
1

Seamless Kernel Updates
Maxim Siniavine, Ashvin Goel

University of Toronto

Abstract—Kernel patches are released frequently to fix bugs
and security vulnerabilities. However, users and system adminis-
trators often delay installing these updates because they require a
system reboot, which results in disruption of service and the loss
of application state. Unfortunately, the longer a system remains
out-of-date, the higher is the likelihood of system failure or a
successful attack. Approaches, such as dynamic patching and
hot swapping, have been proposed for updating the kernel. All
of them either limit the types of updates that are supported, or
require significant programming effort to manage.

We have designed a system that checkpoints application-visible
state, updates the kernel, and restores the application state thus
minimizing disruption of service. By checkpointing high-level
state, our system no longer depends on the precise implementa-
tion of a patch and can apply all backward compatible patches.
Our results show that updates to major releases of the Linux
kernel can be applied with minimal effort and no observable
overhead.

I. INTRODUCTION

Operating system maintainers release kernel patches reg-

ularly to fix security vulnerabilities and bugs, and to add

features. However, users and system administrators often delay

installing these updates because they require a system reboot,

which results in disruption of service and the loss of appli-

cation state. For example, updating the operating system for

a game server typically requires scheduled server downtimes,

during which time all users stop playing the game, wait for

the server to come back up, login to the server, and then play

the game from the beginning, which is especially annoying for

shooter and other real-time games. Unfortunately, the longer

an out-of-date system remains operational, the higher is the

risk of a bug being triggered, or a system being exploited,

since most exploits target existing vulnerabilities. In addition,

users are unable to use the new features, e.g., performance

optimizations, available in the kernel updates.

Realizing these problems, application programmers are in-

creasingly designing programs that can be updated without

significant disruption. For example, users of web applications

are not aware when the application is updated and can start

using the new version after simply reloading the page. In

fact, typically users have no control over updates, which

helps avoid the need to support several application versions.

Similarly, many large applications save and restore their state

on an update (e.g., browsers restore web page tabs), thereby

reducing disruption. Today, operating system kernels are a

major component of the software stack that require significant

time for updates and lose state after an update.

Existing kernel update systems work at varying granularity.

Dynamic patching performs updates at function granular-

ity [1], [2], and hot swapping at object or module granular-

ity [3], [4]. These techniques require significant programmer

effort for implementing patch, object or module-specific state

transfer functions that synchronize the state of an updated

component with an existing component. For example, hot

patching operates at function granularity and can be applied

relatively easily to patches that only change code. However,

carefully crafted state transfer functions are needed for patch-

ing updated data structures. Similarly, object and module

granularity update systems require component-specific transfer

functions for the updated stateful components, and must be

designed to handle changes to the component interfaces [4].

None of these techniques handle cross-cutting changes due

to major restructuring of code that occurs across major kernel

revisions. For example, the Linux kernel is updated with five

patches every hour on average, and developers release a major

kernel release every 2-3 months [5]. Later in the paper, we

show that these releases often consist of over a million lines

of modified or new code. Requiring programmers to write

and test state transfer functions for their patches is simply

infeasible, especially when kernel patches occur so frequently

and major revisions involve millions of lines of code.

Our goal is to install major kernel updates reliably, with

minimal programmer effort, and without requiring user inter-

vention or any changes to applications. The main insight of

this work is that applying updates at a courser granularity

reduces programming effort. In particular, updates performed

at a higher level of abstraction hide implementation details,

reducing the need to write state transfer functions for each

patch. For example, say that a transfer function exists for

a stateful module. A patch that changes module internal

state will not require an additional transfer function because

this state is not exposed, making the patch easier to apply.

Similarly, Swift et al. update device drivers at multi-module

granularity by using common driver interfaces to automatically

capture and transfer state between driver versions [6], [7].

Taking this idea to the limit, we have designed a kernel

update system for Linux that checkpoints application-visible

state, reboots and updates the entire kernel, and restores the ap-

plication state. The checkpointed state consists of information

exposed by the kernel to applications via system calls, such as

memory layout and open files, and via the network, such as

network protocol state. Our update system requires the least

amount of additional programmer effort for installing a patch,

because it hides most kernel implementation details, including

interfaces between the kernel components. Furthermore, the

kernel and the applications are strongly isolated from each

other by memory management hardware and communicate

by passing messages, i.e., system calls. As a result, there is

no need to detect and update references from old to new

data structures, or determine when the update process can

terminate, all of which pose significant challenges in dynamic

2

patching systems. Another significant benefit is that our system

can handle all patches that are backward compatible at the sys-

tem call and network protocol level, because they do not affect

application-visible state. Kernel patches generally provide such

compatibility to minimize disruption. The main drawback of

rebooting the kernel is that it is human perceptible, but we

believe that the main impediment to applying updates today is

loss of application state, rather than brief system unavailability.

Our focus on designing a reliable and practical update

system raises several challenges. Ensuring that the system will

restore applications reliably requires taking a consistent check-

point. When kernel data structures are inconsistent, e.g., when

a system call is in progress, a consistent checkpoint cannot be

taken. Waiting for system calls to finish is unreasonable since

many system calls can block in the kernel indefinitely. Another

option is to interrupt system calls, but many applications are

not designed to handle interrupted calls. Instead, we start with

the POSIX specification for restarting system calls when a

signal occurs, and provide a method for resuming system

calls transparent to applications. Unlike dynamic patching and

hot swapping methods, our solution guarantees quiescence,

allowing consistent checkpoints to be taken for all updates.

The second challenge is that a practical system should

require minimal programmer effort for applying kernel up-

dates. To achieve this goal, the checkpoint format and the

checkpoint/restore procedures must be made as independent

of the kernel implementation as possible. We checkpoint data

in the same format as exposed by the system call API and

the network protocols. Both are standardized, and so our

checkpoint format is independent of the kernel version, and

we expect it to evolve slowly over time. An additional benefit

of this approach is that we can use existing kernel functionality

to convert the data to and from the kernel to the checkpoint,

since this functionality is already needed to perform these

conversions during system calls. When the kernel is updated,

the updated functions will perform the conversion correctly.

To minimize changes to the checkpoint procedures, we use

kernel API functions as far as possible. These include system

call functions and functions exported to kernel modules, both

of which evolve slower than internal kernel functions.

This work makes three contributions. First, we design a

reliable and practical kernel update system that allows taking

a consistent checkpoint for all kernel updates, and requires

minimal programmer effort for applying these updates. Sec-

ond, we perform a detailed analysis of the effort needed

to support updates across major kernel releases, representing

more than a year and a half of changes to the kernel. During

this time, six million lines of code were changed in 23,000

kernel files. We are not aware of any system that provides

such extensive support for kernel updates. Finally, we evaluate

our implementation and show that it works seamlessly for

several, large, real-world applications, with no perceivable

performance overhead, and without requiring any application

modifications. The overall reboot time is reduced by a factor

of 4 to 10 for several of these applications.

Section II presents our approach. Section III describes the

implementation of our system. Section IV presents our analysis

of the programmer effort needed to use our system and

Update
arrives

Start new
kernel

New kernel
finishes booting

Close
applications

manually

Load & initialize
new kernel

Restart
applications

manually

Regular kernel update

Seemless kernel update

Restore
checkpoint

Start
checkpoint

Load new
kernel

Update
arrives

Initialize
new kernel

New kernel
finishes booting

Start new
kernel

Save
checkpoint

Wait for
quiescence

Figure 1. Time line for regular and seamless kernel update

evaluates the performance of the system. Section V discusses

related work in this area. Section VI summarizes our work

and provides conclusions.

II. APPROACH

Our goal is to perform kernel updates seamlessly, without

requiring user intervention or any changes to applications.

Figure 1 shows the time line of events for regular updates and

seamless updates. During a regular update, applications are

closed manually after saving work, the kernel is rebooted, and

then applications need to be restarted manually. A seamless

update treats the kernel as a replaceable component, allowing

updates to the kernel without affecting application state. It

operates in five steps as shown in Figure 1.

1) Load new kernel: When a kernel update arrives, we use

the kexec facility in Linux to load and start executing the

new kernel image. We modified kexec so that it performs

the next two steps before starting the new kernel.

2) Wait for quiescence: We ensure that the kernel reaches

quiescence, as described in Section II-A.

3) Save checkpoint: The checkpoint code walks the kernel

data structures associated with application-visible state and

converts them to a high-level format that is independent of

the kernel version, as described in Section II-C.

4) Initialize new kernel: The kexec call jumps execution

to the beginning of the new kernel, and the new kernel

initializes itself.

5) Restore checkpoint: After kexec has initialized the new

kernel, it reads the checkpoint and recreates applications

using the checkpoint information. Then it restarts these

applications, which may require restarting blocked system

calls as described in Section II-B.

The three main challenges with seamless updates are achiev-

ing quiescence, restarting system calls and using a checkpoint

format that is minimally dependent on the kernel implemen-

tation, as described below.

A. Quiescence

Ensuring that our system will restore applications reliably

requires taking a consistent checkpoint, which imposes two

3

conditions: 1) all threads are stopped, and 2) the kernel data

structures are consistent. The first ensures that thread state

remains consistent with its checkpoint state. For example, if

a thread continues execution during or after checkpointing, it

can affect the state of other threads with which it shares any

resources. When both these conditions are met, we say that

the kernel is quiescent, and a checkpoint can be taken.

The first condition can be easily met by pausing all pro-

cessors other than the one running the checkpoint thread.1

For the second condition, data structures can be inconsistent

when any kernel code is executing, including in system calls,

exception handlers and interrupt handlers. We need to let all

kernel code finish executing and stop further entry into the

kernel. However, system calls and exception handlers can

block or sleep while waiting for events. The Linux kernel

allows threads to sleep in one of two states, uninterruptible and

interruptible sleep. During an uninterruptible sleep, the thread

can hold locks and modify data structures, and so we allow

this code to finish execution. Fortunately, an uninterruptible

sleep is used for relatively short operations, such as a disk

access for paging and memory allocation. Waiting for this

code to finish execution has minimal impact on the overall

update time because it is much faster than the time needed to

initialize the new kernel.

A thread in an interruptible sleep can block indefinitely,

e.g., waiting for user or network input. We cannot wait for

these threads to continue before applying a kernel update.

Fortunately, in this case, the kernel releases locks so that the

thread does not block other threads from making progress, and

ensures that its data structures are consistent before putting a

thread in an interruptible sleep state. Furthermore, only system

call threads can sleep in an interruptible state, and they can be

interrupted by sending a signal to the thread, in which case,

the system call returns immediately with an EINTR error code.

To avoid blocking an update indefinitely, we save the state of

system calls blocked in an interruptible sleep (below, we will

call these blocked calls) and handle them during restore, as

described in Section II-B.

We use the following steps to ensure that the kernel is

quiescent before taking a checkpoint:

1) Stop other processors: We start the process by using the

stop_machine function in Linux that allows waiting for

interrupt handlers to finish executing on all processors, dis-

ables interrupts and pauses execution all other processors,

and then returns control back to the calling processor where

this code can continue running.

2) Quiesce user threads: In this step, we wait until all user

threads are quiesced. If a user thread is currently in user

mode or is blocked, then it is not running any kernel code,

and we say that it is quiesced. When all user threads are

quiesced, we return from stop_machine and proceed to

Step 3, otherwise we perform the following steps:

a) Disable all further system calls: We need to let threads

running in the kernel or sleeping in uninterruptible sleep

continue execution. By disabling further system calls, we

1The quiescence conditions don’t apply to the checkpoint thread because
it is not checkpointed and it doesn’t modify any kernel data structures.

can guarantee quiescence of user threads. If a thread issues

a system call, we block it in a special blocked state, so that

we know that it simply needs to be restarted on restore.

b) Wait briefly for quiescence: We enable the processors

again by returning from stop_machine, wait briefly for

20 ms, and then restart the process by returning to step

1. During the 20 ms wait, the kernel operates normally,

allowing interrupts to occur and threads to exit the kernel

or to block in interruptible sleep.

3) Quiesce kernel threads: In this step, we wait until all
kernel threads are quiesced. Kernel threads are used to

perform deferred processing tasks, such as writing dirty file

buffers to disk. We separate quiescing user threads from

quiescing kernel threads so that any existing deferred tasks

can be completed before taking a checkpoint. Quiescing

kernel threads proceeds in four steps:

a) Deferred processing: At this point, we have returned

from the stop_machine function and all interrupts are

enabled, and we can perform various deferred processing

tasks. For example, we create hard links to temporary files

so that they are not removed after a kernel update and then

save all dirty file buffers by calling the system-wide sync

operation to complete any buffered IO.

b) Reboot notification: Then, we send a standard reboot

notification to all kernel threads so that these threads can

prepare for devices to be shutdown. In particular, after the

notification returns, the threads do not access any devices.

For example, fast devices, such as the hard drive, will

not serve any further requests because users threads are

quiescent and the kernel threads have been notified about

the reboot in this step.

c) Shutdown devices: Next, we shutdown all devices

because many drivers assume upon start-up that devices

have previously been reset [8]. This shutdown process may

wake up certain kernel threads (e.g., when the hard drive

cache is flushed) and hence we cannot disable interrupts

or suspend kernel threads until this point. However, since

interrupts are enabled, certain slow devices, such as the

keyboard, mouse, timer and the network may generate

exogenous interrupts until the devices have been shutdown,

but we prevent these interrupts from waking up sleep-

ing user threads. Losing these exogenous interrupts will

resemble a short system freeze, but without significantly

affecting applications. For example, TCP packets will be

retransmitted since we restore TCP state.

d) Wait briefly for quiescence: After all the user threads

are quiescent and all the devices have been shutdown, the

kernel threads should not have any further work and they

should not be running, i.e., they should be quiescent. At

this point, we invoke stop_machine to disable interrupts

again. For safety, we check if all the kernel threads are

blocked, and if so, we can proceed to the next step.

Otherwise, we return from stop_machine, wait briefly for

20 ms, and repeat Step 3.

4) Take checkpoint: Now that the kernel is quiescent and

all interrupts are disabled, we can checkpoint application-

4

visible state. We ensure that the checkpoint accesses

memory but not the disk, which has been shutdown in

the previous step. The checkpoint and restore process is

described in more detail in Section III.

B. Restarting System Calls

After restoring the checkpoint in the updated kernel, we

need to resume thread execution, which requires handling

system calls that were blocked. There are over 300 system calls

in Linux, but only 57 of them are interruptible. 2 We do not

need to consider uninterruptible systems calls because we had

waited for them to finish executing before reaching quiescence.

This is fortunate because many of these calls modify kernel

data structures in complicated ways that are not idempotent

and thus are not easily restartable.

For the interruptible calls, a simple solution would be to

return the EINTR error code, since this return value is part of

the specification of what happens when a signal is sent to the

thread. However, most applications do not handle interrupted

system calls, specially if they don’t use signals.

Instead, we reissue the system calls that were blocked after

the application is restored. To ensure correct behavior, we

looked at the POSIX specification for restarting system calls

upon a signal, since this specification is implemented by the

Linux kernel. The kernel can already automatically restart

some system calls when they are interrupted by a signal. It can

restart these calls because their behavior is idempotent when

they are blocked (even if they are not idempotent otherwise).

In particular, the system calls block in order to wait for

external events. However, if the event has not occurred, then

the system call has not done any work, and so it can be safely

reissued. The POSIX specification disallows restarting some

of the system calls on a signal, for two reasons: 1) a timeout is

associated with the system call, or 2) the system call is used to

wait for signals. In our case, we still wish to restart these calls

to avoid failing the application. For timeout related calls, they

can be reissued after taking the timeout period into account, as

discussed below. For signal related calls, they can be restarted,

because a signal was never delivered in our system. However,

they require adjusting the signal mask, as described below.

We use five methods to transparently resume all the blocked

system calls after restoring a user thread. A few system calls

require multiple methods described below.

1) Restart: The system calls that are idempotent when they

are blocked are restarted. This is exactly the same behavior

the kernel already implements for these system calls when

they are interrupted by a signal. Examples are open, wait

and its variants, futex, socket calls such as accept, connect,

etc. There are 19 such restartable calls.

2) Track progress: System calls that perform IO operations

like read and write keep track of how much progress

they have made. When these calls are interrupted by

a signal, their current progress is returned to the user.

We implement the same behavior, and after restoring the

2We found this number by manual analysis, and by cross correlating with
the manual pages of the calls. Of the 57, several are variants of each other,
such as the 32 and 64 bit versions of the call.

thread, we return the progress that the system call had

made before the checkpoint was taken. We do not reissue

this call to complete the operation (e.g., finish a partial

read) because input may never arrive. It may appear that

returning a partially-completed IO operation may cause

certain applications to malfunction. However, system call

semantics require correctly designed applications to handle

short reads and writes. For example, on a read, fewer

bytes may be available than requested because the read is

close to end-of-file, or because the read is from a pipe or

a terminal. Similarly, network applications communicate

with messages of predetermined length and reissue the

calls until the full message is processed [9]. As a result,

we have not observed any problems with returning partial

results for reads and writes for the applications that we

have tested. When no progress has occurred, we restart

the system call, because returning a zero indicates that

the communication has terminated (EOF) after which the

application may fail, when in fact our checkpoint maintains

the communication channel. In this case, we can still safely

reissue the call since it had not made any progress before

being blocked. There are 23 calls that require progress

tracking.

3) Return success: System calls that close file descriptors like

close or dup2 invalidate the descriptors if they block. For

these calls, we return success because when the checkpoint

is taken, the file descriptor is already invalidated and the

resource will be reset once the kernel is restarted. There

are 3 such calls.

4) Update timeout: If the system call has a timeout asso-

ciated with it, e.g., select, and it uses a short timeout

compared to the time it takes to restart the kernel, we

simply reissue the system call to avoid returning a spurious

timeout. For long timeouts, we restart the system call after

calculating the remaining time and subtracting the total

time it took for the kernel to reboot and restore the thread.

There are 11 calls that require timeout handling.

5) Undo modifications: Certain system calls, like pselect

and ppoll, make a copy of the process signal mask, and

then temporarily modify it. Before restarting these system

calls, the signal mask has to be restored from the copy

to the original state. The pselect and ppoll calls also

require timeout handling. There are 7 calls that require

undo modifications.

C. Checkpoint Format and Code

We checkpoint application-visible state, consisting of infor-

mation exposed by the kernel to applications via system calls,

such as memory layout and open files, and via the network,

such as protocol state for network protocols implemented in

the kernel. Checkpointing this state requires programmer effort

proportional to the system call API rather than the size of

the kernel implementation or the number of kernel updates.

Furthermore, since the system call API and the network

protocols are standardized and change relatively slowly over

time, we expect that a carefully designed checkpoint format

will evolve slowly.

5

Structure Fields Notes
In checkpoint
vm_begin, vm_end Region of address space controlled by

this vm_area_struct
vm_page_prot Address space is writable, readable or

executable
vm_flags Special attributes: for example direction

the stack grows
vm_file Name of the file mapped by a

vm_area_struct
vm_pgoff Offset from the beginning of the file
vm_private Used for mmap operations
anon_vm Specifies the type of reverse mapping

used
Not in checkpoint
mm_struct Pointer to memory descriptor
vm_next Pointer to the next vm_area of the process
vm_rb Tree node used to find vm_area based on

virtual address
vm_ops Pointer to functions operating on

vm_area_struct
vm_set, prio_tree_node Used to implement reverse mapping
anon_vma_node, anon_vm Used to implement reverse mapping

Table I
ANALYSIS OF VM_AREA_STRUCT

Our approach raises several issues: 1) what state should

be saved, 2) the format in which it should be saved, 3) how

sharing relationships between threads and their resources are

expressed, and 4) how the code should be implemented. We

save information available to the user space through system

calls and via special file systems like /proc and /sysfs. We

also save network protocol state, including buffered data, to

ensure that a kernel update is transparent to network peers.

For example, we store port numbers, sequence numbers and

the contents of the retransmit queue for the TCP protocol.

The Linux kernel stores all process related information in

the task_struct data structure. This structure contains process

information such as the PID of the process, the parent and the

children of the process, scheduling parameters and accounting

information. The task structure contains pointers to other data

structures that describe the resources currently being used by

the process, such as memory management information, open

files, etc. Thus the state of a process can be checkpointed by

traversing the graph rooted at the task structure associated with

the process. Our checkpoint generally saves the fields in the

data structures that are visible to applications through system

calls. These fields also allow us to restore these data structures

during the restore process.

The checkpoint consists of a list of entries, representing

either a thread or a resource owned by the thread, such as

open files and sockets, with each resource using a unique

format. As an example, Table I shows all the fields in the

vm_area_struct structure in the kernel and the fields that are

saved in our checkpoint. This structure represents a region

of an application’s address space, and the fields saved in our

checkpoint are exposed to applications via the smaps file in

the /proc file system or when accessing memory. For example,

this information determines whether a memory access will

cause an exception or a memory mapped file to be read

from disk. The data in the checkpoint allows recreating the

virtual memory region correctly, while the rest of the fields

relate to the data structures used to implement the regions.

The implementation dependent fields are not visible to the

user, and thus not included in the checkpoint. We expect that

while these fields may change (and have changed) over time,

the checkpoint fields are unlikely to change significantly for

backward compatibility.

Since we are saving state visible at the system call API,

we save it in the same format. Internally, the kernel may store

this state in any implementation-dependent way, but it needs

to convert it when communicating with user applications. For

example, a file path is a string in user space, but the kernel

represents it by a sequence of dentry, qstr and mnt_point

structures. By using a string for a file, we expect that the

checkpoint will not depend on the kernel version, and we

can use existing kernel functions to convert to the correct

implementation-dependent kernel versions of the file-related

structures. For example, the Linux do_filp_open function con-

verts a path name to a file descriptor, and since it is the same

function used to implement the open system call, we expect it

to perform any implementation-dependent work required when

opening a file.

Beside a portable checkpoint format, the checkpoint code

must also be easy to port across different kernel versions

for our update system to be practical. Ideally, the checkpoint

mechanism would be implemented entirely in user space, re-

lying only on the stable system call API. Unfortunately, some

of the required functionality, such as page table information,

and resource sharing relationships are only available in the

kernel. Our code mostly uses functions exported to kernel

modules, which evolve slower than internal kernel functions.

We use the highest level functions available in the kernel

as possible for saving and restoring state. For example to

restore a pipe between two processes we call a high-level

function do_pipe_flags which performs all the implementation

dependent work needed to create a pipe. Afterwords, we use

another high-level function to assign the newly created pipe

to the two processes we are restoring. The high-level API

takes care of all the details involved with maintaining the

file descriptor tables of the two processes. More importantly,

updates to the implementation of these functions will not affect

our code. In essence, we take advantage of existing kernel

functionality to implement state-transfer functions for kernel

updates. We also do not rely on any virtualization or any

indirection mechanism [10], [11], which would itself need to

be maintained across kernel updates. Section IV-A analyzes

our checkpoint format and code in more detail.

III. IMPLEMENTATION

This section describes the implementation of our kernel

update system. We have added two system calls for execut-

ing the update process. They enable checkpointing specific

processes and their children, and restoring all checkpointed

processes. We have also added two debugging system calls

that 1) determine whether a checkpoint is available, and 2)

help distinguish between a process that was started normally

or was restored from a checkpoint. All these system calls are

intended to be used by scripts for managing the kernel update

process. We do not require changes to existing programs.

6

The checkpoint operation involves saving data structure

values and is relatively simple. When multiple processes

share a resource, e.g. a memory region, they keep pointers

to the same structure, e.g., a memory region descriptor. We

implement this sharing by saving each resource separately in

the checkpoint, and using pointers within the checkpoint to

indicate the sharing. Each resource is tracked in a Save hash

table. The key of this hash table is the memory address of

the resource, and the value is the memory address of the

corresponding entry in the checkpoint. When checkpointing

any resource, we check if its address exists in the Save hash

table, and if so, we use the value in the Save hash table to

create a pointer to the existing checkpoint entry.

The restore operation is more complicated because it re-

quires recreating custom processes from the checkpoint, sim-

ilar to bootstrapping the initial user process in a kernel. The

checkpoint information and the memory pages of all the pro-

cesses need to be preserved during the reboot process. When

the Linux kernel starts executing, it uses a bootstrap memory

manager to dynamically allocate memory that is needed during

the boot process before the memory management system

has been initialized. After the bootstrap memory manager is

initialized, we read the checkpoint and mark all the pages used

by the checkpoint and valid process pages as reserved so that

these pages cannot be immediately reused. After the restore

operation, the process pages are marked as allocated and can

be freed when a process terminates or as a result of paging.

During restore, we create a Restore hash table with keys

that are the values from the Save hash table (i.e., the addresses

of the checkpoint entry values). As each resource is restored,

its memory address is filled in as the value in the Restore

hash table. Looking up the Restore hash table as each resource

is created ensures that the resource sharing relationships are

setup correctly. The restore process runs with root privileges

and hence care must be exercised when restoring the state of

the OS resources. The kernel uses two types of credentials, one

set for processes and another for files. We set the the various

user and group IDs for each restored process thus ensuring

that the restored process runs with the correct credentials. The

restore process does not create files and hence we do not need

to set up or modify any file credentials.

Our primary aim is to support as many commonly used

server-side applications as possible. Our implementation cur-

rently checkpoints thread state, memory state, open files, net-

work sockets, pipes, Unix sockets, SYSV IPC and terminals.

It also checkpoints the state of typical server-side hardware

such as a frame buffer, mouse, and keyboard. We have tested

our system by updating the kernel while running several server

applications, as described in Section IV. Our system aims to

ensure that the client or the server will not notice the restart

of the other. For TCP connections, any delays are handled by

TCP retransmissions. For UDP connections, consider a restart

of a game server. The client may miss updates from the server

and get out-of-sync, but it will discard its local state after it

receives an update from the upgraded server. We essentially

take advantage of the typical fault tolerance mechanisms

employed by client-server applications for handling unreliable

connections or servers.

We have also tested our system for desktop machines by

using the simple Xfbdev X server, the Twm window manager

and several X programs. The mouse, keyboard, console and the

graphics work correctly after the update, without requiring any

application modifications or user intervention. Interestingly,

the mouse and keyboard were initially freezing after an update

if we kept moving the mouse or typing on the keyboard

while the update occurred. This problem was solved when our

quiescence algorithm was implemented correctly, showing its

importance for kernel updates.

Below, we describe the checkpoint and restore implementa-

tion for thread, memory and file state. Then, we discuss some

of the limitations of our current implementation. The other

resources, especially TCP sockets, present several challenges

for checkpointing, and are described in detail in an extended

version of this work [12].

A. Threads

After quiescence is reached, the update thread stores the

context switch data, in particular the register values and seg-

ment descriptor table entries for each thread, in the checkpoint.

To restore a thread, we spawn a kernel thread for each thread

stored in the checkpoint. Within the context of each spawned

thread, we invoke a function that is similar to the execve

system call. The execve system call replaces the state of the

calling process with a new process whose state is obtained by

reading an executable file from disk. Our function converts the

kernel thread into a user thread by loading the state from the

checkpoint in memory. We restore the saved register values

and segment descriptors for the thread so that the updated

kernel’s context switch code can use these values to resume

thread execution.

We restore the saved task_struct fields and reestablish the

parent-child process hierarchy by changing the parent and

real_parent pointers so that they point to their restored parents.

We also make sure that all restored children are added to the

list of children associated with their parent, and for multi-

threaded processes we add threads to their thread group lists.

After this setup, the kernel starts identifying the spawned

kernel thread as a regular user process.

B. Address Space

An address space consists of a set of memory mapping

regions and the page tables associated with one or more

threads. Each memory mapping region describes a region of

virtual addresses and stores information about the mapping

such as protection bits and the backing store. The page table

stores the mapping from virtual pages to physical pages.

Currently, our implementation supports the x86 architecture,

in which the page table structure is specified by the hardware

and thus will not change across kernel versions.

Linux manages memory mapping regions using a top-level

memory descriptor data structure (mm_struct) and one or more

memory region descriptors (vm_area_struct). We store various

fields associated with these data structures, including the start

and end addresses of each memory region, protection flags,

whether or not the region is anonymous, and the backing

7

store, as shown in Figure I. For memory mapped files, we

store the file name and the offset of the file for the virtual

memory region. We restore these data structures by using

the same functions that the kernel uses for allocating them

during the execve (mm_struct), mmap (vm_area_struct) and

mprotect system calls. These functions allow us to handle both

anonymous regions and memory-mapped files. For example,

we restore a memory-mapped file region by reopening the

backing file and mapping it to the address associated with the

region. The memory region structures can be shared and we

handle any such sharing as described earlier.
The x86 architecture uses multi-level pages tables, and the

top-level page table is called the page table directory. This

page table format will not change across kernel versions and so

we do not copy page tables or user pages during the checkpoint

and restore. As a result, a process accesses the same page

tables and physical pages before and after the kernel update.

However, one complication with restoring page tables is that

the Linux kernel executes in the address space context of the

current user thread, and it is mapped at the top of the virtual

address space of all processes. The corresponding page table

entries for each process need to be updated after the kernel

update. These page table entries are located in the page table

directory. The function that creates the memory descriptor data

structure (mm_struct) also initializes the page table directory

with the appropriate kernel page table entries. We initialize

the rest of this new page table directory from its pre-reboot

version and then discard the pre-reboot version. At this point,

we notify the memory manager to switch all process pages

from being reserved to allocated to the new process.

C. Files
The Linux kernel uses three main data structures to track

the files being used by a process. The top-level fs_struct

structure keeps track of the current working directory and

the root directory of a process, which can be changed with

the chroot system call. The file descriptor table contains the

list of allocated file descriptors and the corresponding open

files. Finally, the file descriptor structure stores information

about each open file. All three structures can be independently

shared between several processes. For example, two processes

might share the same working directory, may have different

file descriptor tables, and yet share one or more opened files.
For each process, we store its root and current working

directory, list of open file descriptors, and information about

open files. Linux stores the current root and current working

directory of a process as dentry structures. In the checkpoint,

we store them as full path names. For files, we store its full

path, inode number, current file position, access flags, and file

type. Each file structure has a pointer to a dentry structure,

which stores the file name. Each dentry structure has a pointer

to another dentry which stores the name of the parent directory.

The full path of each file is obtained by traversing this linked

list of dentry structures. For non-regular files (e.g., sockets,

terminals), we store additional data needed to restore them

(not discussed further).
When restoring each process, we call chroot to restore the

current root and chdir to restore the current working directory.

Restoring open files requires calling functions that together

implement the open and dup system calls. We do not use

these system calls directly because our code has to be flexible

enough to handle restoring shared data structures. For example,

when the entire file descriptor table is shared between threads

(or processes), once the table is setup for a thread, files do

not need to be opened or duped in the second thread. To

restore an open file, we first call a function that creates a

file descriptor structure. Then we open the file using the flags,

such as read/write, non-blocking I/O, etc., that were saved in

the checkpoint. Next, we use the lseek system call to set the

current file position. Then we dup the file descriptor so that it

uses the correct descriptor number, and finally, we install this

descriptor in the file descriptor table.

We handle temporary (or orphan) files by adding a tempo-

rary link to them during checkpointing and unlinking them

after the restore. We ensure that all dirty file system buffers

are committed to disk by calling the file-system wide sync

operation as part of deferred kernel processing. As a result,

we do not need to save and restore the contents of the file-

system buffer cache.

D. Limitations

Our current implementation has several limitations that

would need to addressed by a full implementation. Currently,

we preallocate a fixed size of physically contiguous mem-

ory (default 100MB) for the checkpoint which limits the

checkpoint size. Allocating discontiguous physical memory on

demand would solve this problem, but we did not encounter

any issue in practice because application checkpoints take only

a small amount of memory, as shown in Section IV-C2. We

have added support for a wide variety of kernel features to

enable supporting many types of commonly used applications.

Some of the feature that we do not implement currently include

the EPOLL system call, pseudo terminals, message queues,

Unix datagram sockets and the ability to pass file descriptors.

The current implementation does not save and restore system

or administrative applications like cron, udevd or getty and

so these programs are shutdown and restarted normally on a

kernel update. However, these programs do not have much

state, and also do not require human intervention on restart.

As more features are added to the implementation, these

applications could be checkpointed as well. A process that is

sleeping uninterruptibly may sleep indefinitely due to a kernel

bug, which would stall quiescence. Such processes should be

detected and not restored.

The most significant limitation of our current implemen-

tation is that it reinitializes devices on an update. Simply

suspending and resuming a device does not work because the

driver code may have been updated. Our approach works for

simple devices such as network cards, disks, frame buffer,

keyboard and mouse that can be quiesced or checkpointed

easily. However, devices with significant state such as acceler-

ated graphics devices will require support for updating drivers

without reinitializing devices using techniques such as device

driver recovery [6] and device virtualization [13], [7].

8

Data Nr of Nr of saved
structure fields fields
vm_area_struct 16 7
mm_struct 51 5
task_struct 135 32
fs_struct 5 3
files_struct 7 1
file 18 10
sock 53 10
tcp_sock 76 48
unix_sock 13 10
pipe_inode_info 13 4
vc_data 82 12
fb_info 23 6
mousedev 18 7

Table II
KERNEL STRUCTURES AND CHECKPOINT FORMAT

IV. EVALUATION

We evaluate our system by analyzing our checkpointing

format and code in terms of its suitability for supporting kernel

updates. Then, we describe our experience with updating

major releases of the kernel. Finally, we present performance

numbers in terms of kernel update times and overhead.

A. Code Analysis

Table II provides a summary of our checkpoint format.

There are a total of 13 data structures that are saved in the

checkpoint. The table shows the number of fields in each data

structure and the number of fields that we save from each

data structure in the checkpoint. The saved fields include both

primitive types or pointers to buffers that need to be saved.

The rest of the fields are mostly implementation dependent

and do not need to be saved.

The code consists of roughly 6,000 lines of code, as shown

in Table III. Roughly 90% of the code resides in a separate

kernel module, while the rest of the code is spread across

various sub-systems. We separate kernel functions into four

categories, based on how unlikely they are to be changed over

time: system calls, exported functions, global functions and

private functions. System calls are available to user appli-

cations and cannot be changed without breaking backwards

compatibility and are thus the most stable. Exported functions

are available to loadable modules and usually only have minor

changes between kernel versions. Global and private functions

are expected to change more frequently. Our checkpoint saving

code uses 20 functions and all of them are exported. The

restore code uses 131 functions, of which 5 are system calls,

93 are exported, 2 are global, and 31 are private.

We needed to use private functions for two purposes: 1)

managing resource identifiers, and 2) performing low-level

process creation and initialization. The kernel provides user

threads with identifiers for kernel managed resources such as

PID, file descriptors, port numbers, etc. When a process is

restored, we must ensure that the same resources correspond

to the same unique identifiers. However, since these identifiers

are never modified, the kernel does not provide any exported

or high-level functions to manipulate them. We believe that our

solution is better suited for kernel updates because it doesn’t

impose any overhead for virtualizing identifiers during normal

operation [10]. We also used private functions during process

Subsystem Lines of code
Checkpoint module 5257
Architecture specific 81
Memory management 70
File system 23
Process management 10
Networking 428
Total 5869

Table III
NEW OR MODIFIED LINES OF CODE

creation. The restore code is similar in functionality to the

implementation of the execve system call that executes a file

from disk. In our case, we create a process from the in-memory

checkpoint data. The modifications needed were similar to the

effort required to add support for a new executable format.

We had to modify some architecture-specific code to reserve

memory during kernel boot. We also made some changes to

memory management code to assign reserved memory to the

restored processes. We also needed to make some changes

to the Ext3 file system to prevent orphan file clean up on

boot so that temporary files are not deleted. All changes to

the networking code relate to adding progress tracking (See

Section II-B) for reads and writes on TCP sockets, or changes

needed to support TCP timestamps. Some of the changes do

not alter the functionality of the kernel but were needed to

provide access to previously private functions.

B. Experience with Updating Kernels

In this section, we describe the effort needed to use our

system for performing kernel updates. We implemented our

system starting with the Linux kernel version 2.6.28, released

in December 2008, and have tested updating it, one major

revision at a time, until version 2.6.34, released in May 2010

(roughly one and a half years of kernel updates). To ensure

that our checkpoint-restart system works correctly, we have

implemented a set of unit tests, where each test consists of

a program that stresses a particular feature of the kernel. We

verify that all the tests work correctly before and after an

upgrade. After the units tests pass, we run several applications

manually to ensure that they work correctly, and then more

comprehensive benchmarks, as described in Section IV-C.

Table IV shows that on average, each revision consists of

1.4 million lines of added or modified code. There were six

million lines of changed code over the six revisions in 23,000

files, including many data structure modifications. We updated

our code from one version to the next using a typical porting

procedure: 1) extract all our code from the kernel and keep

it in a separate git branch, 2) merge our code into the next

major kernel release using git merge functionality, 3) compile

the kernel and fix any errors, 4) run an automated test suite that

checks that all the features we have implemented are working

correctly when updating between the kernel versions, and 5)

commit the changes to our code so they can be used when

moving to the next major release.

Table IV shows the number of lines that had to be changed

manually for each kernel release. These changes are small,

both compared to the number of lines changed in the major

release, as well as the number of lines in the checkpoint code.

9

Kernel Lines of change Lines of change
version in major release for checkpoint
2.6.29 1729913 42
2.6.30 1476895 16
2.6.31 1393049 7
2.6.32 1628415 5
2.6.33 1317386 50
2.6.34 882158 2

Table IV
SUMMARY OF UPDATES NEEDED FOR CHECKPOINT CODE

The majority of the changes were simple and were caught

either during merge or during compilation. For example,

several merge conflicts occurred when our code made a private

function globally accessible, and some other nearby code was

changed in the kernel update. Similarly, compilation errors

occurred due to renaming. For example, we needed to use

the TCP maximum segment size variable, and it was renamed

from xmit_size_goal to xmit_size_goal_segs. These fixes are

easy to make because they are caught by the compiler and do

not the affect the behavior of the kernel or our code.

More complicated changes involved renaming functions and

changing the function interface by adding arguments. In this

case, we have to find out the new function name, and how

to pass the new arguments to the function. For example,

version 2.6.33 introduced a significant change to the interface

used by the kernel to create and modify files and sockets.

These changes were designed to allow calling file system and

socket system calls cleanly from within the kernel. As a result,

some internal functions used by our system were changed or

removed, and our code needed to use the new file interface.

Our code needed to handle one significant data structure

update conflict. Previously, the thread credentials, such as

user_id and group_id, were stored in the thread’s task_struct.

In version 2.6.29, these credentials were moved into a separate

structure, with the task_struct maintaining a pointer to this

structure. We needed to change our system, similar to the rest

of the kernel code, to correctly save and restore credentials.

Two other data structure that we save, as shown in Table II,

were updated, but they required us to simply pass an additional

parameter to a function.

Finally, the most difficult changes were functional bugs, that

were not caused by changes to data structures or interfaces. We

found these bugs when running applications. We encountered

two such issues with TCP code. Previously, a function called

tcp_current_mss was used to calculate and update the TCP

maximum segment size. In 2.6.31, this function was changed

so that it only did a part of this calculation, and another func-

tion called tcp_send_mss was introduced that implemented

the original tcp_current_mss behavior. Similarly, in 2.6.32, the

TCP code added some conditions for setting the urgent flags in

the TCP header, which indicates that out-of-band data is being

sent. Our code was setting the urgent pointer to the value of 0,

which in the new code set the urgent flag, thus corrupting TCP

streams on restore. We needed to set the urgent flags based on

the new conditions in the kernel.

All these ports were done by us within a day to a few

days. We expect that kernel programmers would have found

it much simpler to fix our code when updating their code.

An interesting observation is that during porting, we did not

have to change the format of the checkpoint for any of the

kernel versions. As a consequence, it is possible to freely

switch between any of these kernel versions in any order.

For example, it is possible to upgrade to version 2.6.33 from

version 2.6.28, and then go back to version 2.6.30 seamlessly.

Our implementation allows updating kernels multiple times

without additional overhead because we can reuse the same

region of memory multiple times. We expect that develop-

ers will ensure checkpoint compatibility between consecutive

major kernel releases, and believe that the effort to do further

upgrades would be similar to the effort that we have described.

C. Performance

We conducted two types of experiments. First, we measured

the throughput of server applications before and after the

update. These experiments also show the downtime during

an update. We used the Collectl system monitoring tool to

measure throughput at the network interface level (sampled at

one second interval). Second, we performed microbenchmarks

to measure the per-process checkpoint size and time. All of our

experiments run on the same machine with two Intel Xeon 3

GHz processors and 2GB of RAM, running Ubuntu 8.04 with

our kernel that had support for updating the kernel.

1) Application Benchmarks: We tested several UDP (Quake

game server, Murmer/Mumble voice-over-IP server) and

TCP (MySQL, Memcached and Apache) server applications.

Apache and Memcached used the EPOLL system call that our

system does not support currently. Apache was compiled with

EPOLL disabled and Memcached allows disabling EPOLL

with environment variables. All these applications run after

the update, without interrupting any requests in progress, and

without requiring any other modifications. The Murmer and

the Apache results are not shown because they were similar

to the Quake and MySQL results.

a) Quake: We updated the kernel on the machine running

the MVDSV 0.27 open source Quake server, while it was

serving 8 ezQuake clients. The Quake server does not preserve

its state across a reboot, and so the game needs to be restarted

from the beginning. With our system, the clients resume after

a short pause exactly where they were in the game before the

update. For example, if a player was jumping when the update

starts, the jump continues after the update.

The ezQuake client was modified to make it easier to

compare reboot with seamless update. The unmodified client

shuts down the current session and goes to the menu screen

if the client stops receiving messages from the server for 60

seconds. With seamless update, this timeout is not an issue,

but with a full reboot, the client would simply go back to

the menu screen and then a user would have to manually

reconnect to the server. To automate recovery for the reboot

case, we modified the client so that it automatically attempts

to reconnect to the server when no messages are received for

15 seconds. This change allows the client to reconnect to the

rebooted server much faster and without any user interaction,

making it easier to compare the systems. We chose the 15

second timeout because this time is much shorter than the

time it takes for the server to reboot, and longer than the time

10

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (K

B
/s

)

Time (s)

KB/s received
KB/s sent

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (K

B
/s

)

Time (s)

KB/s received
KB/s sent

Figure 2. Quake reboot vs. update

it takes to update the kernel with our system. As a result, the

client will reconnect as soon as the server is running again

after the reboot, but it will not attempt to reconnect while the

update is in progress.3 Note that the game state is lost after

reboot, but not with seamless updates.

Figure 2 shows the network throughput with reboot versus

update. With reboot, the clients timeout after 15 seconds and

then attempts to reconnect every 5 seconds as shown by the

ticks at the bottom on the “sent” line. The server is down for

roughly 90 seconds. With update, the server is operational in

roughly 10 seconds, and all the clients resume normally.
b) MySQL: We used the sysbench OLTP benchmark to

test the performance of MySQL server. This test involves

starting transactions on the server and performing select and

update queries in a transaction. The sysbench benchmark has

no support for handling server failure. It returns an error when

the MySQL server machine is rebooted and so we could not

complete this test with a reboot. With our system, the kernel

update time is roughly 10 seconds, similar to the Quake results

shown in Figure 2. The output of the server drops to zero

while the update is being performed, but the connection to the

client is not dropped. Once the update is finished and the new

kernel is started, MySQL continues to operate normally and

the test runs to completion. There is no observable change in

TCP throughput before and after the update, as observed at

the sysbench client, and hence we do not show the MySQL

throughput graph. No changes were required to MySQL or

sysbench for this test.
c) Memcached: Memcached is a popular in-memory

key-value caching system intended to speed up dynamic web

3We have not described our TCP checkpointing operation, but we do handle
reconnection attempts during the update by simply dropping TCP packets,
rather than sending TCP reset packets which would close the connection.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140 160 180 200

R
eq

ue
st

s p
er

 se
co

nd

Time(s)

Time of restart/update

Before reboot with 0ms delay
After update with 0ms delay
After reboot with 0ms delay

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

R
eq

ue
st

s p
er

 se
co

nd

Time(s)

Time of restart/update

Before reboot with 12ms delay
After update with 12ms delay
After reboot with 12ms delay

Figure 3. Memcached results with 0 ms and 12 ms database access times

applications. For example, it can be used to cache the results of

database calls or page rendering. An application can typically

survive a memcached server being shutdown, because it can

recalculate the results from scratch and start using the cache

when it becomes available again. However, cache contents are

lost on a reboot, while our system preserves the cache and so

the application can use its contents right after the update.

In this test, we compare the performance impact of the

Memcached cache being lost after a reboot versus being

preserved in our system. We generated 200,000 key-value

pairs, consisting of 100 byte keys and 400 byte values. Then,

we used a Pareto distribution to send requests to prime the

cache, so that 20% of the keys from the 200,000 key-pairs

make up 80% of all the requests. Then we simulate a web

application that uses Memcached for caching the results of

database queries. This application makes key lookup requests

to the Memcached server. For each key, the application first

makes a get request from the cache. If the key is found, it

makes the next get request. If it is not found, then it waits for

a short time (delay) to simulate calculating a result, and then

issues a set request to store the result in the server, before

making the next get request.

We use 12 ms for the delay value for a database access,

which is the average time per transaction in our previous

sysbench OLTP test. We also use 0 ms for the delay value

to represent the best case, in which there is no cost for

calculating a result. However, when a cache miss occurs, this

instantaneous result still needs to be sent to the Memcached

server, thus requiring a get and a set request.

In the first part of the experiment, we prime Memcached

by sending it requests, and then in the second part we send a

second set of request after doing a clean reboot or an update

11

Application Quiescence Save state Restore state Checkpoint
time time time size

Quake 334 ms 99 ms 23 ms 135 KB
MySQL 338 ms 332 ms 75 ms 463 KB
Memcached 330 ms 6.4 ms 38 ms 112.3 KB

Table V
PER-APPLICATION CHECKPOINT TIME AND SIZE

Stage Time
Initialize kernel 4.5 ± 0.3 s
Initialize services 6.9 ± 0.3 s

Table VI
KERNEL RESTART TIME

and compare performance in requests per second. The results

of the experiment with 0 ms delay and 12 ms delay are

shown in Figure 3. In the 0 ms case, we primed Memcached

with 100,000 requests and then issued another set of 100,000

requests. In the 12 ms case, we primed Memcached with

500,000 requests and then made another 500,000 requests. The

time where the Memcached server was rebooted or updated is

shown with an arrow in both graphs.

The graphs show that after a reboot the number of requests

per second declines because the contents of the cache are lost,

and each miss adds extra overhead by restoring the lost cached

value. In contrast when using our system the contents of the

cache are preserved, which results in a smaller number of

misses and the request rate stays at the same level as before the

update. Performing a regular reboot loses the benefits of using

in-memory caching until the contents of the cache are restored,

while our approach preserves the performance benefit.

2) Microbenchmarks: Table V breaks down the time to

reach quiescence, save the process state and restore the process

state for the three applications described above. Quiescence

time is measured from the time when we start the checkpoint

process until we are ready to take the checkpoint (i.e., the last

step in Section II-A) and includes the time to shutdown all

the devices. The save state time is the time it takes to copy

the kernel state into the checkpoint. The time to initialize the

kernel is measured from when the new kernel’s code starts

executing to when the kernel starts the init process. The time

to initialize services is measured from when the init process

starts to when the saved processes begin to be restored, and

the restore time is the time it takes for the saved applications

to be restored and start running. The kernel quiescence time is

roughly 330 milliseconds for each of these experiments. The

checkpoint save time ranges from 6-350 ms, but as discussed

below, we expect that this time can be reduced significantly

with some simple optimizations. The checkpoint restore time

has a smaller range from 25-55 ms. All these times are much

lower than the time it takes to initialize the new kernel and

the system services, as shown in Table VI. The last column

of Table V shows the checkpoint size for each application,

excluding the memory pages of the application.

We also conducted a microbenchmark to measure the check-

point and restore time with increasing number of allocated

frames in the system. The benchmark is run with 1, 2, 4, 8

and 16 processes. Each process in this benchmark allocates 16

MB of private memory using the mmap system call and writes

to this memory to ensure that the kernel assigns page frames

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

Ti
m

e
(s

)

Number of processes

Time to save state

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18

Ti
m

e
(m

s)

Number of processes

Time to restore state
Best Fit line

Figure 4. Mmap checkpoint-restore time

to the process. Figure 4 shows the checkpoint save and restore

time with increasing number of processes. The save time is

roughly one second per process in this benchmark with 16

processes and it grows with increasing number of processes

because our implementation for saving state is not optimized.

In particular, the code uses a linked list to detect shared pages.

With 16 processes, and 16 MB of memory per process, there

are 64K (216) pages in the linked list, making the search very

slow (~232 operations). These lookups can be sped up with

a hash table or by using the reverse mapping information

available in the memory manager to detect shared pages.

The restore time per process is roughly one ms per 16MB

process because we take advantage of the kernel memory

manager to ensure that shared pages are assigned to each

process correctly. Note that this time accounts for restoring

the address space and is much smaller than the restore time

for the benchmark applications (25-65 ms) which also need to

restore other resources such as network buffers.

V. RELATED WORK

The Autopod system [10], [11] is closest to this work. It

uses a checkpoint-restart mechanism, with a high-level check-

point format, for migrating processes across machines running

different kernel versions. Autopod uses a virtualization layer to

decouple processes from their dependencies on the underlying

operating system. Virtualization introduces performance over-

heads, and the virtualization layer itself needs to be maintained

to keep up with kernel changes. This layer is not needed in

our system because it is designed purely for kernel updates.

The Autopod work suggests that applications are exposed to

interrupted system calls, which makes applications susceptible

to EINTR errors. By migrating state across machines that are

12

already running operating systems, Autopod also does not

seem to address quiescence issues such as caused by non-

interruptible system calls, interrupts and quiescence of kernel

threads. Compared to Autopod, we evaluate our system across

major kernel updates and provide a detailed analysis of our

checkpoint code and format, and all the code changes required

for supporting kernel updates. Building on Autopod, Linux-

CR [14] aims to add a general-purpose checkpoint-restart

mechanism for applications to the Linux kernel, but it is also

designed for migrating applications across machines.
Otherworld [15] is designed to recover from kernel failures

by transferring the state of existing applications from the

failed kernel to a secondary kernel. The design of Otherworld

has inspired this work, but our aim is to ensure that kernel

updates are performed reliably. Otherworld uses a best-effort

resurrection process, because it does not have the liberty to

achieve quiescence and does cannot restart system calls reli-

ably. Also, we do not require any modifications to applications

and evaluate the feasibility of the approach for kernel updates.
Several researchers have proposed dynamic patching at

function granularity for applying kernel updates [1], [2].

None of these systems would work reliably when updating

kernels across major versions because they require writing

state-transfer functions for every updated data structure. Cu-

riOS [16] recovers a failed service transparently in a mi-

crokernel OS by isolating and checkpointing the client state

associated with the service. Virtual machines can be used to

speed up reboot by running the existing and the updated kernel

together [17]. Primary-backup schemes can be used for rolling

kernel upgrades in high availability environments, but they

require application-specific support [18].

VI. CONCLUSIONS

We have designed a reliable and practical kernel update

system that checkpoints application-visible state, updates the

kernel, and restores the application state. We have argued that

this approach requires minimal programmer effort, no changes

to applications, and can handle all backward compatible

patches. Our system can transparently checkpoint the state

of network connections, common hardware devices and user

applications. It can achieve quiescence for any kernel update,

and it restarts all system calls transparently to applications.

We also performed a detailed analysis of the effort needed

to support updates across major kernel releases, representing

more than a year and a half of changes to the kernel. Our

system required a small number changes to existing kernel

code, and minimal effort to handle major kernel updates,

consisting of millions of lines of code. Finally, we evaluated

our implementation and showed that it works seamlessly for

several, large applications, with no perceivable performance

overhead, and reduces reboot times significantly.
Currently, our implementation resides entirely in the kernel

and uses two monolithic system calls for saving and restor-

ing checkpoint state. A more modular implementation would

provide separate system calls for retrieving and restoring the

checkpoint state for each kernel resource, allowing user-level

code to implement the checkpoint algorithm more portably

across kernel versions.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviews for their

detailed feedback on the paper. We thanks William Ho, Colin

Fung, David Carney, Eric Wright and Wael Louis for con-

tributing to the code developed in this project. We also thank

Michael Stumm and Angela Demke Brown and several other

members of the SSRG group at University of Toronto for their

feedback on initial versions of the paper. This research was

supported by NSERC through the Discovery Grants program.

REFERENCES

[1] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew, “Live updating op-
erating systems using virtualization,” in Proceedings of the International
Conference on Virtual Execution Environments, 2006, pp. 35–44.

[2] J. Arnold and M. F. Kaashoek, “Ksplice: automatic rebootless kernel
updates,” in Proceedings of the ACM SIGOPS European Conference on
Computer Systems (Eurosys), 2009, pp. 187–198.

[3] C. A. N. Soules, J. Appavoo, K. Hui, R. W. Wisniewski, D. D. Silva,
G. R. Ganger, O. Krieger, M. Stumm, M. Auslander, M. Ostrowski,
B. Rosenburg, and J. Xenidis, “System support for online reconfigura-
tion,” in Proceedings of the USENIX Technical Conference, 2003, pp.
141–154.

[4] A. Baumann, J. Appavoo, R. W. Wisniewski, D. D. Silva, O. Krieger,
and G. Heiser, “Reboots are for hardware: challenges and solutions to
updating an operating system on the fly,” in Proceedings of the USENIX
Technical Conference, 2007, pp. 1–14.

[5] G. Kroah-Hartman, J. Corbet, and A. McPherson, “Linux kernel de-
velopment: How fast it is going, who is doing it, what they are
doing, and who is sponsoring it,” Linux Foundation, Dec. 2010,
www.linuxfoundation.org/publications/whowriteslinux.pdf.

[6] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy, “Recov-
ering device drivers,” in Proceedings of the Operating Systems Design
and Implementation (OSDI), 2004.

[7] M. M. Swift, D. Martin-Guillerez, M. Annamalai, B. N. Bershad, and
H. M. Levy, “Live update for device drivers,” University of Wisconsin,
Computer Sciences Technical Report CS-TR-2008-1634, Mar. 2008.

[8] F. L. V. Cao, “Reinitialization of devices after a soft-reboot,” Usenix
Linux Storage & Filesystem Workshop, Feb. 2007.

[9] D. Zagorodnov, K. Marzullo, L. Alvisi, and T. C. Bressoud, “Engineer-
ing fault-tolerant tcp/ip servers using ft-tcp,” in Proceedings of the IEEE
Dependable Systems and Networks (DSN), 2003.

[10] S. Potter and J. Nieh, “Reducing downtime due to system maintenance
and upgrades,” in Proceedings of the USENIX Large Installation Systems
Administration Conference, 2005, pp. 47–62.

[11] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and im-
plementation of zap: a system for migrating computing environments,”
in Proceedings of the Operating Systems Design and Implementation
(OSDI), Dec. 2002, pp. 361–376.

[12] M. Siniavine, “Seemless kernel updates,” Master’s thesis, University of
Toronto, Nov. 2012, http://hdl.handle.net/1807/33532.

[13] A. H. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. de Lara,
“Vmm-independent graphics acceleration,” in Proceedings of the In-
ternational Conference on Virtual Execution Environments, 2007, pp.
33–43.

[14] O. Laadan and S. E. Hallyn, “Linux-CR: Transparent application
checkpoint-restart in linux,” in Proceedings of the Linux Symposium,
2010.

[15] A. Depoutovitch and M. Stumm, “Otherworld: giving applications a
chance to survive os kernel crashes,” in Proceedings of the ACM SIGOPS
European Conference on Computer Systems (Eurosys), 2010, pp. 181–
194.

[16] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell, “Curios:
improving reliability through operating system structure,” in Proceedings
of the Operating Systems Design and Implementation (OSDI), 2008, pp.
59–72.

[17] D. E. Lowell, Y. Saito, and E. J. Samberg, “Devirtualizable virtual
machines enabling general, single-node, online maintenance,” in Pro-
ceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2004, pp.
211–223.

[18] “Oracle database high availability features and products,”
http://docs.oracle.com/cd/B28359_01/server.111/b28281/hafeatures.htm.

