
View Consistency for Optimistic Replication�

Ashvin Goel Calton Pu Gerald J. Popeky

Department of Computer Science and Engineering Computer Science Department
Oregon Graduate Institute, Portland University of California, Los Angeles

Abstract

Optimistically replicated systems provide highly avail-
able data even when communication between data replicas
is unreliable or unavailable. The high availability comes at
the cost of allowing inconsistent accesses, since users can
read and write old copies of data. Session guarantees [12]
have been used to reduce such inconsistencies. They pre-
serve most of the availability benefits of optimistic systems.
We generalize session guarantees to apply to persistent as
well as distributed entities. We implement these guarantees,
called view consistency, on Ficus an optimistically repli-
cated file system. Our implementation enforces consistency
on a per-file basis and does not require changes to indi-
vidual applications. View consistency is enforced by clients
accessing the data and thus requires minimal changes to the
replicated data servers. We show that view consistency al-
lows access to available and high performing data replicas
and can be implemented efficiently. Experimental results
show that the consistency overhead for clients ranges from
1% to 8% of application runtime for the benchmarks stud-
ied in the prototype system. The benefits of the system are
an improvement in access times due to better replica se-
lection and improved consistency guarantees over a purely
optimistic system.

1. Introduction

Optimistically replicated systems providehighly avail-
abledata by allowing accesses to any file replica. This con-
tinuous access, even during network partitions, is critical for
many applications such as reservation systems, appointment
calendars, design documents, meeting notes, and in general,
mobile file accesses [6, 13]. Unfortunately, this high avail-
ability can causedata inconsistency. For example, if replica
A has been updated and the update has not reached replica
B, then accesses to replica B are inconsistent. This lack of
consistency guaranteesduringaccesses can be very confus-
ing to users.

�This work was sponsored by DARPA under contract number F29601-
87-C-0072.

yG. Popek is also Chief Technical Officer at PLATINUMtechnology,
Inc., Inglewood, CA 90301.

Session guarantees [12] have been used to reduce in-
consistencies observed in optimistic systems. They pre-
serve read and write dependencies for individual processes.
Thus an application session is presented with a view of
the database that is consistent with its own actions, even
if it reads and writes from various, potentially inconsistent
servers.

In this paper, we propose theview-consistencymodel
that enhances session guarantees to apply to persistent as
well as distributed sets of clients. This model provides
“session guarantees” for a larger set of applications. View
consistency provides conservative guarantees to eachsingle
client or eachgroup of closely-related1 clients, while “dis-
tant” clients eventually (at some bounded time in the future)
observe mutually consistent data.

The view-consistency model attempts to capture a real-
world working environment in which a single client or
closely cooperating clients would like to access mutually
consistent data all times, but distant clients wish to synchro-
nize with each other occasionally. Consider two groups of
researchers working in two different countries on the same
system. Each group is building new functionality for the
system. Suppose the system code is optimistically repli-
cated in the two countries. Within each group, view con-
sistency maintains consistent accesses. However, the two
groups are not synchronized with each other. The underly-
ing optimistic system will eventually make the two groups
consistent. The advantages of the view-consistency model
are two-fold: closely cooperating clients observe mutually
consistent data, and distant clients do not pay the instan-
taneous cost of maintaining consistency (during accesses).
Therefore view consistency enables useful collaboration in
many large scale environments.

The contributions of this paper are the following: first,
we introduce the concept of a generalized client, called an
entity, and provide session guarantees for an entity. Entities
can be persistent as well as distributed. Defining a consis-
tency model for entities rather than for sessions allows us
to provide guarantees to a larger set of applications. Sec-
ond, we show thatreplica selection(providing data from
highly performing replicas) can be implemented with low
overhead in a view-consistent system, and appropriate se-

1We define the notion of “closely-related” in the next section.



lection improves system performance significantly. View
consistency requires minimal changes to data servers since
consistency is enforced by clients. Moreover, it requires no
changes to applications since our implementation of view
consistency is on a per-file basis.

Section 2 describes our consistency model. Section 3
explains the motivations for using view consistency. The
view-consistency algorithm and some implementation is-
sues are discussed in Section 4. The overhead of providing
consistency and the performance benefits of replica selec-
tion are studied in Section 5. Section 6 discusses related
work and Section 7 draws conclusions and suggests future
work.

2. View-Consistency Definition

Definition 1 Session guarantees allow a client to access
versions of data that are the same as or newer than (for
brevity, we will call thislater than) what the client had pre-
viously accessed.

Session guarantees are provided to individual (or single)
clients. We next define view consistency, and it should be-
come clear to the reader from the definition that view con-
sistency is a generalization of session guarantees.

Definition 2 View consistency allows an entity to only ac-
cess later versions of data than what the entity had previ-
ously accessed. A data version is later if it is the same as or
newer than the latest version accessed by any of the compo-
nents of the entity.

View consistency provides “session guarantees” to enti-
ties, where eachentity is a closely cooperating groups of
clients. Each individual within the entity is called acom-
ponent. Examples of entities are a single process, a group
of processes, a user working on a laptop, all the users on a
machine, a group of machines, etc. An entity is therefore a
generalized client that may be persistent or distributed. Its
components are cooperating closely since view consistency
ensures that they access mutually consistent data.

Our definition of session guarantees is a combination of
the read your writes, monotonic reads, writes follow reads
andmonotonic writesguarantees as described by Terry, et
al. [12]. View consistency can be defined for each individ-
ual session guarantee, but we will ignore these distinctions
in this paper for simplicity.

Entity Classification Entities can be of different types.
Long-lived entities that survive machine crashes areper-
sistententities, while short-lived entities aretransienten-
tities. The consistency information for a persistent entity
must be kept on secondary storage. An entity that has more
than one stream of execution can exist on a single machine

(centralized) or on multiple machines (distributed). A dis-
tributed entity can be denied access to data either because
later versions of data are not available, or because its sub-
entities cannot be coordinated at a particular time. Mecha-
nisms such as primary coordinator, token passing, or voting
are needed to synchronize the accesses of a distributed en-
tity. Note that these mechanisms are applied at the entity
and not at the replicated data servers. Common entities in-
clude a single process (transient), a login session (transient),
a single machine (persistent), a closely related group of ma-
chines (distributed), etc.

3. Motivation

The benefits of view consistency are illustrated with ex-
amples below. The underlying replicated service is assumed
to allow accesses to any available data replica.

1. A user is accessing awebpage that is replicated at sev-
eral sites. If the current site becomes heavily loaded
and disallows accesses, view consistency will ensure
that the user does not access older versions of the web
pages from another site.

2. A user edits a file and then checks in the new version
of the file into a replicated version-control system. The
replica that has the latest changes becomes inaccessi-
ble before these changes propagate to other replicas.
If the user can access and edit the file from another
replica, this action will necessarily create a conflicting
update. View consistency will disallow accesses to any
other file replica, since these replicas are older than the
replica on which the user was working.

3. A user accesses a replicatedwebpage and caches the
page. Later, this page is evicted to make space for other
more important pages. View consistency ensures that
remote accesses of the original web page yield later
versions of data. Moreover, later stashes of the web
page (when it is accessed and cached again) will also
be data versions that are later than what the user has
seen previously.

4. Suppose users A and B at one office are sharing files
with users C and D at another geographically distant
office. Each user has a replica of the files. A and B
(and similarly C and D) are actively cooperating with
each other. We define A and B to be an entity, and
C and D to be another entity. View consistency will
ensure that both A and B (and likewise C and D) access
data that is later than each has accessed.

Discussion View consistency is enforced by each entity
accessing the data and not by the servers. This client consis-
tency model has several benefits. First, servers do not have



to be modified to implement view consistency. Second, the
consistency model implemented by the servers does not af-
fect view consistency. The only requirement is that clients
should be able to compare the versions of the file replicas.
Third, different clients can enforce different guarantees. For
example, one client may be view consistent while another
may ignore view consistency while operating on the same
data. Later, the two clients can be combined and observe
view consistency as a single entity. Fourth, view consis-
tency does not attempt to coordinate the accesses of differ-
ent clients, and thus different clients can make conflicting
updates. This lack of inter-client coordination, however, al-
lows high data availability at each client.

The choice of entities is very important for view consis-
tency. For a given set of files, this choice strongly depends
on the file usage pattern. For some files, each user of the file
may choose to remain a separate entity. For shared files, a
group of users or a group of machines may be chosen as the
appropriate entity. Effectively chosen entities reduce con-
current accesses,withoutsignificantly affecting the perfor-
mance of the system. Currently, in our system, this choice
is made explicitly by the user. More experience is needed
with our system regarding the appropriate choice of entities,
and an automated method for choosing such entities.

4. Algorithm

With view-consistency, an entity accesses data that is
later than what it had seenpreviously. Entities can store
the version of data that they last read or updated. This ver-
sion can then be used to ensure that the next access yields
a later data version. Figure 1 shows the view-consistency
algorithm for a generic entity. The algorithm is invoked
by file operations that read or write data. After a file op-
eration, the version and the replica that were accessed are
stored together as aview-entryby writeViewEntry .
Before the next data access, the view-entry is obtained by
readViewEntry and the version and the replica infor-
mation is used to select a later file replica. If the view-entry
does not exist, any replica can be chosen. The “switchTo”
functions perform replica selection to provide highly per-
forming replicas while maintaining view consistency.

Besides file reads and writes, directory and file attribute
operations must also invoke the view mediator. Without
directory consistency, a renamed file may appear with its
older name in the future. File attribute consistency is needed
to ensure correctness of applications such asmake that de-
pend on data and attribute consistency.

4.1. Implementation Issues

We have implemented view consistency on Ficus [8], an
optimistically replicated system. Ficus uses vector times-
tamps [10] for storing file version information. View con-

viewMediator(file, entity, fileOperation)
f

(fileId, replica) = file; // file consists of fileId, replica
viewEntry = (viewVersion, viewReplica) =

readViewEntry(fileId, entity);
if (viewEntry != NULL) f

newReplica
= switchToLaterReplica(file, viewEntry);

g elsef
newReplica = switchToFastReplica(file);

g
(data, fileVersion) = fileOperation(fileId, newReplica);
if (fileVersion> viewVersion)f

writeViewEntry(fileId, entity,
fileVersion, newReplica);

g
return data;

g

Figure 1. The general view-consistency algo-
rithm

sistency can use this version information to test the consis-
tency criterion.

Accessing View-Entries The view-entries, consisting of
the file version and the replica id, must be read and written
efficiently because these operations lie in the critical path
of the file operation. For distributed entities, the view-entry
may exist separately from the components of the entity. As
an example, volatile witnesses [9] can be used for storing
and accessing the view-entries. These witnesses would be
placed so that they are more available than the individual
components of the entity. For persistent entities, the view-
entry must also be stored persistently.

We have used Margo Seltzer’sdbdatabase package [11]
for view-entry storage. It is relatively small, and caches
large chunks of the database in memory for efficient access.
View consistency is implemented in the kernel while the
database runs at the user level. To reduce the communi-
cation and context switch overhead of database access, we
cache view-entries in the kernel along with thevnodeof the
file. The view-entries are written to disk when the vnodes
are destroyed, or on file closes, or every 30 seconds.

The algorithm above shows that the file operation returns
the version of the data accessed. While this is not true for
NFS (our transport layer), it is possible to obtain the version
information in a separate operation after the file operation
and remain consistent. However, this imposes significant
overhead. We have modified some of the file operations
(such aslookup ) in Ficus to return file data and version
together. This provides significant performance gain.



Replica Selection Replica selection aims to provide data
as long as any replica is available (availability criterion),
provide data from the fastest available replica (optimal-
ity criterion) and minimize the overheads of selection and
switching to different file replicas. It can be done solely at
the clients because view consistency is enforced by an entity
and not by the replicas.

The system maintains adelay valuefor each replica
that determines the bandwidth and latency to the rep-
lica from the client site. Optimality uses these delay
values for replica selection. Unlike availability, which
rectifies a short-term failure condition, optimality im-
proves the long-term throughput and efficiency of the sys-
tem. SwitchToFastReplica shown in Figure 1 im-
plements both the availability and the optimality criterion.
The switchToLaterReplica function is similar to
SwitchToFastReplica but it maintains view consis-
tency also.

Deletion of View-Entries Each entity has a logically sep-
arate database that contains the view-entries for files that the
entity has accessed. The number of view-entries grows as
more files are accessed. These view-entries can be deleted
when they are no longer required. The database for transient
entities can be entirely removed when the entity terminates.

For persistent entities, view-entries can be deleted when
all the file replica versions are known to be later than (equal
to or newer than) the version in the view-entry. The view-
entry is not required anymore since any replica that is next
accessed will yield a later version. Note that view-entry
deletion can be done independently of file operations.

We use acknowledgments for view-entry deletion. See
Guy [3] for further details. Acknowledgments have also
been used by Wuu [14] and Ladin [7]. The difference be-
tween their work and ours is that they use acknowledgments
for garbage collection at the replica servers while we use
them at the clients. More details about our implementation
can be found in our technical report [2].

5. Experiments and Evaluation

We have implemented view consistency as a stackable
file-system layer over the Ficus file system [4]. A user-
level view-entry database provides view-entries to the ker-
nel. These view-entries are garbage collected by a deletion
server that obtains the acknowledgment information from
the reconciliation process. A delay server determines the la-
tency and bandwidth to different replicas and provides these
values to the kernel for replica selection. The experiments
presented here evaluate two aspects of the system: 1) mea-
suring the overhead of providing view consistency and 2)
the costs of switching to the high performing replicas while
providing view consistency.

mab cp rcp grep find rm ls

Benchmark Type

0

200

400

600

800

T
im

e 
in

 S
ec

on
ds

Base Ficus (Elapsed Time)

View Consistency for Directory
Operations (Elapsed Time)

View Consistency for File
Operations (Elapsed Time)

System Time

mab cp rcp grep find rm ls

Benchmark

0

50

100

150

P
er

ce
nt

 O
ve

rh
ea

d 

View Consistency
Overhead

View Consistency
Overhead When
Attributes Are
Obtained With Data

Figure 2. Remote access times of base Fi-
cus and view-consistent Ficus. The lower
graph shows the consistency overhead (in
gray) when the view consistency attributes
are obtained along with data.

5.1. View-Consistency Overhead

The overhead of view consistency is measured by com-
paring the cost of view consistent versus non-view consis-
tent (or base Ficus) accesses. We use four Sun IPCs, each
with 12 MB of main memory, connected by a 10Mb/s Eth-
ernet connection. Accesses were done from one machine,
while data replicas were stored remotely on the other three
machines. No tests were done with locally stored repli-
cas because view consistency can then be provided with no
overhead (see the technical report [2]).

We performed seven benchmarks with one, two and three
data replicas. The first test is the modified Andrew Bench-
mark (mab) [5] that is intended to model a mix of filing
operations and hence be representative of performance in
actual use. The second and third tests are local and remote
recursivecp and the fourth test isgrep . Each of these
tests exercise the read and write file operations. The fifth
and sixth tests arefind and rm programs that primarily



execute recursive directory operations. The last test is the
ls program, which reads directory contents. Themab test
is performed on 1.3 MB of data. Thegrep and ls tests
operate on 104 files containing 336KB of data. All other
tests operate on 1311 files with 4.2 MB of data.

The results of the three replica benchmarks are shown in
Figure 2. Since view consistency is enforced by clients, the
overhead does not change significantly with different num-
bers of replicas and the results for the single and two replica
experiments are very similar. The upper graph in Figure 2
shows the elapsed and system times of base Ficus and view-
consistent Ficus for remote accesses. The 95% confidence
intervals are shown for the elapsed times. The costs of pro-
viding view consistency for file operations and for directory
operations are shown separately for view-consistent Ficus.
Note from the upper graph thatfind , rm andls have no
view-consistency overhead for file operations, since these
operations predominantly operate on directories. The over-
head of view consistency for remote accesses is also shown
in the lower graph of Figure 2. This overhead includes both
file and directory operations. The overhead for all tests ex-
ceptgrep is between 5 to 12 percent. Thegrep overhead
is 185 percent. To understand this large overhead, we com-
paredgrep andcp since they perform similar vnode op-
erations. We found that most of the overhead in thegrep
benchmark occurs because we obtain view-consistency at-
tributes separately from data, and thus go over the wire
twice for each file operation (for which view consistency
is provided). We also found that the cost of getting remote
attributes is 8.5 ms per operation, cost of runninggrep on
a single remote file is 17.4 ms, and the cost of perform-
ing a cp on a single file is 173.5 ms in Ficus. Therefore,
the largegrep overhead is becausegrep is a much faster
operation and because getting attributes is a fixed cost oper-
ation. Moreover, whilecp gets attributes once,grep gets
attributes twice per file. This by itself doubles the time for
executinggrep .

The gray area in the lower graph shows the overhead
of view consistency when attributes are obtained with data.
The overhead forgrep and for most other benchmarks de-
creases to between 1 to 8 percent. We measured this over-
head by using attributes that are obtained during opens and
by not updating these attributes from the server on each op-
eration.2 Finally, as explained briefly in Section 4.1, the 1
to 8 percent overhead of view consistency can be reduced
even further by getting the view-entries in parallel with the
file operations.

5.2. Availability Measurements

We measured the cost and performance benefits of
switching to the highest performing replica while provid-

2This can violate view consistency for operations other than open, but
is nonetheless useful for understanding the overhead.

ing view consistency. Accesses are switched to a new rep-
lica when it is view consistent and improves overall access
times. The overall performance of each replica is mea-
sured in terms of replica delay values that are determined
by a user-level delay server. The replica delay values were
simulated in our experiment as shown in the upper-most
graph of Figure 3. This was done because delay values did
not change significantly (or frequently) in our experimental
LAN environment. The delay3 values were changed every
300 seconds. They were fixed at 15 for replica 1, varied
periodically between 7 and 23 for replica 2, and varied ran-
domly between 0 and 31 for replica 3.

The seven benchmarks used earlier (Section 5.1) were
run with the simulated delay values. The replica that is ac-
cessed is shown in the middle graph of Figure 3. The num-
ber of replica switches during the experiment4 is shown in
the lowest graph in Figure 3. The lowest and the middle
graph in Figure 3 show that multiple replicas are accessed
during replica switching.

Replica switching takes place when the currently ac-
cessed replica is at leastswitching-factor(set at 2 for this
experiment) slower than the best replica. This was true for
all the replica switches except the last one (around time
5800 seconds) when accesses switched from replica 3 to
replica 2 although replica 3 is the fastest replica. The de-
lay value difference between replica 2 and 3 is not much at
this time. Many files were accessing replica 2 in the past
(around time 5000 seconds). This last accessed replica is
known to be view consistent and is not much slower than
the fastest replica. It is therefore given priority and these
files still access replica 2. This condition does not occur in
any other part of the experiment.

The total number of accesses in the experiment was
192215. With no replica switching, the average access
time would be 15 (in terms of delay values), since replica
1 would be accessed each time. The ideal average access
time (the replica with the lowest access time is accessed ev-
ery time) is 9.68, a 36% improvement. The average time for
each access with replica switching is 13.36, a 11% improve-
ment. The choice of the switching-factor affects this im-
provement. A lower value improves performances but can
cause more replica switching overhead. The value also de-
pends on the type of environment. Generally, a larger value
should be chosen when the bandwidth and latency change
rapidly, as in large-scale environments. A smaller value can
be chosen when replica switching costs are low.

An interesting result of the experiment as seen in the
lowest graph is that just a few replica switches induce every
file to switch replicas. This happens because of the default

3A faster replica has a lower delay value.
4The total time to perform these benchmarks is approximately 50 min-

utes (as can be seen by taking the sum of the elapsed times of each of the
benchmarks in the upper graph of Figure 2) but this experiment took 100
minutes because each access is logged to disk.



0 1000 2000 3000 4000 5000 6000

Time in Seconds

0

10

20

30

R
ep

lic
a 

D
el

ay
V

al
ue

s

Delay Values of Replica 1
Delay Values of Replica 2
Delay Values of Replica 3

0 1000 2000 3000 4000 5000 6000

Time in Seconds

0

1000

2000

3000

N
um

be
r 

of
 A

cc
es

se
s

to
 E

ac
h 

R
ep

lic
a

Accesses to Replica 1 
Accesses to Replica 2
Accesses to Replica 3

0 1000 2000 3000 4000 5000 6000

Time in Seconds

0
10
20
30
40
50

N
um

be
r 

of
R

ep
lic

a 
Sw

it
ch

es

Figure 3. The replica delay values for three replicas, the replicas accessed, and the number of
switches performed in a period of one hour and forty minutes

replica switching rule. When a directory gets switched to
a new replica, later accesses to files in the directory start
by accessing this new replica. Although the last accessed
replica has higher priority, this replica is very slow at each
replica switching period (except the last one as explained
above). Thus the new replica is given higher preference and
accessed, and switching happens naturally for most files.
Therefore, the explicit cost of switching in Ficus is very
low.

6. Related Work

Our work is closely related to Bayou [12], an eventu-
ally consistent system, that provides session guarantees to
reduce client inconsistency. These session guarantees are
provided to process and process groups. We extend ses-
sion guarantees to handle other transient, persistent and dis-
tributed entities. Instead of viewing the problem as provid-
ing guarantees for a session, we view it as providing guaran-
tees to entities. We discuss view consistency for distributed
entities and believe that many more applications will benefit
from such guarantees.

Causal ordering of reads and updates by Ladin, et
al., [7] provides guarantees similar to view consistency. Un-
like view consistency, causal ordering requiresapplication-

specificchanges since applications must specify the causal
relation between their operations. Causal ordering is en-
forced by replicas while view consistency is enforced by
clients or entities. View consistency is therefore more scal-
able (in terms of server load) and requires minimal changes
at the servers. An advantage of causal ordering is that it can
provide more generic inter-client guarantees. View consis-
tency deals with this issue by combining the clients into a
single entity (possibly dynamically) and providing consis-
tency guarantees to this entity group.

Client-based consistency has been used by Alonso, et
el., [1] to providequasi-copyconsistency. Quasi-copies are
cached (or stashed) copies of data that may be somewhat
out-of-date, but are guaranteed to meet certain consistency
predicates. Client consistency for quasi-copies can gener-
ally be maintained for age-dependent predicates only. For
example, the “not more than two versions old” predicate can
only be enforced by the server.

Zadok and Duchamp [15] address the issue of replica se-
lection for performance. They improve the auto-mounting
daemon in UNIX systems and allow transparent switching
of open files to replacement file systems. The latency of the
NFS lookup operation is monitored and used to assign
delay values to different replicas. Their solution works for



read-only file systems because they do not deal with rep-
lica consistency. Thus issues related to tradeoffs between
consistency and availability do not have to be addressed.

7. Conclusions

View consistency aims to provide consistent data in
widely distributed and mobile systems. It covers the space
between conservative and optimistic schemes by providing
consistency to each entity while allowing high availability
across entities. Effectively chosen entities can reduce con-
current accesses for various user working styles. The model
is scalable in the number of replicas since clients enforce
consistency. This paper focuses on whether view consis-
tency can be achieved in practice. The prototype imple-
mentation on Ficus maintains the consistency information
at each client efficiently. It provides view consistent data
while taking data availability and performance into account.
Our experiments show that view consistency for centralized
entities can be provided at a low cost.

More experience is needed with view-consistent sys-
tems. Does view consistency satisfy the consistency de-
mands of many applications? We are currently developing
a user-level version of Ficus calledRumorthat can be de-
ployed more extensively. The benefits and costs of view
consistency for large-scale disconnected and mobile use can
then be measured more precisely.

We are currently implementing coordinating the view-
entry databases for distributed entities. We are also exam-
ining suitable definitions of distributed entities. For non-
overlapping accesses in time (such as using different ma-
chines at different times of the day) the view-entry database
can be transfered from one machine, say on a PCMCIA
card, and integrated with the database of the new machine.
Since view-entries are much smaller than files, it is more
useful to carry the consistency information rather than re-
cently accessed files in the card. Files can then be loaded on
demand from the previous machine if they are newer there.

References

[1] Rafael Alonso, Daniel Barbar´a, and Luis L. Cova. Using
stashing to increase node autonomy in distributed file sys-
tems. InProceedings of the Ninth IEEE Symposium on Reli-
ability in Distributed Software and Database Systems, pages
12–21, October 1990.

[2] Ashvin Goel, Calton Pu, and Gerald Popek. View con-
sistency for optimistic replication. Technical Report
CSE-98-004, Oregon Graduate Institute, May 1997.
ftp://cse.ogi.edu/pub/tech-reports/
1998/98-004.ps.gz .

[3] Richard G. Guy, Gerald J. Popek, and Thomas W. Page, Jr.
Consistency algorithms for optimistic replication. InPro-
ceedings of the First International Conference on Network
Protocols. IEEE, October 1993.

[4] John S. Heidemann and Gerald J. Popek. File-system devel-
opment with stackable layers.ACM Transactions on Com-
puter Systems, 12(1):58–89, 1994.

[5] John Howard, Michael Kazar, Sherri Menees, David
Nichols, Mahadev Satyanarayanan, Robert Sidebotham, and
Michael West. Scale and performance in a distributed file
system.ACM Transactions on Computer Systems, 6(1):51–
81, February 1988.

[6] James J. Kistler and Mahadev Satyanarayanan. Discon-
nected operation in the Coda file system.ACM Transactions
on Computer Systems, 10(1):3–25, 1992.

[7] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghe-
mawat. Providing high availability using lazy replication.
ACM Transactions on Computer Systems, 10(4):360–391,
November 1992.

[8] T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P. Reiher,
A. Goel, G. H. Kuenning, and G. J. Popek. Perspectives
on optimistically replicated peer-to-peer filing.Software—
Practice and Experience, 1998. To appear.

[9] Jehan-Franc¸ois Pâris. Using volatile witnesses to extend the
applicability of available copy protocols. InProceedings of
the Second Workshop on Management of Replicated Data.
IEEE, November 1992.

[10] D. Stott Parker, Jr., Gerald Popek, Gerard Rudisin, Allen
Stoughton, Bruce J. Walker, Evelyn Walton, Johanna M.
Chow, David Edwards, Stephen Kiser, and Charles Kline.
Detection of mutual inconsistency in distributed systems.
IEEE Transactions on Software Engineering, 9(3):240–247,
May 1983.

[11] Margo Seltzer. A new hashing package for UNIX. In
USENIX Conference Proceedings. USENIX, January 1991.

[12] D.B. Terry, A.J. Demers, K. Petersen, M.J. Spreitzer, M.M.
Theimer, and B.B. Welch. Session guarantees for weakly
consistent replicated data. InProceedings of the Third Inter-
national Conference on Parallel and Distributed Information
Systems, pages 140–149, sep 1994.

[13] Douglas B. Terry, Marvin M. Theimer, Karin Petersen,
Alan J. Demers, Mike J. Spreitzer, and Carl H. Hauser. Man-
aging update conflicts in Bayou, a weakly connected repli-
cated storage system. InProceedings of the 15th Symposium
on Operating Systems Principles, pages 172–183, Copper
Mountain Resort, Colorado, December 1995. ACM.

[14] Gene T. J. Wuu and Arthur J. Bernstein. Efficient solutions
to the replicated log and dictionary problems. InProceed-
ings of the Third Annual ACM Symposium on Principles of
Distributed Computing, August 1984.

[15] Erez Zadok and Dan Duchamp. Discovery and hot replace-
ment of replicated read-only file systems, with application
to mobile computing. InUSENIX Conference Proceedings,
pages 69–85, Cincinnati, OH, June 1991. USENIX.


