directories

20

Find root-owned setuid files that
were executed by non-root processes

7

Dependency graph generation 25
Finding the interactive shells <1
Finding uid of the shell process <1
Replaying attacker’s shell 1
Recreation of the removed attack files 3
Finding execves issued by children of

compromised in.ftpd
1

Finding the listening port set
by the attack code

<1
7.3. Analysis results

The total time taken to run each of the queries
described above is shown in Table 4. This table
shows that all these queries run quickly and can
be used by an interactive user.
8. Self-healing via selective recovery

In this section, we describe the design of our
selective-recovery tools that have been built over
the Forensix audit system described in the previous
sections. Selective recovery is necessary for self-heal-
ing systems so that they can keep running with min-
imal disruption after a compromise or other
damage. The selective recovery tools we have built
recover file system data after a remote intrusion or
after local damage has occurred (e.g., management
errors, disgruntled employees). This approach
allows systems to be more resilient to intrusions
[2]. Selective recovery is the process of undoing
‘‘tainted’’ file-system modification activities while
preserving legitimate activities. It has similarities
with system software upgrade where the upgrade
can be selectively rolled back without affecting the
rest of the system [6,16].

Selective recovery presents two main challenges.
First, the set of tainted file-system activities, or
activities that were ‘‘affected’’ by the malicious
activity, must be determined. Unlike the case of
software upgrades, where the set of files associated
with the upgrade is known, tainted activities can
occur at arbitrary locations and can be the result



1372 A. Goel et al. / Computer Networks 51 (2007) 1361–1377
of direct damage from an authorized user account
or from an intrusion.Furthermore, determining
such tainted activities can be difficult as they may
be performed directly by the malicious entity or
indirectly via a legitimate process that is vulnerable
to attack. For example, consider a web server that
services a malicious connection that in turn sets up
a back-door to the system. The attacker then logs
into the system via the back-door. If the web-ser-
ver’s activities are marked as tainted forever [23],
then every future server activity will be tainted even
though the server performs logically distinct and
unrelated activities. Ideally, only the file-system
activities related to the malicious connection and
the back-door should be undone.

The second issue with selective recovery is that
certain legitimate activities can depend on tainted
activities. For example, a tainted activity may create
a file that is later modified by a legitimate activity.
We term such activities as ‘‘conflicting’’.With selec-
tive recovery, the challenge is to preserve legitimate
file-system modification activities, minimize or iso-
late the ill-effects of conflicting activities, and at
the same time, automate recovery as much as
possible.

8.1. Selective recovery approach

The Forensix logs relate file-system activities to
processes and allow analysis tools to replay execu-
tion. Using this rich source of audit information, a
dependency analyzer is then run to create dependen-
cies between processes, files, and sockets. These
dependencies are based on the activities performed.
This analysis and an initial set of externally pro-
vided tainted processes, files or sockets (e.g., either
by an administrator or an intrusion detection sys-
tem) helps derive the set of tainted activities.
Finally, this set is used to selectively undo the effects
of tainted file activities.

The choice of the set of tainted activities involves
an inherent tradeoff in selective recovery. This set
can be chosen conservatively, which simplifies the
recovery process, but can mistakenly mark legitimate
activities as tainted, causing legitimate data to be lost.
In contrast, an optimistic choice helps preserve legit-
imate activity, but can miss tainted activities, thus
making recovery less effective. Our analysis exposes
this tradeoff by providing a choice of dependency pol-
icies, from conservative to optimistic. The most con-
servative policy taints all data after an attack and
hence recovery leads to a snapshot of the file system
before an attack. The optimistic policies recover data
selectively by either limiting or ignoring dependen-
cies. For example, we can optimistically assume that
the web server’s activities across different connections
are unrelated and explicitly limit dependency within
the server process to a certain time interval based
on the connection it is serving.

The optimistic analysis policies lead to conflicts
during recovery where legitimate activities that need
to be preserved may ‘‘depend’’ on tainted activities
that are undone. To enable automatic conflict reso-
lution during recovery, we separate file-system
activities into name, content and attribute activities
and apply recovery actions to each type of activity
separately. This approach simplifies resolution,
allows recovery actions that are suited for each type
of activity, and enables dealing with name and attri-
bute conflicts completely automatically.

8.2. Example scenarios

We evaluated the functionality of the selective
recovery system using several different attack or
local damage scenarios that are briefly described
below. For each scenario, we also describe the
correct recovery action that should be taken. We
then carried out these scenarios with Forensix log-
ging turned on and used the logs to compute the
set of recovery actions. We report in Section 8.3
on how the calculated recovery actions correspond
to the stipulated recovery actions.

8.2.1. Illegal storage

A guest user logs into the system and executes the
sendmail attack to get a root shell and creates a new
root account by directly writing to the /etc/passwd
and the /etc/shadow files. Later, the attacker logs
in via this new account and changes the /etc/ftpac-
cess file so that anonymous users can create or delete
files in the system. Finally, he uploads 500 illegal pic-
tures into the system as an anonymous user.

Correct recovery action: Remove all the pictures,
the files in /var/spool/mqueue that are generated by
the sendmail attack and the home directory of the
attacker’s root account. In addition, the legitimate
versions of the /etc/ftpaccess, /etc/passwd and
/etc/shadow files need to be recovered.

8.2.2. Unhappy student

An attacker launches a remote attack on the wu-
ftpd daemon running on the system. The attacker
gets a root shell and downloads, compiles and



A. Goel et al. / Computer Networks 51 (2007) 1361–1377 1373
installs a bindshell back-door. In addition, the
attacker modifies a professor’s home directory to
be globally writable. Later, student A with a regular
account creates a file in his own directory and then
replaces the professor’s grades file with a new file.
Then student B copies the modified grades file to
his own home directory.

Correct recovery action: Shut down the back-
door process, recover the original grades file in the
professor’s directory, restore the attributes of the
directory and the file and remove the copy of the file
in student B’s home directory.

8.2.3. Content destruction

A software developer has been working on the
files src/project.c, hfiles/p1.h and hfiles/p2.h. He
has also saved a backup of the C file in backup/pro-
ject.c.bak. Another developer on the system
launches the pwck local escalation exploit to get a
root shell. This attacker deletes the project.c and
p2.h files. The victim notices that the project.c file
is missing. He copies the backup file and moves
the p1.h file to the src directory. Then, he deletes
the hfiles directory and notifies the administrator.

Correct recovery action: Restore the hfiles direc-
tory, restore p2.h file into this directory, recover
the original project.c file and deal with the two dif-
ferent versions of this file (the one copied by the user
and the original deleted version).

8.2.4. Software installation

The next two scenarios present and analyze sys-
tem administration errors. Using a root account,
we installed the Realplayer 8 in the wrong directory
which caused it to create many files and subdirecto-
ries in this directory. In addition, it created or
updated various Netscape, KDE and Gnome con-
figuration files or directories in /root.

Correct recovery action: All the Realplayer files
and subdirectories should be removed and the con-
figuration files should be restored.

8.2.5. Inexperienced administrator

We download Gallery, a popular web-based
photo album application. The Gallery administrator
creates two accounts, one for himself and the other
for a guest with an easily guessable password. The
administrator then adds new albums and pictures
to the website. Concurrently, an attacker logs in
by correctly guessing the password of the guest
account from a different remote site. The attacker
creates a new album and a few pictures in this
new album and visits the administrator’s album.
Then the administrator visits the attacker’s album
and detects a problem.

Correct recovery action: Remove the attacker’s
album and all related data (e.g., thumbnails) gener-
ated by Gallery.

8.3. Selective recovery evaluation

In all cases above, our selective recovery system
produces less than two false positives (legitimate
activity is marked tainted) or negatives (tainted
activity is not caught) even though the number of
recovery actions ranges between 5 and 1200. Given
this positive result and the widely different scenarios
and the recovery actions described above, we believe
that our selective recovery system forms a good
basis for a self-healing tool.

9. Related work

This work consists of two main components,
analysis and recovery. We focus on related work
in these areas in turn.

9.1. System analysis and replay

System call traces have been used in the past to
identify normal system behavior and then to auto-
matically detect suspicious behavior or intrusions
[20,36,39]. However, these approaches examine sys-
tem-call patterns over a short window of 5–100 calls
and are insufficient for completely capturing system
activity for forensic purposes. In contrast, Forensix
captures system calls, their timing, their parameters,
their return values, the process making the call and
their owners throughout the lifetime of the target
system for accurate replay.

Forensix enables the off-line execution of tech-
niques similar to those found in the STAT and
USTAT systems which employ state transition dia-
grams to identify suspicious activities [21,15,28].
Forensix differs from these systems in that the audit-
ing is done within the kernel at the system call level
and the audit trail is securely transfered to an
append-only backend storage system. The informa-
tion being gathered is thus a super-set of that col-
lected by the audit records in USTAT and is
stored remotely in a secure manner. It should be
possible to take the system call records and recreate
the audit records of USTAT at the database back-
end and to run USTAT along with other intrusion



1374 A. Goel et al. / Computer Networks 51 (2007) 1361–1377
analysis tools such as Tripwire [22]. In addition,
because the information itself is archived, the infor-
mation can be re-analyzed as additional knowledge
is gained on specific intrusions.

Our analysis tools are directly motivated by the
BackTracker [23] that uses a time-based approach
to generate dependencies between processes, files
and sockets and uses the dependency graph to view
intrusions. The primary difference between the two
stems from the difference in their goals. While the
BackTracker is focused on tracking the sources of
an intrusion, our analyzer generates a set of tainted
files that need to be recovered. As a result, the Back-
Tracker’s tainting policies are conservative or else it
would miss the intrusion, while we provide optimis-
tic policies so that data can be preserved during
recovery as much as possible. In addition, our opti-
mistic policies use interval-based analysis and
dependency sources to limit the effects of tainting.
Another difference is that BackTracker does not
provide precise details about all of the system activ-
ities. For example, it would show the steps that led
to the modification of a sensitive password file, but
does not show the precise changes made to the file.
For the latter information, BackTracker must be
used in combination with ReVirt, which places the
system within a virtual machine and logs the
VM-to-host instruction system. The clear advantage
of ReVirt is that it removes non-determinism by
serializing all system activity at the logging point
and hence allows complete system replay. Another
advantage is that the virtual machine approach does
not require kernel integrity. However, unlike Foren-
six, ReVirt cannot support arbitrary queries without
forcing the user to replay the entire instruction
stream. On a heavily loaded system, such replay
requires time that is proportional to the length of
time the system has been running since the last
checkpoint. Since forensic analysis is often an itera-
tive process, such an approach defeats the initial
goal of our work in reducing the time and human
overhead required to perform forensic analysis.

Garfinkel [18] discusses the problems associated
with system call interposition based security tools.
Many of the problems described, such as argument
races, occur due to user-level interception and do
not exist in Forensix where auditing occurs within
the kernel. However, an important problem is
understanding the complex Unix API and its side
effects so that queries can be implemented correctly.
Another problem is race conditions due to time-of-
check/time-of-use bugs [5]. The main one we identi-
fied was traversal of symbolic links and relative
pathnames during file system operations. Both can
be solved by capturing the output of pathname res-
olution while reading the symbolic link during the
file system operation. Quinlan and Dorward discuss
a novel approach for storing append-only archival
data [32] in Venti. As in various peer-to-peer storage
systems [13,10], data blocks for archival storage in
Venti are identified by a collision-resistant hash,
which eases the secure implementation of append-
only storage. Such an approach could be used for
the Forensix backend.

9.2. System recovery

Magpie [3] extracts the control flow and the
resource requirements of requests in a clustered ser-
ver environment by monitoring kernel and applica-
tion-level events and correlating these events using
an application-specific event schema. Magpie uses
interval-based correlation similar to our dependency
analysis. However, while Magpie uses undirected
dependencies to clustered sets of events, our analysis
uses directed dependencies to derive data flow. Data
lifetime analysis using system-level simulation [9] or
hardware-based information flow [42] allows detect-
ing or protecting programs against malicious soft-
ware attacks by identifying spurious information
flows from untrusted I/O sources. Both can provide
much more accurate dependency analysis than our
approach but both run orders of magnitude times
slower or require special architectural support.

Versioning file systems retain earlier versions of
modified files, allowing recovery from user mistakes
or system corruption. A key focus of versioning
systems is encoding efficiency. For example, the
Elephant file system [33] uses a clever purging
method that keeps ‘‘landmark’’ data versions and
purges generated and temporary files aggressively,
while CVFS encodes metadata versions efficiently
[41,40]. Our system, which uses an unoptimized data
storage mechanism, would benefit from some of
these techniques, although purging data versions
would limit some of the benefits of selective recov-
ery. While versioning approaches provide the basic
capability to rollback system state to a previous
time, such a rollback discards all modifications
made since that time, regardless of whether they
were done by a tainted or legitimate process.

The Repairable File System [47] has goals closest
to our work. Its contamination analysis is similar to
our dependency analysis although it only uses a



A. Goel et al. / Computer Networks 51 (2007) 1361–1377 1375
propagation phase and does not have a notion of
dependency intervals. In addition, the recovery
phase does not seem to consider conflicting
activities. Application-specific conflict resolution
has been extensively studied in the context of repli-
cated file systems [31,25] and databases [44]. While
we have not experimented with these policies, they
would directly apply to our recovery techniques.

Fastrek [27] applies selective recovery to dat-
abases by attributing modifications to malicious
activities and then rolling back changes selectively.
A potential issue with this approach is cascading
aborts where a legitimate activity is rolled back if
it may have depended on the data produced by a
tainted activity. While conservative dependency pol-
icies in our system effectively achieve the same
result, our conflict resolution policies allow using
optimistic policies that reduce this problem.

Brown [7] describes a recovery service that deals
with operator errors in a mail server. Their system
provides application-specific recovery that works
well for a mail server, and while it is possible to
extend the service to other applications, it is unclear
how much effort is involved. In contrast, our system
is geared towards server applications that do not
necessarily have the clearly defined semantics of a
mail server and hence our recovery techniques are
more generic.

Sun [43] provides a safe execution environment
(SEE) that enables users to try out new software
(or configuration changes to existing software) with-
out fear of damaging the system in any way. This is
accomplished via a novel one-way isolation mecha-
nism where processes running within the SEE are
given read-access to the environment provided by
the host OS, but their write operations do not affect
the host until a commit point is reached. The com-
mit is performed if a consistency criteria is met or
else the SEE is rolled back. This approach allows
recovery only until the commit point and rollback
may become more likely for long running SEEs.

Sandboxing techniques are complementary to
our approach. They interposition code that allows
blocking program actions that may compromise
security, while recovery deals with intrusions after
they occur. Janus [19] interpositions system calls
using the proc file system. Systrace [29] notifies
the user about system calls executed by an applica-
tion. Then it generates a sandboxing policy based on
user response. Sandboxing raises the issue of policy
selection, i.e, determining what actions are permissi-
ble for a given piece of software.
10. Conclusions

This paper has presented Forensix, a robust,
high-precision reconstruction and analysis tool for
automated analysis and recovery of compromised
systems. The salient features of Forensix are its ker-
nel-level auditing of system activities, tamper-resis-
tant logging on a separate back-end machine, and
use of database technology to support efficient,
high-level querying of data. A Linux-based imple-
mentation of Forensix was described, and a perfor-
mance evaluation of it showed its overhead in terms
of system throughput and storage capacity. While
both costs are significant, they are within the
bounds of acceptability for many applications. Fur-
thermore, technology trends, such as the rapid
increase in disk capacity, will reduce these costs fur-
ther in the future. The complete Forensix system is
currently available at the project web site [1].
Acknowledgements

The authors would like to thank Mike Shea,
Kenneth Po, Kamran Farhadi, Jin Choi, Sourabh
Ahuja, Ho-Jeong An, Gary Yeung, Miria Grunick,
Jennifer Johnson, and Jonathan Walpole for their
contributions to the Forensix project.
References

[1] 4N6 Developers. The Forensix Project. <http://foren-
six.sourceforge.net/>.

[2] Armando Fox, David Patterson, Self-repairing computers,
Scientific American, September 2004.

[3] P.T. Barham, A. Donnelly, R. Isaacs, R. Mortier, Using
magpie for request extraction and workload modelling, in:
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, 2004, pp. 259–272.

[4] M. Bernaschi, E. Gabrielli, L. Mancini, REMUS: a security-
enhanced operating system, ACM Transactions on Infor-
mation and System Security 5 (1) (2002).

[5] M. Bishop, M. Dilger, Checking for race conditions in file
accesses, Computer Systems 9 (2) (1996) 131–152.

[6] Bobbie Harder, Microsoft windows system restore,
April 2001. <http://msdn.microsoft.com/library/en-us/
dnwxp/html/windowsxpsystemrestore.asp>.

[7] A.B. Brown, D.A. Patterson, Undo for operators: building
an undoable e-mail store, in: Proceedings of the USENIX
Technical Conference, 2003, pp. 1–14.

[8] J.S. Chase, D.C. Anderson, P.N. Thakar, A. Vahdat, R.P.
Doyle, Managing energy and server resources in hosting
centres, in: Proceedings of the Symposium on Operating
Systems Principles, October 2001, pp. 103–116.

[9] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, M.
Rosenblum, Understanding data lifetime via whole system

http://forensix.sourceforge.net/
http://forensix.sourceforge.net/
http://msdn.microsoft.com/library/en-us/dnwxp/html/windowsxpsystemrestore.asp
http://msdn.microsoft.com/library/en-us/dnwxp/html/windowsxpsystemrestore.asp


1376 A. Goel et al. / Computer Networks 51 (2007) 1361–1377
simulation, in: Proceedings of the USENIX Security Sym-
posium, August 2004, pp. 321–336.

[10] I. Clarke, T.W. Hong, S.G. Miller, O. Sandberg, B. Wiley,
Protecting free expression online with Freenet, IEEE Inter-
net Computing 6 (1) (2002) 40–49.

[11] C. Cowan, Immunix: Adaptive system survivability, 1998.
<http://www.immunix.org>, <http://www.cse.ogi.edu/sysl/
projects/immunix>.

[12] M. Crosbie, B. Kuperman, A building block approach to
intrusion detection, in: Recent Advances in Intrusion
Detection (RAID 2001), Springer, Davis, California, 2001.

[13] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, I. Stoica,
Wide-area cooperative storage with CFS, in: Proceedings of
the Symposium on Operating Systems Principles, October
2001.

[14] G. Dunlap, S. King, S. Cinar, M. Basrai, P. Chen, ReVirt:
Enabling intrusion analysis through virtual-machine logging
and replay, in: Proceedings of OSDI, December 2002.

[15] S. Eckmann, G. Vigna, R. Kemmerer, STATL: An Attack
Language for State-based Intrusion Detection. Technical
report, 2000.

[16] Edward C. Bailey, Maximum RPM.Sams, August 1997.
[17] E. Eskin, W. Lee, S. Stolfo, Modeling system calls for

intrusion detection with dynamic window sizes, in: Proceed-
ings of DARPA Information Survivability Converence and
Exposition II, June 2001.

[18] T. Garfinkel, Traps and pitfalls: practical problems in system
call interposition based security tools, in: Proceedings of the
Network and Distributed System Security Symposium,
February 2003.

[19] I. Goldberg, D. Wagner, R. Thomas, E.A. Brewer, A secure
environment for untrusted helper applications, in: Proceed-
ings of the USENIX Security Symposium, 1996.

[20] S.A. Hofmeyr, S. Forrest, A. Somayaji, Intrusion detection
using sequences of system calls, Journal of Computer
Security 6 (3) (1998) 151–180.

[21] K. Ilgun, USTAT: A real-time intrusion detection system for
UNIX, Technical report, 1992.

[22] G.H. Kim, E.H. Spafford, The design and implementation of
tripwire: a file system integrity checker, in: ACM Conference
on Computer and Communications Security, 1994, pp. 18–
29.

[23] S.T. King, P.M. Chen, Backtracking intrusions, in: Proceed-
ings of the Symposium on Operating Systems Principles,
October 2003.

[24] C. Kruegel, D. Mutz, F. Valeur, G. Vigna, On the detection
of anomalous system call arguments, in: ESORICS, 2003.

[25] P. Kumar, M. Satyanarayanan, Flexible and safe resolution
of file conflicts, in: Proceedings of the USENIX Technical
Conference, USENIX, January 1995, pp. 95–106.

[26] K. Mitnick, Takedown Transcripts: 1995 Feb 5 11:48:08,
February 1995. <http://www.takedown.com/cgi-bin/tran-
script. pl?4002>.

[27] D. Pilania, T. cker Chiueh, Design, implementation, and
evaluation of an intrusion resilient database system. Tech-
nical Report TR-124, SUNY, Stony Brook, April 2005.

[28] P. Porras, STAT: A state transition analysis tool for
intrusion detection, Technical report, 1992.

[29] N. Provos, Improving host security with system call policies,
in: Proceedings of the USENIX Security Symposium,
August 2003, pp. 257–272.
[30] T. Ptacek, T. Newsham, Insertion, evasion, and denial of
service: eluding network intrusion detection, Technical
report, 1998.

[31] P. Reiher, J.S. Heidemann, D. Ratner, G. Skinner, G.J.
Popek, Resolving file conflicts in the Ficus file system, in:
USENIX Technical Conference, USENIX, June 1994, pp.
183–195.

[32] S. Quinlan, S. Dorward, Venti: A new approach to archival
storage, in: Proceedings of Conference on File and Storage
Technologies (FAST), January 2002.

[33] D.S. Santry, M.J. Feeley, N.C. Hutchinson, A.C. Veitch,
R.W. Carton, J. Ofir, Deciding when to forget in the
Elephant file system, in: Proceedings of the Symposium on
Operating Systems Principles, December 1999, pp. 110–123.

[34] sd and devik.Linux on-the-fly kernel patching without LKM,
Phrack (58), December 2001.

[35] R. Sekar, M. Bendre, D. Dhurjati, P. Bollineni, A fast
automaton-based method for detecting anomalous program
behaviors, in: IEEE Symposium on Security and Privacy,
May 2001.

[36] R. Sekar, P. Uppuluri, Synthesizing fast intrusion preven-
tion/detection systems from high-level specifications, in:
Proceedings of the USENIX Security Symposium, August
1999, pp. 63–78.

[37] J. Semke, J. Mahdavi, M. Mathis, Automatic TCP buffer
tuning, in: Proceedings of the ACM SIGCOMM, 1998, pp.
315–323.

[38] Slashdot, Slashdot FAQ, 2000. <http://slashdot.org/faq/>.
[39] A. Somayaji, S. Forrest, Automated response using system-

call delays, in: Proceedings of the USENIX Security Sym-
posium, August 2000, pp. 185–198.

[40] C.A.N. Soules, G.R. Goodson, J.D. Strunk, G.R. Ganger,
Metadata efficiency in versioning file systems, in: Proceed-
ings of the USENIX Conference on File and Storage
Technologies, 2003, pp. 43–58.

[41] J.D. Strunk, G.R. Goodson, M.L. Scheinholtz, C.A.N.
Soules, G.R. Ganger, Self-securing storage: protecting data
in compromised systems, in: Proceedings of the USENIX
Symposium on Operating Systems Design and Implementa-
tion, 2000, pp. 165–180.

[42] G.E. Suh, J.W. Lee, D. Zhang, S. Devadas, Secure program
execution via dynamic information flow tracking, ACM
SIGARCH Computer Architecture News 32 (5) (2004) 85–
96.

[43] W. Sun, Z. Liang, R. Sekar, V. Venkatakrishnan, One-way
isolation: an effective approach for realizing safe execution
environments, in: Proceedings of the Network and Distrib-
uted System Security Symposium, February 2005.

[44] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, M.J.
Spreitzer, C.H. Hauser, Managing update conflicts in Bayou,
a weakly connected replicated storage system, in: Proceed-
ings of the 15th Symposium on Operating Systems Princi-
ples, December 1995, pp. 172–183.

[45] The Honeynet Project and Research Alliance. Know Your
Enemy: Phishing, May 2005. <http://honeynet.evilcoder.
org/papers/phishing/details/de-detailed.html>.

[46] H. Xie, P. Biondi, Linux Intrusion Detection System (LIDS)
Project. <http://www.lids.org/>.

[47] N. Zhu, T.-C. Chiueh, Design, implementation, and evalu-
ation of repairable file service, in: Proceedings of the IEEE
Dependable Systems and Networks, June 2003, pp. 217–226.

http://www.immunix.org
http://www.cse.ogi.edu/sysl/projects/immunix
http://www.cse.ogi.edu/sysl/projects/immunix
http://www.takedown.com/cgi-bin/transcript.pl?4002
http://www.takedown.com/cgi-bin/transcript.pl?4002
http://slashdot.org/faq/
http://honeynet.evilcoder.org/papers/phishing/details/de-detailed.html
http://honeynet.evilcoder.org/papers/phishing/details/de-detailed.html
http://www.lids.org/


A. Goel et al. / Computer Netwo
Ashvin Goel is an Assistant Professor in
the Department of Electrical and Com-
puter Engineering at University of Tor-
onto. He obtained his Bachelors and
Masters degree in computer science from
Indian Institute of Technology, Kanpur
and from UCLA. He completed his
Ph.D. in computer science and engi-
neering from Oregon Graduate Institute,
Portland in 2003. His research interests
span the areas of operating systems,

security, networks and mobile computing. His Ph.D. research
focused on providing system support for interactive media

streaming applications. He has published in prestigious systems
and real-time conferences such as SOSP, OSDI, Eurosys, RTAS
and IWQoS. His current research focuses on providing security in
large-scale systems. He is a member of ACM, USENIX and
IEEE.

Wu-chang Feng is currently an Associate
Professor at Portland State University.
He received his B.S. in 1992 from Penn
State University and his M.S.E. and
Ph.D. degrees in 1994 and 1999 from the
University of Michigan. He received the
IEEE Communications Society 2003
William R. Bennett prize along with one
of four prizes recognizing the Best IBM
Research Papers in Computer Science,
Electrical Engineering and Math in 2002.
Wu-chi Feng received his Ph.D. in
Computer Science and Engineering from
the University of Michigan in 1996. He is
currently an Associate Professor of
Computer Science at Portland State
University. His research interests
including multimedia systems, sensor
networks, and networking. He is cur-
rently an editor for the ACM/Springer-
Verlag Multimedia Systems Journal.
David Maier is Maseeh Professor of
Emerging Technologies in the Depart-
ment of Computer Science at Portland
State University. He received his BA
from the Honors College at the Univer-
sity of Oregon in 1974, majoring in both
Mathematics and Computer Science. He
was awarded a Ph.D. from Princeton
University in 1978, in the Department of
Electrical Engineering and Computer
Science. He taught for four years at the

State University of New York at Stony Brook, then moved to the
Oregon Graduate Institute in 1982, helping found the Depart-

rks 51 (2007) 1361–1377 1377
ment of Computer Science and Engineering there. In 2004, he
became the first Maseeh Professor in the PSU College of Engi-
neering. He was selected for an NSF Presidential Young Inves-
tigator Award in 1984, the year it was created. He is a fellow of
the Association of Computing Machinery (ACM) and a Senior
Member of the Institute of Electrical and Electronic Engineering.
In 1997 he received the ACM SIGMOD Innovations Award, for
his contributions to the field of data management. His expertise
spans the field of database and information systems, including
data modeling, query processing, scientific data managment, data
stream processing, XML, and information reuse and
enhancement.


	Automatic high-performance reconstruction and recovery
	Introduction
	Motivation
	Design goals
	The Forensix approach
	Kernel logging facility
	Backend storage system

	Implementation
	Target system
	Backend
	Queries

	Evaluation
	Target system
	Backend system
	Queries

	Forensix in practice
	Setup
	Analysis of Ftpd attack
	Analysis results

	Self-healing via selective recovery
	Selective recovery approach
	Example scenarios
	Illegal storage
	Unhappy student
	Content destruction
	Software installation
	Inexperienced administrator

	Selective recovery evaluation

	Related work
	System analysis and replay
	System recovery

	Conclusions
	Acknowledgements
	References


