
Robust Consistency Checking for Modern Filesystems

Kuei Sun, Daniel Fryer, Dai Qin, Angela Demke Brown, and Ashvin Goel

University of Toronto

Abstract. We describe our approach to building a runtime file system checker
for the emerging Linux Btrfs file system. Such checkers verify the consistency of
file system metadata update operations before they are committed to disk, thus
preventing corrupted updates from becoming durable. The consistency checks in
Btrfs are complex and need to be expressed clearly so that they can be reasoned
about and implemented reliably, thus we propose writing the checks declaratively.
This approach reduces the complexity of the checks, ensures their independence,
and helps identify the correct abstractions in the checker. It also shows how the
checker can be made robust against arbitrary file system corruption.

Keywords: Runtime file system checker, Btrfs, Datalog, Consistency invariants.

1 Introduction

A runtime file-system consistency checker verifies the consistency of file-system update
operations before they are committed to disk. File system metadata corruption can thus
be detected before it propagates to disk, which minimizes data loss. In contrast, tradi-
tional offline checkers [1,4] require the file system to be taken offline to be checked for
possible corruption, which can incur significant downtime [5]. Recon [3] enforces the
consistency of the Linux Ext3 file system at runtime by checking that metadata updates
conform to a set of rules called consistency invariants. These invariants are expressed
in terms of the file system data structures, which are inferred outside the file system at
the block layer using metadata interpretation, similar to semantically smart disks [6].

We describe the challenges with designing and building a robust, accurate and com-
plete runtime checker for the Linux Btrfs file system. Since Btrfs is still under active
development, a runtime checker that limits the damage caused by bugs in the file system
software can both serve as a powerful debugging tool and help encourage adoption of
the new file system. Compared to Ext3, Btrfs uses many more file system data structures
with vastly complex relationships, which complicate both the metadata interpretation
and the consistency invariants considerably. Thus, it is of paramount importance that
consistency invariants for Btrfs are expressed clearly and concisely so that they can be
reasoned about and implemented reliably.

We use a declarative language to express the Btrfs consistency invariants, which is
similar in spirit to Gunawi et al.’s [4] offline consistency checker written in SQL. This
approach makes it easier to reason about the runtime checker’s correctness in three
ways. First, each consistency invariant can be written as a set of declarative statements
and run independently of the other invariants. Second, the declarative style helps to
identify the appropriate abstractions for representing file system metadata updates; the

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 85–91, 2014.
© Springer International Publishing Switzerland 2014

86 K. Sun et al.

conceptual invariants are written as clearly as possible, and the metadata is interpreted
accordingly. Last, the declarative approach clarified two distinct categories of invari-
ants: the first expresses constraints on structural properties of the metadata (e.g., bounds
checking) and the second expresses semantic properties (e.g., the agreement between
directory entries and inode link counts).

2 Robust Consistency Checking

Our Btrfs runtime consistency checker has two goals: 1) it should detect all consistency
violations, and 2) it should work correctly and predictably in the presence of arbitrary
file system corruption failures. We meet these goals with two design principles. First,
the semantic invariants must be written declaratively and concisely, making it easier to
reason about their correctness. Second, the file system’s structural invariants should be
checked before performing any semantic checks so that the latter can depend on the
structural integrity of the file system.

2.1 Abstractions for Runtime Checking

Here we provide an overview of how invariants are checked in a runtime file system
checker. Invariant checks are expressed in terms of changes to file system objects such
as directories, inodes and extents, but they may also involve querying the state of objects
that have not changed. The checking operation verifies that when the logical file system
changes are applied to consistent, pre-transaction file system state, they will result in
consistent, post-transaction file system state.

Invariant checks are performed using two abstractions. The first is the change record,
which captures any modifications to file system objects, such as the addition of a new
object, an update to an existing object, or the removal of an object in a transaction. For
example, a change record for Btrfs can be expressed as: change(TREE, ID, FIELD,
OLD, NEW). Here, TREE is the Btrfs B-tree within which the object resides, while ID
is the unique identifier of the object that is being changed (e.g., a Btrfs key for an
inode). The TREE and ID uniquely identify Btrfs objects. The FIELD is a specific part
of the object (e.g., inode size). Finally, OLD and NEW are the old and new values of the
corresponding field.

The second abstraction is the query primitive, which is used to access objects or
object fields that may or may not have changed in a transaction, and thus may not
appear as change records. The primitives return the most recent version of the object,
from either the checking framework’s internal caches or the disk. There are two types of
primitives, query() for retrieving an object by key, and prev()/next() for finding
the previous or next Btrfs key in a tree, as shown in Figure 1.

2.2 Expressing Invariants

Btrfs is a highly complex file system with correspondingly complex consistency prop-
erties. These properties are hard to extract from the C source code of btrfsck, the file

Robust Consistency Checking for Modern Filesystems 87

% the btrfs key for an extent is [start , extent_item , size]
violation (6, TREE_ID , k(EXTENT , extent_item , SIZE)) :-

add(TREE_ID , k(EXTENT , extent_item , SIZE)),
prev (TREE_ID , k(EXTENT , extent_item , SIZE),

k(EXTENT_PREV , extent_item , SIZE_PREV)),
EXTENT < EXTENT_PREV + SIZE_PREV .

% the underscore ’_’ is a "don ’t care " or wildcard variable
violation (6, TREE_ID , k(EXTENT , extent_item , SIZE)) :-

add(TREE_ID , k(EXTENT , extent_item , SIZE)),
next (TREE_ID , k(EXTENT , extent_item , SIZE),

k(EXTENT_NEXT , extent_item , _)),
EXTENT_NEXT < EXTENT + SIZE .

Fig. 1. Btrfs invariant “If a new extent item is added, it must not overlap previous or next extents”

system checker for Btrfs, because they are implemented piecemeal and intermingled
with the checker’s metadata interpretation code. When we converted the consistency
properties to their corresponding runtime invariants and implemented them in C, we
found that it was hard to reason about the correctness of these invariants because their
implementation was complex, with many corner cases.

Instead, we chose to express consistency invariants in Datalog, a declarative logic
programming language [2]. Datalog programs consist of statements that are expressed
in terms of relations, represented as a database of facts and rules. Rules take the form
of conclusion � premise, where premise consists of one or more predicates joined by
conjunction (comma) or disjunction (semicolon). We express the change records gener-
ated from a file system transaction as Datalog facts. Semantic invariants are statements
that must hold true for a consistent file system. In Datalog, we negate these invariants to
reach the conclusion that an invariant has been violated. For example, for an invariant
A⇒ B, the corresponding Datalog statement is violation� A, ¬B where A is a condition
which will trigger the check B. The predicate A looks for a change in the file system
by matching on the attributes of a change record. The predicate B can match change
records or invoke primitives to access unmodified objects.

Figure 1 shows the Datalog invariant that checks for extent overlap. The add(TREE,
ID) clause looks for an extent_item object with the Btrfs key ID that has been added
to the file system and binds the TREE_ID, EXTENT and SIZE variables to its values.
The prev() and next() clauses are primitives that query the file system state and bind
the previous and next items in the tree to their second argument, respectively. We need
a query in this case because the adjacent extents may not have changed, and thus may
not be available as change records. The final clause checks for overlap between the
new extent and the previous or next extents returned by the primitives. When an extent
does not have a previous or next extent, the relevant query will fail, indicating that the
invariant has not been violated. Note that this invariant is independent of the metadata
interpretation code and other consistency invariants, making it easier to reason about.

88 K. Sun et al.

2.3 Checking Structure before Semantics

Our second goal is to ensure that the checker works predictably in the presence of
arbitrary file system failures. To do so, we need to ensure that the three components
of the checker (metadata interpretation, query primitives, and invariant checking) are
robust to metadata corruption. Invariant checking operates on change records generated
by metadata interpretation and uses query primitives. Hence, its robustness depends on
the first two components. Both metadata interpretation and query primitives access the
current file system state, including the possibly corrupt metadata blocks that need to be
checked. Thus, these components must perform careful validation.

Metadata interpretation requires checks to ensure that file system data structures are
correctly typed, so that they can be interpreted correctly (e.g., these checks will prevent
following a stray or corrupt pointer). In addition to correct typing, the primitives, which
take an identifier as input, need to operate on the data structure associated with this
identifier. These requirements lead to three invariants that need to be checked in order:

Type Safety: Type safety ensures that interpretation of updated metadata is robust
to data corruption. Consider a query primitive query(TREE, ID, VALUE) that binds
VALUE to a given object with identifier ID within tree TREE. Here ID incorporates the
type of the object (e.g., the type in the Btrfs key). Type safety ensures that the object
bound to VALUE will be of the same type as that specified in ID. The metadata inter-
pretation code will therefore operate on correctly typed objects. Type safety is hard to
enforce dynamically because file system data structures do not usually provide type in-
formation (e.g., a tag associated with each type). Even if they did, it could have been
corrupted, possibly to another known type. Instead, we ensure type safety by validating
or range checking all primitive data types that are accessed during metadata interpre-
tation. For example, absolute disk pointers need to lie within the file system partition,
while extent-relative pointers must lie within the extent. Similarly, enumerated values
(enum in C) need to be valid instances, and any length fields in structures must lie within
expected bounds. If these checks fail, we raise a type-safety violation.

Reachability Invariants: The query primitives require more than type safety. For ex-
ample, query(TREE, ID, VALUE) would not return an existing object that has been
misplaced in a B-tree, because it assumes that keys are ordered (otherwise it would need
to perform an expensive full tree search). In Btrfs, we enforce reachability by checking
that a parent points to the correct child node, and keys are sorted correctly. Reachability
invariants also ensure that primitives will not encounter an infinite loop in the B-tree.

Uniqueness Invariants: The primitives expect that all objects are uniquely identified
by an identifier. If multiple objects have the same identity several problems can arise.
First, the primitives may not provide such duplicate objects deterministically, which
could lead to invariant violations that are hard to analyze, or worse, allow corruption to
propagate to disk. Second, duplicate change records may be generated (e.g., two objects
with the same identity are modified), but since Datalog ignores duplicate facts, only one
of the changes would be checked. We check reachability before uniqueness, because if
an object is reachable, it is easy to test for uniqueness by first searching for the object.

Robust Consistency Checking for Modern Filesystems 89

1. nr_items != 0 && nr_items < PTRS_PER_BLOCK
2. p.ptr[i].key == c.ptr[0].key
3. p.ptr[i].blockptr == c.header.bytenr
4. p.ptr[i].generation == c.header.generation
5. ptr[i].key < ptr[i+1].key

Fig. 2. The structural invariants on an internal B-tree node in Btrfs (p and c are parent and child)

violation (16, TREE , k(INODE_NR , dir_item , CRC)) :-
new(TREE , k(INODE_NR , dir_item , CRC), type , DIR_ITEM_TYPE),
query(TREE , k(INODE_NR , dir_item , CRC), location , LOCATION),
not(query(TREE , LOCATION , f(mode , s_ifmt), INODE_FILE_TYPE),

DIR_ITEM_TYPE =:= INODE_FILE_TYPE).

Fig. 3. Btrfs invariant “Directory entry type is the same as the type of the inode”

After the three types of structural invariants have been checked, we are assured that
query(TREE, ID, VALUE) will bind VALUE to the object associated with ID. At this
point, the semantic invariants can depend on well-formed change records being gener-
ated (even though their contents may be corrupt) and the primitives working correctly.

Figure 2 shows the five structural invariants that we check for B-tree internal nodes.
An internal node consists of a header and an array of key pointers. The header contains
the number of key pointers in the node (nr_items), the location of the node on disk
(bytenr), and the generation number of the node. A key pointer (ptr[]) contains a
Btrfs key, the location of the node pointed to by the key (blockptr) and the generation
of the pointed-to node. Invariant 1 is a type-safety check on the key pointer array. In-
variants 2 to 4 are reachability invariants that verify that the parent points to the correct
child node. Invariant 5 checks that all keys in a valid B-tree node must be monotonically
increasing, a requirement that provides both reachability and uniqueness. Together, In-
variants 2-5 ensure that B-tree items are ordered correctly. Similar structural invariants
exist for B-tree leaf nodes. The file system metadata in the leaf nodes also has additional
structural invariants such as type safety requirements for all data types.

A simple example shows the need to check structural invariants before semantic
ones. Figure 3 shows the Btrfs invariant that checks that a directory entry’s file type is
the same as the type of the inode to which it points (e.g., both are directories or both are
files). The new predicate returns the file type in a changed directory item. Suppose while
creating a directory, the file system creates a directory entry and mistakenly creates two
inodes with the same inode number, one of which has the file type. The second query
primitive in Figure 3 (within the not clause), which returns the type of the inode, would
match the two inode change records. However, the INODE_TYPE value that is bound
depends on the Datalog engine, so the corruption may not be detected.

Semantic invariants can be made simpler when structural invariants are checked first,
because they can depend on structural correctness. The semantic invariants can also
be checked independently of each other, because the correctness of the primitives has
been established by the structural invariants, rather than by the order in which semantic
invariants are checked. Finally, this approach raises structural violations as early as
possible, thus providing more accurate debugging information.

90 K. Sun et al.

violation (12, TREE_ID , k(INODE_NUMBER , TYPE , OFFSET)) :-
delete(TREE_ID , k(INODE_NUMBER , inode_item , _)),
file_tree (TREE_ID),
query(TREE_ID , k(INODE_NUMBER , TYPE , OFFSET)).

violation (12 , TREE_ID , k(INODE_NUMBER , TYPE , OFFSET)) :-
add(TREE_ID , k(INODE_NUMBER , TYPE , OFFSET)),
file_tree (TREE_ID), TYPE \= inode_item ,
not(query(TREE_ID , k(INODE_NUMBER , inode_item , 0))).

Fig. 4. Invariant 12: An inode item must exist for every distinct objectid in a file system tree

3 Experiences with Invariants

The declarative approach allows the invariants in our runtime checker to match the pro-
grammer’s intent, enhancing our confidence in the correctness of the implementation.
The programmer can focus on pattern matching, without worrying about the correctness
of other code such as memory management. We share three examples illustrating the
benefits of a declarative approach over an imperative one.

Invariant 12, shown in Figure 4, can be simply stated as “If an inode is removed,
ensure that no objects with that inode number remain in the tree. If an item is added, and
it’s not an inode, verify that a corresponding inode exists.” The Datalog invariant reflects
this statement in two rules, each written in 4 lines. The corresponding implementation
in C consists of 45 lines, spread across several locations.

Declarative invariants also support rapid prototyping. The Btrfs directory metadata
includes Btrfs items that map the file name to an object id (i.e., inode number) and two
indexes for fast lookup and iterating over all entries; each inode stores back references
to all the directory entries pointing to it. The invariant that checks the consistency of
the directory entries, the indexes and the back references is complicated. Its C imple-
mentation is spread in 13 locations, 1 for initializing hash tables, 4 for initializing data
structures based on the different change records, and 8 for invariant checking based on
different hash tables. As our understanding of the invariant evolved, significant amounts
of the C code needed to be re-written. We found it simpler to reason about the invari-
ant in Datalog, and then reimplement the equivalent version in C. The final Datalog
invariant consists of 45 lines, while just the rewrite of the C invariant added 250 lines.

Fixing bugs in invariants is also easier in Datalog. Our original understanding was
that all the data extents in a file must be contiguous, however, we learned that Btrfs files
can have discontiguous extents beyond their logical file size. The fix for this invariant
required adding a single line of Datalog to check if the offset was less than the size. The
corresponding fix took roughly 20 lines (and several hours) to implement in C.

4 Conclusions

We have designed and implemented a declarative online file system checker for Btrfs,
a modern file system that supports a rich set of features. The most significant chal-
lenge lies in reasoning about the correctness of the checker in the face of arbitrary file
system corruption failures. A key takeaway is that the invariants should be expressed

Robust Consistency Checking for Modern Filesystems 91

as concisely and intuitively as possible, using a declarative language such as Datalog.
The rest of the checker, such as the metadata interpretation, should then be designed
to support the invariants. This approach makes prototyping invariants and fixing bugs
easier, significantly enhancing our confidence in their correctness. We also identified
the need to check structural invariants before semantic invariants, so that arbitrary file
system structural violations are caught early, and the semantic invariants can depend on
the structural integrity of the file system.

References

1. Carreira, J.C.M., Rodrigues, R., Candea, G., Majumdar, R.: Scalable testing of file system
checkers. In: Proc. of the 7th EuroSys, pp. 239–252 (2012)

2. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never
dared to ask). IEEE Transactions on Knowledge and Data Engineering 1(1), 146–166 (1989)

3. Fryer, D., Sun, K., Mahmood, R., Cheng, T., Benjamin, S., Goel, A., Brown, A.D.: Recon:
Verifying file system consistency at runtime. ACM Trans. on Storage 8(4), 15:1–15:29 (2012)

4. Gunawi, H.S., Rajimwale, A., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: SQCK: A declar-
ative file system checker. In: Proc. of the 8th USENIX OSDI (December 2008)

5. Henson, V., van de Ven, A., Gud, A., Brown, Z.: Chunkfs: Using divide-and-conquer to im-
prove file system reliability and repair. In: Proc. of the 2nd HotDep (2006)

6. Sivathanu, M., Prabhakaran, V., Popovici, F.I., Denehy, T.E., Arpaci-Dusseau, A.C., Arpaci-
Dusseau, R.H.: Semantically-smart disk systems. In: Proc. the 2nd FAST, pp. 73–88 (2003)

	Robust Consistency Checking for Modern Filesystems
	1 Introduction
	2 Robust Consistency Checking
	2.1 Abstractions for Runtime Checking
	2.2 Expressing Invariants
	2.3 Checking Structure before Semantics

	3 Experiences with Invariants
	4 Conclusions
	References

