
Achieving Predictable Timing and Fairness through
Cooperative Polling

Anirban Sinha (student), Charles Krasic
Department of Computer Science

University of British Columbia, Canada

{anirbans, krasic}@cs.ubc.ca

Ashvin Goel
Department of Electrical and Computer

Engineering
University of Toronto, Canada

ashvin@eecg.toronto.edu

Time-sensitive applications that are also CPU intensive
are increasingly being used in commodity environments. Ex-
amples of such applications include video games, graphical
simulations, video playback, and some recent visually-heavy
graphical desktops. These applications run on commodity
operating systems that are targeted at diverse hardware,
and hence they cannot assume that sufficient CPU is always
available. Increasingly, these applications are designed to
be adaptive. For example, they may adapt visual fidelity
according to the diverse capabilities and usage patterns of
users’ existing and future computers. When executing mul-
tiple such applications, the operating system must not only
provide good timeliness but also allow co-ordinating their
adaptations so that applications do not interfere with each
other (e.g., their fidelity is stable).

In this work, we aim to meet three important require-
ments for supporting adaptive time-sensitive applications in
a general-purpose OS: a) good timeliness: tasks must re-
ceive predictable and low latency execution, b) fairness: long
term throughput of all tasks (or fidelity of the time-sensitive
tasks) should be assured, avoiding starvation, and c) full uti-
lization: unnecessary idle periods should be avoided (work
conservation). We meet these requirements by combining
an event-driven application model called cooperative polling
with a fair-share scheduler. Cooperative polling allows shar-
ing timing or priority information across applications via
the kernel thus providing good timeliness, and the fair-share
scheduler provides fairness and full utilization. We describe
these components below.

Cooperative polling uses a new system call called
coop poll that time-sensitive applications use to share event
information such as deadlines and priorities with the kernel.
Across applications, intra-application event dispatchers use
this shared information to determine appropriate times to
yield, and optionally to achieve co-ordinated quality adap-
tations. By yielding in an informed fashion, applications
minimize involuntary preemption thus achieving more pre-
dictable timing. Our kernel scheduler uses the information
available from coop poll to provide better responsiveness
to applications that use coop poll, hence providing an in-
centive for such cooperation. Besides rewarding coopera-
tion among time-sensitive tasks, our model which combines
fair-share scheduling, enables two other significant contri-
butions: a) we use preemptive scheduling to prevent the
possibility of coop poll being abused (either intentionally
or otherwise) to gain unfair advantage, and b) unlike ex-
isting approaches that have attempted to integrate conven-
tional real-time scheduling algorithms into general-purpose

operating systems with limited success, our approach allows
time-sensitive and best-effort tasks to co-exist in a tightly
unified framework.

While there is a large body of work in this area, our
work is closest to the borrowed virtual time (BVT) schedul-
ing algorithm [1] and the SMART scheduler [2]. Unlike
SMART, deadlines in our scheduler represent times at which
an application needs to run, as opposed to times by which
units of work need to be completed. Also like BVT and un-
like SMART, fair sharing in our algorithm is based simply
on earliest virtual time, as opposed to adapting a priority-
based real-time scheduler. On the other hand, unlike BVT,
our algorithm uses application specific event deadlines for
low latency dispatch and for scheduling realtime process as
opposed to the warp value.

We have implemented cooperative polling in the Linux
kernel. Our scheduler employs and benefits from several rel-
atively recent infrastructural components in the Linux ker-
nel, such as fine-grained kernel preemption, high-resolution
process accounting, and high resolution kernel timers. We
have performed experiments to evaluate our prototype. In
our evaluation, we use a quality-adaptive video playback
application to demonstrate how complex adaptation poli-
cies may be realized. We have also performed compar-
isons that show the performance and timing benefits of co-
operative polling. Our experiments show that cooperative
polling leverages the inherent efficiency advantages of vol-
untary context switching versus involuntary preemption. In
CPU saturated conditions, we show that the scheduling re-
sponsiveness of cooperative polling is five times better than
a well-tuned fair-share scheduler, and orders of magnitude
better than the best-effort scheduler used in the mainstream
Linux kernel. We plan to release all the code of our system
as Open Source and demonstrate it at SOSP if our poster is
accepted.

REFERENCES
[1] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time

(BVT) scheduling: supporting latency-sensitive threads
in a general-purpose scheduler. In Proceedings of the
seventeenth ACM symposium on Operating systems
principles, pages 261–276, 1999.

[2] J. Nieh and M. S. Lam. The design, implementation
and evaluation of SMART: a scheduler for multimedia
applications. In Proceedings of the sixteenth ACM
symposium on Operating systems principles, pages
184–197, 1997.


