
Transparent Fault Isolation using Dynamic Compilation

peter@cs.toronto.edu demke@cs.toronto.edu ashvin@eecg.toronto.edu
Ashvin GoelAngela Demke BrownPeter Feiner

University of Toronto

 Problem: Isolating Faults in Drivers
Drivers Cause Most Kernel Panics
• Drivers tend to have more bugs than the kernel in

Windows and Linux. In such monolithic operating
systems, drivers are not isolated from the kernel, so
drivers cause most panics.

Fault Isolation
• The general technique of restricting errant writes and

branches, protecting memory and control flow.

Transparently Isolating Drivers
• Existing isolation techniques require rewriting or re-

compiling drivers. Process-based isolation is only
transparent when drivers use no global data struc-
tures. Moreover, process-based isolation is expensive
for the frequent and fine-grained interaction between
drivers and the kernel.

 Solution: Transparent Fault Isolation

✗✓
limited

Nooks ✓

Arbitrary
Binaries

BGI

Protects:

✗

✓✓
✓

Program
Shepherding

XFI

✓
limited ✓✗

Control
FlowMemory

✓

✗

Transparent
Fault Isolation

✓

✓✓
limited

Comparison of Fault Isolation Techniques

 Research Challenges

Main Idea
• Dynamically add permission-checking

instructions to existing x86 code.
• Track permissions with thin wrappers

around kernel-driver interfaces.
• Solution is well suited for frequent,

fine-grained interaction, like drivers!

Dynamic Compilation
• Prefaces writes with checks:
cmp [%eax]'s shadow, $WRITE
jne error
mov [%eax], $1234
where $WRITE is constant.

• Checks execution permissions before
linking code cache fragments.

• The dynamic compiler is protected
implicitly!

Dynamic Compilation
• We cannot statically identify writes to local variables,

unlike schemes that control code generation. We are
investigating range-based heuristics to safely elide
such checks.

• There is no suitable dynamic compiler for drivers, so
we are porting DynamoRIO to the Linux kernel. In-
terposing on interrupt handlers without monitoring
all kernel execution is a challenge.

Shadow Memory
• Giving each extension its own shadow memory has

several advantages: no a priori grouping, no inter-ex-
tension race conditions. How do we limit memory
use? How do we garbage collect shadow memory?

• Efficient user-space implementations allocate large
blocks of virtual memory. Shadow memory allocation
in the kernel is tricky because of the absence of
swappable virtual memory.

Kernel Instrumented
Driver

Wrapped
Interfaces

Wrappers keep track of the data
a driver may modify by updating
shadow memory. Wrappers also
validate parameters.

x86 Driver

Code

Dynamic
Compiler

The original x86 driver code is compiled
just-in-time by the dynamic compiler,
emitting instrumented driver code that
checks the validity of branches and writes.

Shadow
Memory

The instru-
mented driver
code enforces
permissions
stored in shad-
ow memory.

