Problem

> Even stable file systems have bugs
> File system bugs can corrupt data

> Checksums and replication are no defense
against FS bugs

> N-version systems are expensive
> Tools like fsck try to repair damage after the fact

> Too slow (offline!), data loss still possible
> Some problems can't be caught by offline checks

Key Idea

Check transactions against invariants before
committing to disk

Transactional Invariants
> Describe the behavior of correct transactions

> Ensure on-disk structure of file system remains valid
> Hold after each atomic operation

Research Questions

> What kinds of invariants can we check quickly?
> How do we specify invariants?

Protecting the File System From ltself

Daniel Fryer, Angela Demke Brown, Ashvin Goel

Department of Computer Science, University of Toronto
Department of Electrical & Computer Engineering, University of Toronto

*|dentify violated invariant

Current Prototype

Strategy for developing prototype
*Choose known, reproducible, data-corrupting Ext3 bugs

Implement checking function for invariant

Ext3

Journalling Layer

~+

|

>Checking is done in the Ext3

jounalling layer (jbd)

virtual block device

dm-snoop

Metadata
Cache

> 2

Block Device

framework

Data
Metadata
Data + Metadata

113 Transaction

>Checking relies on metadata
gathered by dm-snoop, a

>dm-snoop implemented using
Linux “device mapper”

> How thoroughly can we specity file system correctn/
Example Bug: “Directory ctime not updated on rename”

Example: Ext3 Invariants

e Data block in use

<=> Block Bitmap bit is set

<=> Block number appears 1in
exactly 1 inode, indirect
block, 2-indirect block or
3—-indirect block

<=> Block 1is dir. entry,
indirect, 2-indirect, 3-
indirect or file data

e When a file data block 1s written
to, the ctime field in its inode
should be updated

e Data 1s only written to allocated
blocks (Not so true if data is not
journalled!)

>Bug #10276 on bugzilla.kernel.org
>Use of the “rename” operation could move a file into
a directory without updating the directory's creation/
modification time field.

-

Good Transaction

fsck can't catch or repair this problem!

contains it

>Dates may be changed deliberately atterwards
>File may be older than the directory that

\ / Bad Transaction

~

Inode Block

Directory Entry

Block

New entry for

renamed file

/

/

Directory
Inode

ctime

RN

> Checking mechanism
sees directory update

Directory Entry
Block

> LLooks for inode write

New entry for
renamed file

within the transaction

> Fails the check when
1t 1S absent

Challenges

How are invariants specified?
> Declaratively (e.g. as in SQCK)

How do we maintain consistency?

> Assume that file system is consistent before the
transaction

> Prove that it will be consistent afterwards
What is needed to verify an invariant?

> Metadata — likely to have been read recently
> Cache necessary to avoid extra reads

Handling Failures

Return error

> Allows an application to retry operation or
find an alternative

> Doesn't work if application believes that the
transaction has succeeded

Snapshot FS and continue
> Preserves all data
> Defers recovery until future “convenient” time
> Feasible to implement at block layer

Important data structures in Ext3

Inode Bitmap Bloc< Bitmap
Superblock SRR _fz,,ﬂq S
£R%%7L3%%%1H %% aqf%ﬂ i
e %f@ wrmi.s
, Superblock records partition properties
Inodes Directory data

Inode bitmap tracks free/used inodes

— | . (self-reference) .
j . (parent) Block bitmap tracks free/used blocks

Each inode holds

* up to 12 pointers to data blocks
Somefile.txt 1 pointer to an indirect block
1 pointer to a doubly-indirect block
1 pointer to a triply-indirect block

Directories
e associate file names with inodes
Data Block | . stored like ordinary files

Indirect Block

/]

» Data Block




	Slide 1

