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Chapter 1

Introduction

Today, modern data centers provide high-availability computing and large storage ca-

pacities at relatively low cost. These facilities are used by cloud computing providers

to host the software applications of various types of organizations for handling their

core business and managing their operational data. The cloud infrastructure enables

collecting and storing large amounts of data. Organizations use this data to per-

form data analysis, which helps with discovering useful business information, decision

making and predicting trends [?].

An important challenge in this cloud environment is efficient analysis of large data

sets. Today, this analysis is performed using various cluster computing frameworks

that are inspired by MapReduce [20]. These frameworks are designed to enable dis-

tributed processing on large data sets that are stored across large numbers of nodes

built from commodity hardware. The frameworks are designed with the fundamental

assumption that hardware failures are common, and are thus designed to handle these

failures using techniques such as data replication. This approach simplifies the design

of applications, which can focus on their logic.

These frameworks expose functional programming style interfaces so that applica-

1



Chapter 1. Introduction 2

tions can be designed to scale to hundreds or thousands of machines. A computation

or a job is split into small units of work called tasks that can be run on any machine

in the cluster. The different steps of the computation are expressed in stages, where

the output of a stage is the input of the next stage, similar to Unix command line

pipeline. In a MapReduce system, there are generally two stages, the Map and the

Reduce stages. The Map stage is an highly parallel phase, where each Map task reads

a part of the input data set from disk or the network and executes the first step of

the computation, independently of the other Map tasks. The output of this stage is

then sent to the Reduce tasks, which produce the final result for a job.

In a typical MapReduce configuration, each node of the cluster has a number

of disks and stores a part of the application data. The partitioning of the data is

managed by a distributed file system that splits the data in blocks and stores replicas

of the blocks across multiple nodes, ensuring fault tolerance and data availability in

the presence of certain node and network failures.

Even though the Map tasks can be scheduled on any node of the cluster with-

out affecting the correctness of the computation, accessing data from a node that

stores the data locally is much more efficient than accessing it through the network.

This avoids network traffic and delay caused when streaming data from one node to

another. Cluster computing frameworks are designed to try to schedule computa-

tions on a node storing the input data, and several research projects have focused on

improving data locality of tasks [?, ?].

Apache Hadoop, a commonly-used cluster computing framework that implements

the MapReduce paradigm, considers three levels of data-locality. The first option is

to the run the computation on a node that stores the data. The data is read from

disk to memory is accessed from there. This option is called disk-locality and avoids

network traffic altogether. If another task consumes the same input and is scheduled
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on this node, it can access the data from memory and avoid disk traffic. The second

alternative, when disk-locality is not possible, is rack-locality. Nodes in a cluster

are physically located in racks, with each rack containing 20 to 42 nodes that are

connected together by a single top-of-the-rack switch. Any network traffic between

two nodes in a given rack traverses this switch and does not affect nodes on other

racks. With rack-locality, a computation is placed in the same rack in which the data

is located. Finally, the last option is to place the computation at any node. In this

case, data must be sent across racks using an inter-rack switch, which can become a

bottleneck in larger clusters.

Recent workload studies have shown that there is significant data reuse in cluster

computing environments. We typically find that a small set of files are accessed a

large number of times. In this case, we expect that the buffer cache in the operating

system will be effective, and minimize the cost of accessing these files after they are

read the first time. We found that this assumption does not hold in cluster computing

frameworks. Two jobs consuming the same data see limited benefits of caching even

when they are scheduled close in time. This occurs because data is available at

multiple locations (replicas), and since jobs run independently of each other, they are

unaware of which replica has been accessed recently. A task may therefore read data

from disk even when another node has this data in memory. Furthermore, jobs do

not have knowledge of what is cached on the various cluster nodes and thus cannot

optimize their operation based on the cached data.

In this thesis, we argue that jobs in a cluster computing environment should be

aware of data that is memory resident in the cluster. This residency information can

be used in two ways. First, a replica can be preferentially accessed when its data

is memory resident. Second, the tasks of a job can be reordered to take advantage

of data that is currently memory resident. This reordering is possible because there
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is generally no correctness requirement on the order in which tasks are scheduled.

We have designed a system called Quartet that embodies this approach. Quartet

gathers, aggregates and selectively distributes information about the data cached in

the cluster to jobs. Jobs take this information into account when scheduling their

tasks on a given node by prioritizing tasks that access cached data. Jobs schedule

as many such memory-local tasks as possible before scheduling disk-local tasks and

tasks at other locality levels.

We have implemented Quartent for the Apache Hadoop and the Apache Spark

frameworks. Our evaluation shows that Quartet significantly improves the page cache

hit ratio for common file access patterns in both systems. This improvement translates

to a reduction in the run time of the jobs. Programmers and data analysts that expect

significant data reuse in their workloads can use Quartet to more efficiently utilize

their hardware resources.

Our main contribution is the design of a system that leverages memory residency

information to improve the performance of cluster computing workloads by reducing

disk accesses. Based on the observation that modern cluster computing workloads

show significant amount of data reuse across jobs, we have designed Quartet to reorder

the work inside jobs based on memory residency of their input data. Quartet does

not assume any knowledge of the files being accessed or the ordering of jobs. Quartet

does not delay the execution of jobs and thus ensures their forward progress. We have

implemented the Quartet approach for two different cluster computing frameworks,

and expect that it can be easily extended to other cluster computing frameworks.

The rest of the thesis describes our approach in more detail. Chapter 2 describes

the related work and current research in this area. Chapter 3 provides motivation

for this work by describing cluster computing workloads and particularly how data is

reused across jobs. Then, Chapter 4 describes the Quartet architecture. Chapter 5
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evaluates the performance of Quartet using various workloads. We then describe our

conclusions in Chapter 6.



Chapter 2

Related Work

Using multiple processing units to improve the efficiency and reduce the run time

of a computation has long been an important research topic. Traditional solutions

include multicore CPU architectures and networked machines. The complexities of

using multiple processing units is abstracted via frameworks.

In the past, these frameworks typically relied on low level programming languages

like FORTRAN and C/C++. They offer flexibility at the expense of user-friendliness.

In recent years, cluster computing systems have been making the opposite trade-off:

they make it simpler to take advantage of the processing units by reducing the size

of the API, which in turn limits flexibility. These solutions have become popular

due to the backing of major corporations within the web industry. They are easy

to adopt because they rely on high-level, garbage-collected languages like Java and

Scala [8, 11].

It is often assumed that it is better to move computation close to the data rather

than the other way around because the executable files are often significantly smaller

than the data that they consume [28, 41, 44]. A lot of work has been put into placing

units of work onto the best possible location [13, 41, 4, 23, 29]. This preference is often

6
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referred to as data-locality and there is typically a hierarchy of preferred locations. As

the ability of frameworks to achieve disk-locality, the focus shifted toward improving

memory locality. Because accessing data from memory is orders of magnitude faster

than accessing it from disk, several studies explored the idea of improving memory

locality of tasks [?, 13, 6, 1].

2.1 Traditional Distributed Computing

Saturating all cores of a modern, multi-core CPU is challenging. The key challenges

to maximizing one’s usage of available resources are data sharing, communication,

and synchronization. Multiple libraries have been developed to simplify the task

of writing concurrent programs. OpenMP [19] and Intel’s Thread Building Blocks

[35] are good examples of libraries abstracting some of the complexity of shared-

memory parallel programming. OpenMP makes it easy to convert an existing single

threaded application to run in parallel on multiple cores. For example, a developer

can parallelize a loop by adding a single pre-processor directive.

Using a large number of machines to work on a particular problem has always

been a challenge of the high performance computing community. Network overhead,

clock skew, and fault tolerance are only a few of the challenges to be considered when

designing such systems. Message Passing Interface (MPI) [33, 21] is a great example

of a framework allowing programmers to design a computation that can be scaled to

a large number of processors. As the name suggests, MPI defines a communication

interface for processes to coordinate and exchange data across one or more machines.

The MPI programming model offers a lot of flexibility to the programmer. MPI was

[40] and is still [31] used for high performance scientific applications.

Despite the existence of systems that abstract away some of the complexity of
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parallel computing, their programming interfaces remain hard to master. An expe-

rienced programmer can take advantage of the computing power of an entire cluster

but novice developers have a steep learning curve to climb.

2.2 Modern Distributed Computing

With the steady increase in data set size and the economic value of this data, the need

for scalable and easy to use computing paradigms became obvious. Cluster computing

frameworks like Apache Hadoop and Apache Spark have helped to democratise the

use of high performance computing installations. Software developers can now scale

their computations to hundreds and thousands of machines without having to master

every aspect of parallel processing and distributed systems.

To scale to a large number of machines, these systems often split their computa-

tions in smaller highly parallelizable units of work called tasks. The different steps of

a distributed algorithm are represented in waves of identical tasks. When an applica-

tion is made of multiple steps, the data is processed in a pipeline of waves where the

output of some step will be the input of another step. Tasks within the same wave

do not have any dependency within themselves and can be run completely in parallel

on a large number of machines. Figure 2.1 shows an example of such a multi-waves

distributed application. The data is read from stable storage by the first wave and

sent down the pipeline until the final wave saves the result back to disk.

2.2.1 Apache Hadoop

The Apache Hadoop project[8] is a free and open source cluster computing umbrella

project. It was first designed at Yahoo! and is now maintained by a wide variety

of organisations including Cloudera [18] and Hortonworks[26]. The Hadoop project



Chapter 2. Related Work 9

Figure 2.1: Pipelined distributed application

contains three main components: a distributed file system, a resource manager, and

application interface that is implemented by users.

2.2.2 Hadoop Distributed File System

The Hadoop Distibuted File System (HDFS) is the storage component of Hadoop.

The HDFS design is inspired by the Google File System [24], which aims to ensure

data availability, fault tolerance, and the ability to distribute data to thousands of

nodes. In HDFS, a large set of nodes in the cluster are running a Datanode agent

that handles the on-disk storage and a master NameNode that handles file system

operations like file creation, access and deletion. On HDFS, files are split in unit

of a fixed size, typically 128MB or 256MB, called HDFS blocks. HDFS blocks are

replicated on three different nodes to ensure availability and fault-tolerance. HDFS

distributes those replicas on different racks to avoid the impact of correlated failure

of multiple nodes on the same rack or network partitions within the cluster. For

example, Figure 2.2 represents a simple HDFS cluster consisting of four datanodes

and one namenode storing a single large file. The file is split in three blocks (A,

B, and C) of 128 MB each, and each of these blocks is replicated on three different
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Figure 2.2: Hadoop Distributed File System Architecture

locations (e.g. A1, A2, and A3 for block A).

2.2.3 Hadoop YARN

Hadoop YARN (short for Yet Another Resource Negotiator) is the resource manage-

ment system on Hadoop. It defines the protocol in which YARN applications are

assigned resources. YARN can enforce multiple resource scheduling policies such as

Fair scheduling [15] or Capacity scheduling [14] to ensure that the resources of the

cluster are used efficiently and fairly among its users. Computing resources are en-

capsulated as one or more containers on each node and YARN scheduling decisions

are at the container granularity.

YARN Resource Manager

The Resource Manager(RM) is the central point of a YARN system [34]. It is running

on a node of the cluster and controls access to the computing resource of the cluster. It

interacts with the application to ensure that they get their fair shares of the resources.
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YARN Application Master

YARN Application Masters (AM) are responsible for the execution of the entire com-

putation, including requesting resources and scheduling work. YARN applications are

initialized by the user by requesting a first container from the resource manager in

order to run the AM. The AM then takes over the control of the execution and then

requests the number of containers specified by the user from the Resource Manager.

As containers are assigned to it, the AM will schedule work units on them according

to its needs. A popular YARN application is Hadoop MapReduce, which will be

discussed in detail in Section 2.2.4.

Resource Request

On YARN, AM need to request containers from the Resource Manager according to

their needs in computing power, memory and locations.

YARN offers the possibility for applications to ask for containers with a specific

number of virtual CPU or a minimum amount of memory dedicated to it.

Because of the large amount of data involved, data locality is an important factor

of performance [?] in cluster computing framework. Running computation on a node

that stores its input data on one of its disks is preferable to reading it from a remote

node. Most distributed file systems including HDFS, ensure the availability of data

by replicating it on multiple machines, thus making it possible to achieve this data

locality on multiple hosts. Most applications want to express this preference for

certain locations to increase the data-locality of their computation. YARN enables

applications to express this desire when they ask for containers. They can ask for a

container on a specific node or rack. Alternatively, if a piece of computation would

not see any benefits due to being run a specific node, application can also express
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that this computation can be run on any node of the cluster.

Allocate API

The allocate call is the main endpoint of the resource management interface. Through

this endpoint, applications request resources on the cluster to run their computation.

These resources are allocated in the form of YARN containers, which have a specific

number of CPU cores, available memory and a specific host machine. An allocation

grants temporary ownership of these specific resources on a given machine. The reply

to an allocate call may consist of zero or more allocations of containers. When an

application is done using a container, it notifies the RM through the next allocate

call and loses the ownership of it.

YARN’s resource allocation model is of the Late binding type. After receiving an

allocation, the application can decide what task to schedule on that machine and is

not obliged to run what it had initially intended when it first asked for the resources.

The application can also return the container, without using it, if it is not needed

anymore.

2.2.4 Hadoop MapReduce

Hadoop MapReduce is a popular YARN application. Its design is inspired by Google’s

MapReduce[20] system where users can express their complex computations by im-

plementing two methods, namely the Map and Reduce methods. Figure 2.3 shows

a dataflow in a MapReduce application. Over the course of the execution of a job,

the data is read from HDFS by the Map tasks for the first computation stage and

then sent to the Reduce tasks which finalize the computation and write the final re-

sult back to HDFS. Throughout this section, we will use the common example of the



Chapter 2. Related Work 13

Figure 2.3: MapReduce Paradigm

word counting application that is distributed with the Hadoop source code.

Map phase

The Map method expresses a transformation that is applied to the entire dataset

in parallel. The method resembles the Map function in functional programming

languages as it applies a function to all the elements of a collection and returns the

output. The output of the Map task is a list of key-value pairs. The Map method

of WordCount consists of reading the input data, splitting each line on white spaces,

and outputting a key-value pair where the key is the word and the value is the integer

one. A task running the Map function is often referred to as a Mapper.

Reduce phase

The Reduce phase receives the output of all the Map tasks and produces the final

result of the job. The number of reducers can be configured by the user and highly

depends on the nature of the job. Each reduce task receives a partition of the keys
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produced by the Map tasks and applies a reduction on them. All identical keys will

be sent to the same Reduce task. In WordCount, since the keys are words, identical

words will be sent to the same Reduce task. The reducer then sums all the values

of a given key and outputs the number of occurrences for that word in the form of

the final key-value pair. A task running the Reduce function is often referred to as a

Reducer.

Shuffle phase

The shuffle phase takes place between the map and reduce phase. It is typically a

network intensive phase because all mappers might need to send parts of their outputs

to all the reducers. The user does not need to customize this phase but sometimes

prefers to do so to limit the impact of this network activity on the performance.

There are two main compoments that can be used in the shuffle stage to improve

performance: a combiner and a partitioner.

By implementing the combiner method, the user can lessen the work of the reducer

by pre-reducing its output. The combiner is often called a ’Map-side reducer’ because

it applies the same transformation that the reducer needs to do. Its advantage is to

reduce the burden on the reducers and also limits the amount of network traffic in

the shuffle phase.

The partitionner is used to define how the keys should be split amongst all the

reducers. By default, the HashPartitioner [12] class is used and simply hashes the

keys and uses the modulo operator with the number of reducers to partition the

keys. Users can customize this feature by implementing their own partitioner that is

relevant to their applications. For example, if the keys are timestamps partitionning

them by time intervals could prove useful to find trends related to time.

Figure 2.4 shows a detailed example of a custom application that is designed to
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Figure 2.4: Wordcount with custom combiner and partitioner

process the words starting with the letter ’b’ in a different way than the ones starting

with the other letters. It is implemented using a custom combiner and partitioner.

We see that the output of mapper1 can be reduced by the combiner because two

of the keys are identical and it is semantically coherent in the context of this word

counting application. The custom partitioner splits the keys by placing all the keys

starting with the letter ’b’ in the first partition and all the other keys in the second.

Our job is configured with two reducers, meaning that one reducer will get all the

keys starting with ’b’ and the other reducer will receive the rest of the keys.

2.2.5 Dryad

Dryad [27] is a cluster computing system designed at Microsoft that aims to tackle

the limitations of the MapReduce paradigm by giving more flexibility in the defini-

tion of jobs. In Dryad, the user defines a computation as a directed acyclic graph
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where vertices are computation steps and edges are communication channels between

those steps. Different from the pipeline model of MapReduce, it is possible to use

data inputs at any levels of the computation. For example, as the last vertex of a

computation DAG, an outside table could be joined with the result of the previous

computation.

2.2.6 Quincy

[28] Add
section
Add
section

2.2.7 Apache Spark

Apache Spark [11] was introduced as a solution to speed up cluster computing ap-

plications using in-memory data structures. Like Dryad, it allows the user to use

a multitude of operations organized in a computation graph. Spark aims to do as

much in-memory computation as possible while expressing complex multi-stage ap-

plications. An important Spark use-case is running multiple iterations on the same

data like the logistic regression classification algorithm. Implemented on Spark, this

algorithm can reuse the same input from memory at every iterations. This is possible

because using Spark’s semantic the user can specify that a dataset should be cached

in memory for the entire execution.

Spark is based on the concept of Resilient Distributed Datasets (RDD) [42] which

is a data abstraction that allows for fault-tolerant large scale in-memory computation.

RDD use the concept of data lineage to provide fault tolerance of the intermediate

results. Lineage is a log that contains the input data and each individual computation

steps applied to this RDD since its creation. If part of a RDD is lost due to node

failure, Spark uses the lineage to recompute it. This technique is useful because it



Chapter 2. Related Work 17

allows Spark to keep as much of its working set as possible in memory, at the cost of

recomputing it in the case of failure. RDDs can also be check-pointed to disk if the

user believes that it would be faster to access the disk than to recompute using the

lineage.

An important difference with MapReduce is that Spark reuses the JVMs for mul-

tiple tasks over the execution of a job as opposed to creating and tearing down a JVM

for each individual task. Spark applications will run an Executor on each node it is

given access to, and schedule tasks on them.

Like Hadoop MapReduce, Spark can be run as a YARN application but it can also

be run in Standalone mode. In Standalone mode, a Spark-specific resource scheduler

is managing the nodes of the cluster.

2.2.8 Apache Hive

Apache Hive [9] is a project that was first developed at Facebook as a data warehouse

system to facilitate the storage and the usage of structured data [39]. Being built

on top of Hadoop MapReduce, it uses a SQL-like language that the framework then

compiles to a series of MapReduce jobs. It abstracts the complexity of designing

MapReduces jobs and allows users to really quickly design ad-hoc queries on huge

amounts of data.

2.2.9 Apache Mahout

Apache Mahout [10] is a cluster computing framework that makes use of the Hadoop

ecosystem to tackle machine learning algorithms. Since many machine learning algo-

rithms, such as K-means, are implemented in multiple iterations on the same data,

Mahout implements a graph of computation made of MapReduce jobs. The technique
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is similar to what Apache Hive uses for SQL query processing. The initial goal of

the project was to implement the ten MapReduce versions of common ML algorithms

presented in a 2007 paper from Chu et al. [17]. The MapReduce implementations of

those algorithm are now being deprecated in favour of frameworks with more flexible

interface, like Spark.

2.2.10 Mesos

The Mesos project [25] aims to simplify the management of multiple frameworks

running on the same cluster. They claim that no one framework will emerge as the

solution to all computing problems so clusters will tend to be shared by multiple

frameworks possibly accessing the same data. The goal of Mesos is efficiently share

a cluster across this variety of frameworks.

2.3 Data Locality

When computing on large amounts of data in parallel, it is often beneficial to run

the code as close as possible to its data rather than move the data to the code. This

has been an important topic in cluster computing research. Multiple strategies were

developed to improve the data locality of tasks in cluster computing, some required

tuning the replication of data blocks and others modified the scheduling itself.

2.3.1 Replication

Scarlett [6] is a system designed to avoid network bottlenecks caused by a highly pop-

ular block. Each block being already replicated multiple times on different locations,

Scarlett keeps track of the number of accesses to a block and dynamically creates
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new replicas for this block on new locations. The applications can then offload tasks

consuming this block to the newly created replica and obtain disk-locality. By setting

quotas on the amount of disk space used by Scarlett on each node, they make sure

that disks are not filled with Scarlett-replicas.

Aurora [43] also tackles the challenges of replicating popular data to improve data

locality of jobs. They argue that replicating data based on popularity does not solve

the problem of nodes becoming hot spots. An extra replica is much more beneficial

if it is placed on a node that is mostly idle because it stores only unpopular files.

Aurora is a block placement system built on HDFS that uses a local search algorithm

to find the best location for a new replica of popular data in order to enforce a notion

of evenness of load.

2.3.2 Delay Scheduling

The Delay scheduling technique presented by Zaharia et al. [41] is a simple and

effective strategy to improve data locality of tasks in cluster computing frameworks.

Typically, cluster applications do not have correctness requirements on the location

where tasks are executed. When an application is launched it shares with the resource

manager its preferred locations for every task. If the preferred location, typically disk-

local, is not available the scheduler would assign the second best option, a node on

the same rack. The Delay Scheduling idea is to wait a limited amount of time in the

hope that this preferred location becomes available. It plays on the trade-off between

the advantages of disk-local execution and the cost of delaying the progress of the job

by waiting.

Delay scheduling is implemented in the Apache YARN resource management sys-

tem so any applications running on YARN will take advantage of it. Apache Spark
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standalone also uses that method to improve data-locality.

2.4 Caching

Disk-locality offers significant advantages over network reads both in term of access

latency and in avoiding unnecessary traffic. Similarly, there is a 1-2 orders of magni-

tude speedup when accessing data frommemory rather than from disk [?]. For that not
more?
not
more?

reason, there has been work to improve the ability of cluster computing frameworks

to take advantage of this speed and capacity of modern memory [30, 22, 38]. Some

techniques tried to control or change what is cached on the nodes, and others looked

at how we can build more memory-oriented systems.

2.4.1 PacMan

The PACMan [7] technique can be used to improve the completion time of jobs in

cases where entire waves of tasks can be run simultaneously on a cluster. The key

idea is what they call the ’all-or-nothing’ property of jobs. Tasks of a wave need to

all have their data cached to see an improvement in the execution time of the job. If

only a subset of the tasks of a wave are sped up by cached data, the rest of the tasks

will become the limiting factor of the performance. This property is less relevant

when the total number of tasks of a jobs is larger than what can be run in parallel.

In this case, a task finishing earlier frees a container that can be used to run another

task and thus is not a limiting factor.

To enforce this ’all-or-nothing’ property, they implemented a caching coordination

mechanism to keep track of the data being read and actively evict files according to

certain eviction policies. For example, one policy would first evict a block of a file

that is not entirely resident in the caches of the cluster.
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2.4.2 HDFS CacheManager

The HDFS CacheManager [13] is a feature of HDFS that was added in XXXX to datedate

allow users to specify popular files to be cached at all times in the cluster. Users can

specify the number of replicas that should be in memory. This can be beneficial in

cases when those popular files are smaller than the total memory of the cluster. The

locations of those cached blocks are then considered when deciding the placement of

tasks during the execution. This technique assumes that the administrator is aware of

the popularity of the files and can quickly change configuration when the popularity

of files shifts.

2.4.3 Alluxio

Alluxio [2], formerly knows as Tachyon[32], is a project that aims to improve dis-

tributed applications’ performance by interposing a caching layer above the storage.

They argue that replication in distributed files systems is limiting the performance

of applications by relying on the network and disks to store the data permanently.

An application saving its progress on the distributed file system needs to wait for all

three replicas to be finished before continuing its execution. They suggest a technique

based on Spark’s data lineage where instead of writing the output to disk at each step,

a distributed cache is used to store the data along with a description of the input and

computation. In the case where this data is evicted from memory or lost because of

the failure of a node, the system can easily recompute it.



Chapter 3

Motivation

The motivation this work is based on the observation that there is an important

amount of data reuse in cluster computing workloads and that these systems are not

designed to take advantage of this reuse. In this chapter we will go over previous

workload studies and new data to characterize the data reuse in cluster computing.

3.1 Workload studies

Driven by the marketing teams and the will to understand users’ habits online, private

companies are collecting important amounts of data. Analysts are taking advantage

of the ease of use and the power of cluster computing frameworks to extract useful

information out of these immense datasets. Several workload studies looked at how

this data is used by different users[36, 16, 37]. Those studies helps practitioners

understand how the computing resources are used and can guide hardware upgrades

and software optimizations. While some focused on corporate and other looked at

academic environments we were able to see common characteristics in these various

studies. Some of these commonalities related the popularity of input files and time

22
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Figure 3.1: File access frequency on five corporate clusters

between accesses. We were also given access to a trace of a large cluster computing

system from a large software company that we will call the Alpha trace. An analysis

of this trace confirmed that those observations are commons in cluster computing

systems.

3.1.1 Files popularity

On personal computers, we typically see that a small set of files is getting a large

portion of the accesses.[] This tendency of reusing the same data over and over again

is also seen in distributed computing.

A study by Chen et al. [16] analysed the traces of five Hadoop clusters and looked

at the popularity of files in those different environments. Figure ?? shows a log-log

plot where the X-axis shows the files ranked by number of accesses and the Y-axis

shows the number of accesses. The linearity of these distributions shows that input

popularity follows ZipF a distribution. This clearly shows that in those workloads, a

small set of files is getting a large portion of the accesses. This phenomena was also

reported on by a study by Ren et al. [36] where researchers analysed the traces of

three academic clusters. As shown on figure 3.2, they saw that on two of the studied

clusters 10% of the files were responsible of 80% of the accesses.
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Figure 3.2: Cumulative distribution of file accessed and inter arrival time for three
academic clusters

We analysed the Alpha trace and we were able to see this same pattern. Figure

3.3 show a log-log plot where the X-axis represents the rank of files in terms of

popularity and the Y-axis shows the number of accesses. On this plot, we see that

the distribution also follows a Zipf function.

Diverse workloads and environments are showing similar distribution of the popu-

larity of files. Typically, a small set of files is getting an important number of accesses

as the vast majority of files are rarely accessed.

3.1.2 Interarrival time

Ren et al. also measured time between reaccesses of the same file. This metric is

really interesting when comes to time to design caching schemes because it gives and

estimate of the lifetime of a file in memory. Figure ?? shows the inter arrival time

between jobs accessing the same file. We see that for the OpenCloud and M45 clusters
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close to 90% of the reaccessed happen within one hour of the last access.

We witnessed a similar pattern in the Alpha trace, where 70% of the reaccesses

to files were occurring within one hour from the previous jobs consuming that file.

Figure 3.4 shows a cummulative distribution function of the inter-arrival time of jobs

accessing a given file. We can see in inflection point at the one hour mark. We explain

this element by the presence of periodic jobs that are scheduled to consume the same

file every hours. This observation matches the features of the plot shown in figure 3.5

that shows the number of jobs launched over the span of the day. On this figure, we

can see that at the beginning of every hours we see a spike in the number of launched

jobs.

3.2 Job scheduling

We saw that cluster computing workloads are showing that data is being reaccessed

multiple times and the accesses are happening close in time. Even in this kind of
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Figure 3.4: Alpha trace interarrival time of jobs

situations, we find that jobs do not have the capability to take advantage of this

sharing has we come to expect on shared-memory systems. This is due to the fact

that jobs are consuming data in a specific order with no consideration of what the

other jobs are doing, or more generally, what is the state of the cluster when they are

scheduled.

Even when its entire input data is resident in the cluster’s memory, a given job

has to choose all the right replicas to fully utilize this opportunity. Without any

knowledge of the state of the replicas, the application master has no way to evaluate

the value of its placement decisions. We can expect that a job in this situation will

get about 30-40% of the place on hot replicas. This number is not exactly one third

because of the data structures used in the application master to track the tasks. The

matter is even amplify in cases where a file larger than memory is being popular.

After a job has read the file, only the portion at the end of the file will be resident

in memory. When a second job is scheduled on that file, it will start consuming the

file from beginning which will evict the end section of the file. That second job is
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Figure 3.5: Alpha trace Job launched density

effectively evicting its own data out of memory because of the fixed order in which

the blocks are consumed. We witness both of these problematic cases on our test

environments and we are convinced that given the large amount of data reuse we see

in workloads that those cases are widespread.

In this chapter, we saw that workloads from different environments show similar

characteristics in terms of data-reuse. Users tend to focus their distributed jobs on

a small set of files thus making some files much more popular than others. This

popularity should be taken advantage of by caching mechanism. Since files are being

accessed with a relatively short amount of time, we should expect memory to play an

important role in speeding up these systems.



Chapter 4

Quartet

In cluster computing frameworks, jobs often consume the same files. Ideally, we would

like to increase the efficiency of the cluster by leverage this sharing. There are two

main challenges to leveraging file sharing. First, a running application needs to be

aware of the state of the caches in the cluster. This means knowing what piece of

its input data is cached on what nodes. Second, an application needs to use this

information to schedule tasks on nodes where their data is cached.

Quartet was designed to tackle these two challenges. Quartet tracks what and

where blocks are cached. Quartet does the monitoring the content of the nodes’ kernel

page caches and distribution of this information out to applications. Applications only

receive information about their files of interest. Application masters were enhanced

to leverage this cache visibility by prioritizing the assignment of tasks to nodes, where

those nodes contain cached data needed by the task. We designed Quartet for a HDFS

cluster.

28
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Figure 4.1: Quartet high level overview

4.1 Quartet core

The Quartet core is designed to efficiently collect and distribute a description of the

contents of the memory of all the nodes to the running applications. The cache

information flows from the Quartet Watchers to the Quartet Manager before being

distributed on-demand to the applications. Figure 4.1 shows a high-level overview of

the information flow between the different components of the Quartet system.

4.1.1 Duet

Duet[5] is a framework that gives kernel- and user-space applications visibility into

the kernel’s page cache. Duet is implemented as a Linux kernel module that exposes

an API to these applications. Using this API, applications can register for updates

on the state of the pages backing a set of files of interest. Using the cache residency

information, applications can change the order in which they consume files to avoid
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accessing the disk unnecessarily. Duet is designed for cases where multiple applica-

tions running on a machine are consuming an overlapping set of files. An interesting

example presented in the paper is one where an anti-virus and backup software are

running on the same machine. These programs have no strict requirement on the or-

der in which files are analyzed or backed up, so using Duet they can get notified when

a file of interest is being read from disk to memory and opportunistically schedule

their work on that file. Using this technique, two applications consuming the same

set of file can reduce their overall disk traffic by half without explicitly collaborating

together.

4.1.2 Quartet Watcher

The Quartet Watcher is an agent running all the HDFS datanodes of the cluster. This

agent gathers cache content information using the Duet framework. The Watcher

registers a Duet application, which subscribes to events about the pages of HDFS

blocks being added and removed from the page cache. The Watcher periodically

receives, aggregates, and forwards per-block changes to the central Quarted Manager.

Quartet intelligently avoids reporting certain events that cancel out one-another. For

example, a page eviction event cancels out the page addition event for that same

page.

4.1.3 Quartet Manager

The Quartet Manager is the central entity of the Quartet system. It has complete

knowledge of the state of the page caches of the cluster. Upon Quartet start-up, the

Manager will reach out and subscribe to a specific rate of updates from all Watcher

agents. This rate can be configured to adapt to the timeliness requirements of the
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Figure 4.2: Block Residency hash table

applications. The Manager then aggregates these updates per HDFS blocks. The

manager keeps track of the number of pages of all the individual replicas of each HDFS

blocks. Figure 4.2 shows the hashtable used to store the page residency information

of HDFS blocks. The blocks presented here can be of different files as HDFS gives

identifiers independently of the file. In this example, we see that three blocks have a

portion of their data in memory. Indexed by block identifier, the Manager used the

hashtable to maintain the state of the cluster by keeping track of number of pages

of the entire block that is resident for each hot replica. It is important that the

Manager keeps track of the location of each replica since this information is key for

the applications to make the right placement decisions. If all replicas of a block reach

0% residency, the entry for that block is removed for the table.

The Quartet Manager also receives the registrations from the applications. The

application Masters register their interest in consuming a certain list of HDFS blocks

and periodically query the manager about the status of these blocks. The messages

sent to the application masters only reports on the state of replicas that saw a change

in their cache residency since the last update. These updates contain the block

identifier, the location and the current number of pages for every changed blocks.

When a block is no longer of interest because it has been consumed already, the
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Figure 4.3: Application Master to Quartet Manager communication channel

application cancels its registration for this block to limit the network traffic. Figure

4.3 shows the way the application masters stay up to date on the state of the cluster

by communicating with the Quartet Manager.

4.2 Quartet Application Frameworks

While Hadoop MapReduce and Spark standalone being different frameworks their

resource management systems are quite similar. Quartet was enable on both of these

frameworks with limited amount of changes to the source code. User applications do

not need to be changed to work with a Quartet-enabled system.

4.2.1 Apache Hadoop MapReduce

When running Hadoop Mapreduce on Yarn, the application requests containers to

the Resource Manager at the beginning of its execution based on the HDFS blocks it

plans to consume. During that process, the application master also registers itself to

the Quartet Manager and registers the list of blocks of interest.

During its execution, the application periodically queries the manager for the
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current status of those blocks. We set period to five seconds but it could be change

to adapt to the application. This information is used to choose between container

allocations from the resource manager. As explained in section 2.2.3, the resource

manager will offer containers to each application depending on the available resources

as well as the sharing configurations in relation to the owner of the job. When the

application receives a container allocation on a given node, it has to decide what tasks

to run on it. When offered a container on a given node, the application master will

follow what we call the two steps algorithm which is presented in algorithm 1. We use

two qualifier for the tasks in relation to the state of its input a node N. We define a

hot task as a task whose input is resident in the memory of node N. We define a task

Everywhere cold if none of the replicas on the block it needs to consume is currently

in memory on the cluster but it is on disk on node N.

Algorithm 1 Two-steps algorithm

1: Allocatedhost N
2: for all t in hotTasksList do
3: if t on N then
4: return t
5: end if
6: end for
7:

8: for all t in everywhereColdTasksList do
9: if t on N then

10: return t
11: end if
12: end for
13:

14: return delaySchedChoice

The 2-steps algorithm is design to ensure that every data reuse opportunities is

taken advantage of and the forward progress is ensure. The first loop (line 2) checks

if there exist a task left to execute that has its input data in memory on the node
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that was offered by the resource manager. If this is the case, we schedule that task

on the node. This is the best case scenario because the execution of this task will

incur no disk read to the host. Next, at line 8, we look for tasks that would have

node locality on the offered node but that none of the replicas are in memory. At

this point we know that the currently offered node has nothing of interest to the

application, so we choose a task that, to the best of our knowledge, has node-local as

its best placement option. Finally, if no task is hot or everewhere cold to this node we

fallback the normal delay scheduling policy. It is important to note that in the case

of applications running on Yarn, the delay scheduling has already been considered by

the resource manager. A non-optimal allocation will be offered to an application only

after the configured delay is expired. In the case of our Hadoop implementation, the

fallback to delay scheduling is to pick the first node-local task available.

Once a given task is finished, the application master notifies the Quartet Manager

that the block consumed by this task is no longer of interest and updates on its status

are no longer needed.

4.2.2 Apache Spark

The changes presented in section 4.2.1 were also implemented in Spark Standalone

mode. Spark running in this mode is following a really similar resource management

scheme that of YARN. We implemented the same two-steps algorithm on this platform

as well.

4.2.3 Other frameworks

Our implementation is based on HDFS, any application relying on HDFS for storage

could be easily modified to become Quartet-enabled. We can easily imagine Hive,
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Hadoop and Spark jobs running simultaneously on a cluster.

In conclusion, the Quartet system was designed to enable applications to make

informed scheduling decisions about cached data. We designed Quartet Core which is

used to gather and distribute the information about the page caches of the different

nodes of the cluster. We modified the Hadoop Mapreduce and Spark Standalone

application master consider the data residency information during their scheduling

decisions. Since the modifications are contained in the Application master, existing

MapReduce and Spark jobs can be used with Quartet without any modifications. As

previously mentioned, there is a trend going toward clusters that are shared between

multiple frameworks.
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Evaluation

In this chapter, we analyze to what degree re-ordering work based on cache residency

information is beneficial for distributed applications. We used a cluster to test simple

and more complex workloads in order to measure the benefits of Quartet in term of

resource utilization and runtime of workloads.

5.1 Experimental setup

We ran our experiments on a 25 nodes clusters running a custom Linux Kernel with

Duet kernel module. Each node had 16 GB of memory, 8 physical cores and are

networked together via top of rack switch. Out of these, 24 nodes are HDFS datanodes

and one is running the HDFS Namenode and the Yarn Resource Manager. The

aggregate resources of the cluster were 386GB of memory and 192 cores. The nodes

were configured to run eight tasks simultaneously. We implemented Quartet in two

distributed systems: Hadoop MapReduce and Spark Standalone.

In the following sections, we use the term ’vanilla’ to characterize the unmodified

upstream version of the framework and the term ’quartet’ for the quartet-enabled

36



Chapter 5. Evaluation 37

version.

5.2 Experiments

To evaluate the Quartet system, we ran simple benchmarks and measured the speedup

and cache hit rate improvement. Those experiments helped us confirm that our imple-

mentation was working properly. We then went on to test more complex workloads,

where multiple jobs are running concurrently and consuming a overlapping subsets

of data.

5.2.1 Sequential jobs

This workload consisted of two jobs consuming the same input ran one after the other.

We used a simple line counting application that we implemented in both frameworks

to simulate an O/I bound application. We varied the size of the input files in relation

to the size aggregate memory of the cluster. Out of the three files that we used,

one was smaller than the aggregate memory of the cluster(256 GB), one was slightly

larger(512 GB) and one about three times as large(1024 GB). Those different sizes

allowed us to evaluate impact of the size of the dataset compared to the memory on

the reuse opportunities. We measured the runtime and number of blocks accessed

from memory for the second job since it is the one that see the benefits of sharing.

For this experiment, all jobs were allocated eight tasks per node.

Block reuse

Figure 5.1 shows the number of blocks that were accessed directly from memory during

the execution of the second job for both frameworks. The Y-axis is the number of
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Figure 5.1: Normalized cache hits of HDFS blocks of the second job over the total
number of blocks on Quartet and Vanilla implementations of Hadoop and Spark

block reads saved normalized on the total number of block of the input file. The

amount of disk reads saved is also displayed in GB on the top of each bar.

Looking the number of blocks reused in the vanilla cases, we see that both frame-

works are only able to reuse 40-45% of the dataset even when it fits in the page caches

of the nodes. Using Quartet, we are able to access close to the entire dataset from

memory.

As we increased the size of the dataset, a negligible portion of the dataset is reused

in the vanilla frameworks.This is due to the problem presented in section 3.2 where

a job evicts its own input out of memory because jobs in Spark and Hadoop are

consuming blocks always in the same order. Both Quartet frameworks are showing

similar reuse numbers. As the input size increases, a smaller fraction of the HDFS

can be resident at any given time. It is interesting to see that the absolute amount
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Figure 5.2: Normalized runtime on the second job over the first on Quartet and
Vanilla implementations of Hadoop and Spark

of data used from memory is relatively stable across all runs of the same framework,

around 250 GB for Hadoop and 285 GB for Spark. These numbers represent the

amount of memory that is remaining for the kernel page caches for this particular

workload and configuration. The rest of the memory is used by the operating system

kernel, the Quartet Watcher and an handful of Hadoop or Spark JVMs.

Runtime

When looking at the runtime effect on the reuse we saw in the previous section, we see

on figure 5.2 that Spark seems to be seeing significantly more benefits than Hadoop.

This figure presents the normalized runtime of the second job over the first one on

the Y-axis.

The Hadoop Quartet implementation shows only modest improvements from 3%
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to 12% additional reduction of runtime compared to the vanilla version. The Spark

Quartet implementation on the other hand is doing much better. We can see 32%,

44%, and 21% additional reduction over the vanilla runs for 256 GB, 512 GB, and

1024 GB respectively. We explain this difference in performance between the two

implementations with the fact that Spark reuses JVM over the execution of the entire

job. Hadoop launches a new JVM for each tasks. This process takes time and the

improvements due to caching may be dwarfed by it.

These simple experiments proved that re-ordering work in cluster computing ap-

plications is feasible and can have a positive impact by reducing the disk contention

and reducing the runtime of jobs. Both of these benefits can have an important im-

pact of the overall efficiency of the cluster by allowing more jobs and more I/O to be

scheduled on the same hardware.

5.2.2 Delayed launch and reversed order access

This experiment is to characterize how time between the launch of jobs and the order

in which they consume their input is affecting the performance of applications using

Quartet.

We also examined how the propagation delay is affecting the performance of frame-

works using Quartet. This delay is caused by the fact that the page cache information

needs to be transferred from the watchers to the applications. In the worst case sce-

nario, the propagation delay can cause a job to be completely unaware of accesses

on its blocks of interest by other jobs. This case can be triggered when two jobs

consuming the same file are launched on the same cluster close in time. Due to

the propagation delay, jobs will make uninformed scheduling decisions because the

information on hot blocks is in transit in the different Quartet components.
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In these experiments, we scheduled two jobs consuming the same file while varying

the time offset at which the second job is started. We also varied the order in which the

blocks are consumed by the second job to see how this propagation delay was affecting

the performance of each implementations. In one case, both jobs were consuming the

file in the same order and in the other case the second job was working its way

from the end of the file towards the beginning. The propagation delay is harmless

when the order is reversed because both applications would not be consuming the

blocks in the same order. To compare, we measured the time between the launch

of the first job until the end of the second job. In this experiment, both jobs are

running concurrently on the cluster. Because of differences in the resource managers

of YARN and Spark Standalone the number of concurrent tasks could not be the

same for both frameworks. In the Hadoop experiment, 192 tasks were running at all

time, independently to the number of jobs scheduled but in the Spark experiment

jobs were each assigned 96 of the task slots leaving the half of the cluster idle when

the only one job was running.

Hadoop

On our Hadoop implementation of Quartet, we see on figure 5.3 that the improvement

produced by Quartet are greatly reduced when the two jobs are started at the same

time. This is showed by the first data point of the Quartet-Same line on the plot.

We explain this effect by the presence of a propagation delay inherent to Quartet.

From the point of view of a application, very few of its input block are ever hot in

the cluster because of the time it takes to communicate a page cache event triggered

by the other job from the node to the application master.

As we increase the offset we see that this effect disappears and Quartet shows

similar performance on both ordering. We see that with only a 40 seconds delay
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Figure 5.3: Total runtime of two jobs run with diversed input configuration with
varying launched offsets on Quartet Hadoop and Vanilla Hadoop

both order show similar performance. The first job that is scheduled takes the lead

and consumes its input directly from disk. The events related to those blocks are

relayed to the applications interested in these blocks. The second application which

is scheduled several seconds later will start by consuming those blocks and will follow

the order of which the previous job is consuming blocks.

It is also interesting to compare the performance of both vanilla workloads. We

see that when jobs are consuming data in the same order the runtime is reduced.

This is due to the natural sharing of the applications. Jobs are sometimes making

similar scheduling decisions and thus are sped up if the input is still resident. We

see that this effect attenuates as we increase the delay between the jobs. This is

due to the normal memory pressure on the node that evicts the blocks following the

Least-Recently-Used policy. When the two jobs are consuming data in a different

order close to no natural sharing is possible.
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Figure 5.4: Total runtime of two jobs run with diversed input configuration with
varying launched offsets on Quartet Spark and Vanilla Spark

Spark

The behaviour of Spark on this workload is different as shown on figure 5.4. Compared

to our Hadoop results shown earlier, we see no difference between the two block

processing orders across both Vanilla and Quartet implementations because Spark

ignores the order in which the input files are supplied to the application.

Vanilla Spark is very efficient at taking advantage of natural sharing that occurs

within two minutes. On the other hand, using Quartet we can ensure good all reuse

opportunities are taken advantage of even after three minutes. This
section
is weak

This
section
is weak

5.2.3 Popular dataset

We evaluated how Quartet would impact the performance of a workload of a large

number of jobs each consuming a random subset of the same large dataset. This can

simulate a dataset that is shared between several teams each looking at the data from
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Figure 5.5: Runtime of 60 Hadoop jobs launched at varying delays consuming a 15%
subset of a 1 TB dataset
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a different angle.

We scheduled 60 Hadoop jobs each consuming a random 15% subset of blocks

forming a 1 TB file. We added the jobs to the queues at varying offsets but only 6

jobs were running simultaneously at any given time. We see on figure 5.5 the total

runtime of this workload on our Hadoop cluster on both Quartet and Vanilla. The last

data point of each line shows the runtime of where all the jobs were run sequentially.

We see that Quartet can significantly reduce the runtime of such workload with

close to a 1300 seconds difference when jobs are scheduled 40 seconds apart which

represents a 21% reduction. We measured similar speedup with 30 and 45 jobs with

20% and 21% reduction respectively.
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Conclusion

Based on the observations that datasets are shared between many users and is often

reaccessed quickly, we studied how cluster computing frameworks are taking advan-

tage of this sharing. We found that mainstream frameworks like Hadoop and Spark

have a hard time seeing the benefits of cached data. This is due to the fact that

they consumed data in a specific order with no consideration of the content of the

caches of the nodes in the cluster. This rigid scheduling forces applications to miss

sharing opportunities. Taking advantage of the data sharing inherent to cluster com-

puting workloads would mean reducing the number of disk reads, speeding up tasks

execution as well cutting on disk contention.

We designed Quartet to give visibility on the content of the page caches to the

distributed applications. Application masters of Apache Hadoop MapReduce and

Apache Spark were modified to leverage this new knowledge. Applications can now

reorder their work to schedule tasks on nodes that have their input data resident in

memory.

Using Quartet, we were able to show that distributed applications can take ad-

vantage of cached data given that they have the knowledge and the capability. We

45
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showed that Quartet can reduce the run time of common reuse use cases and fully

take advantage of blocks resident in memory. When some portion of data set is al-

ready resident in memory, Quartet enabled jobs are able to fully utilize this data from

memory and thus avoiding disk access latency and disk contention.

This approach was showed to work particularly well on Spark but less so on

Hadoop MapReduce. We attributed this difference to the fact that the I/O element

of the runtime of tasks in MapReduce is relatively shorter than of Spark. So the

reduction of this element is less beneficial because of Amdahl’s law [3]. This differ-

ence is due to the fact that on MapReduce, a new JVM is launched for every task

as opposed to being reused for multiple tasks on Spark. Quartet thus seems more

beneficial for short running tasks where the disk access takes a significant portion of

the run time.

Further work is needed to fully characterize how distributed applications can be

improved with the added capability that is offered by Quartet. Traces of real world

workloads would help to quantify the benefits that practitioners would witness in their

environments. The currently available traces [?, ?] do not characterize file accesses

with enough detail to simulate those workloads on a Quartet-enable cluster.
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