ELSEVIER

Computer Networks 35 (2001) 457-472

COMPUTER
NETWORKS

www.elsevier.com/locate/comnet

Hitting the distributed computing sweet spot with TSpaces

Tobin J. Lehman **, Alex Cozzi ?, Yuhong Xiong *!, Jonathan Gottschalk ?,
Venu Vasudevan °, Sean Landis %2, Pace Davis ¢, Bruce Khavar ¢, Paul Bowman

& IBM Research Division, IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
® Motorola Labs, 1301 E. Algonquin Road, 1L02-2240, Schaumburg, IL 60196, USA
¢ Brokerage Systems and Services, 68 Lombard Street, London, UK EC3V 9LJ
d Cyberonix, 777 Oakport Street, Suite 810, Oakland, CA 94621, USA

d

Abstract

Our world is becoming increasingly heterogeneous, decentralized and distributed, but the software that is supposed
to work in this world, usually, is not. TSpaces is a communication package whose purpose is to alleviate the problems of
hooking together disparate distributed systems. TSpaces is a global communication middleware component that in-
corporates database features, such as transactions, persistent data, flexible queries and XML support. TSpaces is an
excellent tool for building distributed applications, since it provides an asynchronous and anonymous link between
multiple clients or services. The communication link provided by TSpaces gives application builders the advantage of
ignoring some of the harder aspects of multi-client synchronization, such as tracking names (and addresses) of all active
clients, communication line status, and conversation status. For many different types of applications, the loose syn-
chronization provided by TSpaces works extremely well. This paper relates our experiences in building distributed
systems with TSpaces as the central communication component. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Distributed computing; Java; Database; Messaging; Message oriented middleware; Connectionware; Tuplespaces

1. Introduction — disparate computing

The business world is the center of ‘“‘disparate
computing”. Through acquisitions, mergers, de-
centralized IT shops and just plain miscommuni-
cation, most large businesses have numerous
incompatible software subsystems. In addition, it
is usually impossible (or at least prohibitively ex-
pensive) for them to start over from scratch,

* Corresponding author. Tel.: +1-408-927-1781.

E-mail address: toby@almaden.ibm.com (T.J. Lehman).
! Present address: 4401 Calypso Terrace Fremont, CA 94555.
2 Present address: P.O. Box 8000, Park City, Utah 84060.

merge the existing components into one mono-
lithic system or rebuild all of the software com-
ponents so that they become matched parts of a
distributed system. The only real choice a business
has is to run its various programs (business
planning, accounting, payroll, inventory, etc.) in-
dependently and then build ad hoc gateways be-
tween them so that they can communicate.
Though difficult and messy, the ad hoc gateways
do not pose a terrible problem if there are only a
few. However, that can change if there are entirely
new computing platforms that must be added each
potentially with many new programs and devices.
For example, consider a business that wants to
combine its business software components, such as

1389-1286/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PI:S1389-1286(00)00178-X

458 T.J. Lehman et al. | Computer Networks 35 (2001) 457472

payroll, accounting and inventory tracking, with
other software and devices, such as the warehouse
robot device control system, the building HVAC
controls, the building security system, the em-
ployees’ pagers and smart cell phones. Designed as
one large entity, such a large system would present
a formidable challenge to build. However, de-
signed as a set of independent components with
well-defined inter-faces that are joined with an
intelligent messaging middleware system, it could
be relatively straightforward to build and main-
tain.

From a technology user’s viewpoint, the world
is becoming increasingly convenient, with more
connected devices in the home and office, more
inter-connected and functional programs on the
Internet, and more services on the Web. From a
technology provider’s viewpoint, however, the
world is becoming increasingly distributed and
heterogeneous, which equates to a greater diffi-
culty in building applications that span multiple
platforms and connect large numbers of Web or
Internet services. One technique for addressing this
problem, which has shown considerable promise,
is the services paradigm — building all software
pieces as independent entities (called services) that
communicate via messaging middleware. By
keeping the components separate, they can be
tested, maintained and improved independently.
In addition, by using messages via a middleware
component rather than using a direct remote
procedure call (RPC), there is an opportunity for
adding translators to the communication stream
that fix protocol, data format and data schema
disparities.

The benefits of asynchronous messaging are
well known in the information technology (IT)
shops of the Fortune 500 companies. In fact, a
recent IDC market prediction suggested that
“Message-ware” alone was going to grow 81%
over the next 5 years to a 5 billion-dollar market.
Why does messaging middleware have such rosy
predictions? There are many answers, but the main
one is simple — it will allow businesses to be more
profitable with the software that they already have,
as well as give them the flexibility to grow into new
areas without having to completely rewrite their
current software systems.

1.1. Hitting the sweet spot

TSpaces [8,9], a project at the IBM Almaden
Research Center, is a messaging middleware
component that combines asynchronous messag-
ing with database features, all in one easy to use,
portable package. Having a very small footprint
and being written in Java, it has the ability to run
on virtually any platform, from very small devices
(like a palm device or an intelligent network hub)
to mainframes (like the IBM 390 platform). The
database capability of TSpaces sets it apart from
other pure messaging systems. By being a persis-
tent data store, as well as a data delivery system,
TSpaces provides applications with greater free-
dom with respect to data management — the mes-
sage queues are also database stores that can be
queried with a sophisticated query language. This
gives users the flexibility to use a single system for
communication and basic storage needs, and it
also gives them the ability to treat transient data
and permanent data in the same way.

TSpaces offers users a different style of multi-
point communication. Different from multi-cast,
where the receivers must register in advance,
TSpaces provides something more like multi-
receive, where receivers can attach ‘“after the fact”
and still receive messages. This opens the door for
solutions that involve dynamic sets of clients,
producers/consumers, agents or service providers.

From monitoring the hundreds of organizations
that are using TSpaces, we have seen that TSpaces
offers a useful set of features that benefits a wide
variety of distributed applications — basically, it
hits the “sweet spot” of distributed computing. In
this paper, we will present an overview of TSpaces
and a simple taxonomy of the types of distributed
application that have profited from using TSpaces.
They share one or more of the following uses of
TSpaces: as a message/event delivery system, load
balancing/sharing mechanism, a local system hub,
a legacy application integrator, a semi-structured
database system, a transcoding host platform, or
an application server. Then, we will show how we
have used TSpaces in our own lab in several pro-
jects. Though we have numerous internal projects:
a universal print solution, a message delivery sys-
tem, a services registry, a distributed file system, an

T.J. Lehman et al. | Computer Networks 35 (2001) 457-472 459

application distribution system, a multi-client
PDA synchronization database system, a core for
an intelligent environment and a service interface
database system, we will highlight three represen-
tative projects. Finally, we will explore several case
studies of TSpaces in customer products or in
production use.

This paper is organized as follows. In Section 2,
we will give a brief overview of the TSpaces
function and then provide a simple taxonomy of
TSpaces usage. In Section 3, we will present ex-
amples of IBM solutions that use TSpaces,
namely, a universal print solution, an application
launcher and a multi-user personal device Sync
Server. In Section 4, we will describe several cus-
tomer applications where TSpaces plays a central
role. Finally, in Section 5, we will draw some
conclusions from our study of TSpaces applica-
tions and conclude the paper.

2. TSpaces function and usage taxonomy

One of the challenges in explaining what
TSpaces is, is coming up with a set of terms or
categories that define what it does. Since we could
not find an existing term or category that accu-
rately describes the TSpaces function or abilities,
we coined the term “Intelligent Connection-ware”
as a broad category to cover the TSpaces functions
of asynchronous messaging, event notification,
XML document management and transactional
database management. As for coming up with a
new term to define TSpaces itself, we have been
less successful. While the term ‘““Software Duct
Tape” is somewhat accurate (it is a product used
to connect things that were not originally made to
be connected, or a product used to patch an ex-
isting system), it does not quite capture the essence
of the flexibility of TSpaces in the general area of
distributed computing. We are still looking.

2.1. TSpaces function

TSpaces, a direct decendant of the Linda system
[1,2] at Yale University, has a relatively simple
programming interface. The primary data struc-
ture is the tuple, which is a vector of fields, where

each field contains a typed value. Tuples live in
spaces, which are simply collections of tuples. A
user invokes TSpaces operations on a space,
reading and writing tuples. Users create spaces,
giving them their names and defining their pur-
poses. For example, one space might be used to
hold print jobs, while another might be used to
hold temperature sensor output, while still another
might be used to hold banking transactions.

2.1.1. Tuples — the basic data structure

Each field in a tuple has a value, which can be a
primitive type (e.g., integer, string, float) or
a complex type (e.g., a multi-dimensional array, a
Java object, a Java class). Tuples may even contain
tuples (i.e., they can be nested), which provides for
greater user freedom in managing data and also
provides for greater freedom for the TSpaces
server to manage and manipulate data. Everything
in TSpaces is managed as a tuple — requests going
from a client to the TSpaces engine are wrapped in
a tuple, and the results coming back are expressed
in a tuple (a tuple of tuples, if the result contains
multiple items). In our standard notation, a tuple
with three fields (the first field, an integer with the
value ““5”°, the second field, a string with the value
“bar”’, and a third field, a float with the value 9.3)
would be represented as (5, “bar”, 9.3).

A TSpaces client writes tuples to the server and
also reads tuples. In order to read, the client must
specify the tuple(s) to be read with a query. The
simplest form of query is a template match. A
template tuple comprises both actual fields (fields
with values) or formal fields (fields with just a type).
For example, to match the tuple (5, “bar”, 9.3), we
could perform an exact match and specify template
tuple with the following values: queryTem-
plate = (5, “bar”, 9.3), which would match only
tuples of the form (5, “bar”, 9.3). Or, we could do a
more general match and specify queryTemplate =
(Integer, String, Float), which would match any
three field tuple comprising an integer, a string and
a float. We could even do something semi-specific,
like queryTemplate = (5, String, 9.3).

2.1.2. TSpaces operations
The basic primitive operations supported by the
TSpaces server are:

460 T.J. Lehman et al. | Computer Networks 35 (2001) 457472

o write(tuple): Adds a tuple to a TSpaces space.

o take(templateTuple): Performs an associative
search for a tuple that matches the template.
When found, the tuple is removed from the
space and returned. If none is found, null is re-
turned.

o waitToTake(templateTuple): Performs an asso-
ciative search for a tuple that matches the tem-
plate. Blocks until a match is found. Removes
and returns the matched tuple from the space.

o read(templateTuple): Like “take” above, except
that the tuple is not removed from the tuple
space.

o waitToRead(templateTuple): Like “waitTo-
Take” above, except that the tuple is not re-
moved from the tuple space.

o scan(templateTuple): Like “read” above, except
returns the entire set of tuples that match.

o eventRegister(command, template tuple, callback
routine): Register for an event corresponding to
the command (Write, Delete/Update) and the
template tuple. The supplied (client-side) call-
back routine will be called when the event
occurs.

o countN(templateTuple): Like “scan” above, ex-
cept that it returns a count of matching tuples
rather than the set of tuples itself.

There are other operations (e.g., eventDeRegister,

getVersion, status, exists, delete, deleteAll, multi-

Write, update, cleanup), other functions (admin/

security commands, XML support, transaction

features, applet support), as well as a mechanism
to create new operators and download them, but
we will not go into detail on those features here.

We refer the interested reader to the Programmer’s

Manual on the TSpaces Web page [7].

2.1.3. Using T'Spaces

To use TSpaces, a client must locate a TSpaces
server (either by knowing a server name or by
using a server location service) and then attach to
a particular tuplespace inside of it. In a TSpaces
server there can be millions of tuplespaces (also
called “spaces’), which are collections of tuples
that are related through the applications that
manage them. Unlike a relational database, where
tables each have a particular design, or schema, a
space does not have any schema associated with it.

The tuples in a space are all self-describing, which
means they do not rely on any sort of “‘space
schema” to give their values meaning.

For a given use, like communicating with a
known device such as a printer, the name of the
tuplespace may also be supplied by the TSpaces
discovery service. Once attached to a tuplespace,
a client calls the various TSpaces operators to
manipulate tuples (read, write, take, update, de-
lete, etc.). A client can communicate with an ar-
bitrary number of clients by interacting with
them through a single space, but a client is also
not restricted to a single space or even a single
server. Clients have the freedom to attach to
servers and interact with spaces at will — there is
no “message channel” set up required and there
is no penalty for detaching from a server and
reattaching later.

2.1.4. The usefulness of TSpaces

TSpaces embodies a useful set of functions in a
single system. It has database capabilities, but it
does not require the user to learn about the com-
plexities of the relational model or the difficulty in
using the dynamic programming interface. It has
messaging capabilities, but it does not require the
user to set up complicated message channels. It
employs a Web server internally that allows users
to view the contents of a space — without having to
form a single query. Our own experience with
writing TSpaces applications has shown that this
simple feature — being able to look inside the
TSpaces engine with a Web browser — has reduced
debugging time by a factor of three.

So, TSpaces is a useful “Swiss Army Knife” for
programming. However, it is not just the things
that it does, but also the way that it does them. By
promoting asynchonous messaging as its primary
method for interaction, TSpaces encourages a
highly effective design methodology in application
construction. Components connected through
TSpaces are loosly connected though a messaging
interface. This makes it easy to test components
separately just by sending and receiving tuples.
Also, since the messages themselves can easily be
examined, the communication pipeline can also be
checked and monitored, in addition to the indi-
vidual components.

T.J. Lehman et al. | Computer Networks 35 (2001) 457472 461

Asynchronous messaging also promotes dis-
connected use. Wireless clients, mobile devices,
and non-reliable connections work well with
TSpaces. A client can connect just long enough to
post some messages and receive some messages,
without incurring any penalty for disconnecting.
Yet another benefit of asynchronous messaging is
the notion of anonymous clients that can connect
and participate in a group job (e.g., a large parallel
computation), or provide some sort of service. By
tying the activation of a service to a space, it is
possible to trigger the launching of a service from
any electronic platform (e.g., a workstation, a
phone, a PDA or even another service).

2.2. A simple usage taxonomy

From our own use of TSpaces and from ob-
serving the TSpaces customer base, we have iden-
tified at least eight distinct basic uses of this
technology. Most applications incorporate multi-
ple aspects (such as a message system, event noti-
fication system, XML store and database system).
We list the eight main uses of TSpaces here, each
with an explanation.

o Heterogeneous message system. Applications
needing to send messages across multiple plat-
forms (e.g., Linux, MacOS, VM, AIX and even
Windows) use TSpaces to send and receive in-
formation. An example of this is IBM’s Info-
Print Manager product, which uses TSpaces to
send print job status messages between its Win-
dows and Unix components.

o FEvent mechanism for heterogeneous platforms and
disparate devices. Applications needing to be
notified on one platform or device when some-
thing happens on another platform or device
can use TSpaces as the “event intermediary”.

o Load sharing or load balancing. In any situation
where there are producers and consumers, or
multiple agents to perform a stream of tasks,
TSpaces is an ideal mechanism for sharing jobs
across multiple workers. One or more work cre-
ators submit jobs by placing “job tuples” in the

database system. Although it is neither a rela-
tional database system nor an object-oriented
database system, it behaves a bit like both. A
user can treat a tuplespace as a set of homoge-
neous records, much like a relational database
table. However, the user is not required to pre-
define the schema of the records, as he would
in a relational database table [4-6]. A user can
also treat a tuplespace as a collection of objects
— a user can store any Java object (or graph of
objects) in the field of a tuple, but still perform
indexed searches on those objects.

Local network controller. In a multiple heteroge-
neous appliance closed environment, such as an
automobile, home or factory, TSpaces provides
the communication layer, the device status
broadcast mechanism, the permanent log of
message activity, the authorization layer and
the device protocol/data format message trans-
lator. In embedded applications, where devices
know only how to speak their own language
and say a limited number of things (e.g., “The
coffee is ready”, ‘“Sensor 2a-493 reading at
14:00 is 451°F”, or “Pod bay door malfunc-
tion”), TSpaces performs the job of message
clearinghouse and universal translator.
Gateway and host for transcoders and transmog-
rifiers. > As an asynchronous messaging compo-
nent, TSpaces represents a natural platform for
intermediaries, proxies, filters, generators, mon-
itors and transcoders. Messages passing through
TSpaces can be modified by multiple translators
in order to be more presentable to the receiving
party.

An XML Store. Though not intended to serve as
an XML warehouse (TSpaces is meant to store
megabytes of data, not terabytes or petabytes),
TSpaces does have the ability to store XML
documents and retrieve them using the XML
query language, XQL. Our intended use for
the XML feature is to serve as a service

* A transcoder is something that changes the shape of an

jOb space and available workers remove them object or information. For example, a transcoder might change
and execu,te them as needed the order of the attributes of an address record, or it might

. . change the protocol that is used to send the data. A transmog-
e Object database, semi-structured database or rifier, on the other hand, performs a complete change of an

transaction system. TSpaces is a tuple-based object (say, from a personnel record to a dung beetle).

462 T.J. Lehman et al. | Computer Networks 35 (2001) 457472

description mechanism, where network services
are described in XML and potential clients can
search the list of services using XQL.

o A service discovery mechanism. As described in
the above use (An XML Store), TSpaces works
as a discovery mechanism. Services (devices,
programs or resources that conform to the stan-
dard service API) register themselves by entering
a description tuple into a predefined space in the
TSpaces server (Usually the TSDS — the Tuple-
Space Discovery Space). Clients query the dis-
covery space to locate services and employ
them.

3. Uses of TSpaces inside of IBM

At the IBM Almaden Research Center, the
birthplace of TSpaces, we have created numerous
solutions with TSpaces at the core, three of which
we will describe here. We have created a universal
print solution, an application launcher, and a
multi-sync server (MSS).

3.1. A universal print solution

Despite the decades of progress in operating
systems, networks and printers, we still had a
problem with printing at the IBM Almaden site.
Even though we had full connectivity, the simple
fact was that we could not easily print on any
printer from any client machine. The larger
printers were all attached to our AIX (IBM’s Unix
System) and VM networks, but the smaller print-
ers were attached to individual machines, each
running a different operating system (flavors of
Linux, Windows, OS/2, or even MAC OS). Any
one operating-specific solution, such as running
LPD on each machine, was not sufficient.

We encountered several problems:

1. We could not send an arbitrary print stream to
any printer — some were postscript printers,
some were ink jet printers, some were larger la-
ser printers. We needed a way to convert the
print stream created by a client into one that
worked with the desired printer, without load-
ing all 300 printer device driver types onto all
1000 client machines in the building. Other so-

lutions involving the dynamic loading of device
drivers did not work on our existing machines
or printers.

2. We needed a mechanism for discovering all
available printers and their capabilities. In the
days when everyone was using AIX, whatever
names popped up when the LPQ command
was issued (query all printers) was all the users
got in terms of helpful information. Although
there was some attempt at helpful naming of
the printers (e.g., B1-4029ps meant that the
LexMark printer, model 4029, found in the first
floor of the B-wing, was a postscript printer), it
was just as common for printers to be called
“xyzzy” or “TJLps”. There was no database
of printers kept with useful information sup-
plied about each one.

3. There was no way for a client device that had
no print capability (i.e., no capacity to load
and run print drivers), such as a Palm device
or a smart phone, to contact a printer.

4. Program support for building services, such as
printing, was operating system specific. So, if
one were to write a multi-platform program
that included printer support, then that pro-
gram would have to perform a different set of
tasks for printing, depending on the platform
it was on.

What was needed was a mechanism to first find

every printer on the network and then send the

print jobs to the printers. The solution that pre-
sented itself was to use TSpaces as the data con-
nection to clients and printers on all platforms.

Since TSpaces is written in Java, it runs on virtu-

ally all platforms and has a uniform interface,

namely, tuples. As shown in Fig. 1, the major
functional pieces in our solution are the Client

Daemon, the Printer Daemon, and the file con-

version services. Each Printer Daemon controls

one or more printers. It registers its set of the
printers to TSpaces. By keeping a richer set of
information on the printers (and all of the other
services, for that matter), it made it much easier
for users to figure out where the printer was, who
owned it, who maintained it, what the character-
istics were (speed, color, duplex, etc.) and just how
busy it was. The Client Daemon runs on the user’s
computer. It detects print requests from the user,

T.J. Lehman et al. | Computer Networks 35 (2001) 457472 463

Fig. 1. A universal print solution.

obtains all the available printers and their attri-
butes from the print space, and interacts with the
user to choose a printer and its settings. If neces-
sary, file conversion can also be done through the
available services. For example, if a PDF file is
sent to a PostScript printer, the Printer Daemon
can invoke the PDF2PS service before printing.
On desktop computers, the files to be printed
are copied to a predefined print directory. The
Client Daemon keeps polling for new files in this
directory, and, when it sees one, brings up a print
wizard on the screen. The wizard shows a list of
the printers registered in TSpaces. The user can
then choose a printer, and send the print job to the
space. On hand-held devices where thread support
is not available, the client software simply writes a
tuple with the print job to TSpaces. That job will

be picked up by another computer for processing.
On the printer side, the Printer Daemon obtains
the printer information, such as the printer name,
print command, printer features, from an XML
file. After registering the printers, it blocks waiting
for print jobs. When a job arrives through the
print space, it first checks if the printer can directly
handle the format of the print file. If not, it first
performs file format conversion through a con-
version service before sending the print command
to the printer.

This architecture has several advantages over
conventional printing mechanisms on Windows
and UNIX systems. On Windows, a user must
install the drivers for all the printers he wants to
use, which is troublesome. The benefit of this,
though, is that the user can get access to printer

464 T.J. Lehman et al. | Computer Networks 35 (2001) 457472

specific features. For the LPD/LPR protocol on
UNIX, driver installation is not required on the
user machine, but the user does not get access to
printer specific features. TSpaces printing gives the
user the best of both worlds. By maintaining a
loose coupling between clients and printers, it is
not necessary for clients to load printer-specific
device drivers. A user can obtain printer infor-
mation from an XML file passed through the print
space. When new printers are added, the Client
Daemon will automatically find it. Also, clients
have access to printers anywhere in the network,
anywhere in the world. Since we regularly work
with other IBMers in other research and develop-
ment labs, it is convenient to send print jobs to co-
workers at their printer, halfway around the world.
Moreover, since TSpaces also connects services,
powerful transformations can be achieved in a
printing process. For example, a user does not
have to have the Adobe Acrobat Reader installed
in order to print PDF files. Also, a user can request
to print multiple logical pages on a single physical
page (the N-up format). Traditionally, a user must
find a computer where such a conversion program
is available, and transfer the file back and forth
before printing. With TSpaces printing, the user

Classes &
resources

Class Loader

Log

does not even need to know where the conversion
is performed. Furthermore, some advanced fea-
tures can also be implemented besides file format
transformation. For example, a service can filter
out all the color printers, or find the printer lo-
cated closest to the user. All of these make printing
much easier and pleasant.

3.2. PIOVRA — an application launcher

Piovra is an application distribution and mon-
itoring system based on TSpaces. Piovra consists
of a small client that is distributed in the form of a
jar file and is installed on the client machines. The
Piovra client is a “launcher” program that con-
nects to a TSpaces server and downloads the list of
the available applications. On a user’s request the
launcher download the classes that compose a
Java application and runs it in a separate thread.
The applications are stored on the TSpaces server,
where each class file is stored in a different tuple
(see Fig. 2).

As opposed to the applets distribution model,
which is based on a Web server where applications
are downloaded from the Web and reside inside a
browser, or the Web cast (push) distribution

App1
App2

Piovra Shell

Stream Handler Logger

Java Yirtual Machine

Errors and Status

Fig. 2. The Piovra Java application launcher.

T.J. Lehman et al. | Computer Networks 35 (2001) 457-472 465

model, TSpaces is a bi-directional communication
channel. A Piovra client is notified each time a new
application or a new release is installed on the
server or removed from it, and the Piovra client
can report to the TSpaces server various statistics
regarding the running applications. In addition,
Piovra is not limited to simple applets — it is able to
distribute full-fledged Java applications. Any pure
Java application can be run using the Piovra
environment without changes.

The classes stored into tuples are augmented
with meta-information, like the class name, the
revision and the grade of maturity of a particular
class. This way it is easy to design different clients
for different kind of uses. The developers, for ex-
ample, can use the Piovra client in “developer”
mode, having access to all of the latest releases of
each class, no matter how unstable they are. The
normal users on the other hand will see a new re-
lease of an application only after all of its classes
have been marked as “stable”.

Since the launched Java applications share the
same Java Virtual Machine of the launcher, the
memory footprint and the startup time of Java
applications is dramatically reduced. This allows
more applications to run at the same time, using a
fraction of the resources normally required when
the same applications run in separate JVMs.

An additional service provided by the Piovra
environment is that the launcher catches very ex-
ception and every log generated by the launched
applications and reports it back to the TSpaces
server. This way precious information about the
reliability and the performances of the deployed
applications can be easily collected.

All these features make Piovra an excellent way
to distribute and manage Java applications inside
an intranet, giving to system administrators new
levels of flexibility and control: all the applications
are kept in a centralized location on the TSpaces
server, thus enabling the rapid deployment and
upgrade of new applications.

3.3. Multi-sync server
Today’s work force enjoys the benefits of mo-

bile personal information managers (PIMs) such
as Palm Pilots, cell phones, pagers, and laptops.

Yet the convenience of these devices comes at a
cost. The average PIM user stores information on
these devices as well as more robust desktop-based
PIMs. The use of multiple PIMs then creates
multiple, independent storage locations for infor-
mation. This problem introduces a doubt and
certain nagging questions to the PIM user: “where
did T put my broker’s number” or “did I update
this week’s meeting on my palm AND outlook?”
There is an obvious need for synchronization.
Synchronizing data from multiple PIMs simplifies
the user’s interaction with these devices and re-
moves that nagging doubt. Without synchroniza-
tion, the PIM user must perform a manual copy or
edit for every bit of information added to a PIM.
Via synchronization, the PIM user can be guar-
anteed that any bit of data entered in any device
will be available and current on any other PIM.
The synchronization of PIMs for an individual
PIM user can be extended to the synchronization
for multiple PIM users each with multiple PIMs. A
group of PIM users shares the same set of problems
with the single PIM user: information entered in a
single PIM lacks the means to reach other PIMs.
Yet the group has the added problem of informa-
tion lacking the means to reach the PIMs of other
group members. Again, synchronization comes to
the rescue but, in the group setting, it must address
some additional concerns. First, since multiple
users are involved, the security of personal infor-
mation must be maintained. Also, an individual
PIM user in this group must have the option to
reject unwanted group information before it
reaches the memory-scarce landscapes of the PIM.
The TSpaces MSS accomplishes individual and
group synchronization simultaneously while ad-
dressing the concerns cited above. In its initial re-
lease, the MSS synchronized on these PIMs: Palm
Pilot/Palm Desktop, Lotus Notes, Microsoft Out-
look, and a Web Based PIM, anyday.com. The
synchronized information is of the standard ubig-
uitous PIM data types: “to do”, “memo”, ‘“‘ad-
dress/contact”, and “‘calendar/events” (see Fig. 3).
In the implementation of the MSS, there exists
a module for each PIM that collects information
(to be passed to the server) from the PIM and
stores information (received from the server) in the
PIM. The client manager and accompanying GUI

466 T.J. Lehman et al. | Computer Networks 35 (2001) 457472

Palm Desktop
PINT s
tmod tnod

Llient HSyne Fecords

bdult-Byne Server
Logical Diagram

Records

TEpace Server

Fig. 3. The IBM TSpaces multi-sync server.

will call these modules in addition to forwarding
administrative requests (create group, change
password) to the server. The server’s record courier
delivers individual records into their correspond-
ing tuplespaces from an incoming set. These tu-
plespaces represent any group to which a PIM user
belongs or the PIM user’s personal tuplespace.
Synchronization is then performed on each of
these tuplespaces. The server then aggregates re-
cords from each of these tuplespaces and sends
them back to the client manager. The client man-
ager again calls the modules to store the newly
synchronized information.

4. Uses of TSpaces outside of IBM

Hundreds of organizations have downloaded
TSpaces from the Alphaworks URL (http:/
www.alphaworks.ibm.com/) and tried it out. From
their feedback, we have learned that often, to their
(pleasant) surprise, it not only works for them
instantly “out of the box”, but it also solves their
distributed programming problem. In this section,
we relate the stories of three different customers
that tried TSpaces and found that it solved their
distributed programming problems.

4.1. Motorola’s Mojave system — mobile agents for
wide-area systems management

Current approaches to systems management
(e.g., SNMP) rely on a benevolent network envi-

ronment where latency is predictable, failures rare,
bandwidth plentiful, and attacks absent. These
assumptions are increasingly inaccurate for to-
day’s communications applications that may be
globally dispersed, may run over a mix of wired
and wireless networks, may operate over public
and private network resources, and use off-the-
shelf hardware and software. Managed applica-
tions that operate in dynamically changing
conditions impose new requirements on the man-
agement platform. The management software has
to be malleable. In other words- internally resilient
to changes in its environment and capable of rec-
onfiguring itself (internally and dynamically) to
effectively manage in a changing environment. The
Mojave project aims to build malleable systems
managers by using mobile, environment-aware
agents as the component technology.

Mobile agents are components that are envi-
ronment-aware (network, resource and threat
aware), have an independent thread of control,
and are capable of autonomously moving while
carrying their computational state with them. The
combination of autonomous mobility and envi-
ronment-awareness is key to attaining malleabil-
ity. If one can build environment-awareness into
individual components of the systems manager,
then they can monitor when their own perfor-
mance is sub-optimal and move to a more opti-
mal location. In the systems management context,
an agent may not be getting timely or consistent
access to data, sufficient computing resources, or
its operation might be hindered because collabo-

T.J. Lehman et al. | Computer Networks 35 (2001) 457-472

rating agents are not co-located. In each case, an
autonomous mobile agent can identify (and move
to) a more suitable location autonomously,
without consulting a centralized mobility man-
ager. The decentralization of environment-
awareness distinguishes mobile agent approaches
to reconfigurable systems from other competing
approaches. Decentralized adaptation is likely to
be more accurate (based on better information)
and more efficient (as each component of the
application adapts concurrently).

The Mojave implementation uses Jini and
TSpaces to support a hub-spoke framework for
agent mobility and communication (see Fig. 4).
Agents run in agent virtual machines, called pods,
which in turn map to physical machines. Pods in-
terface to a single (logical) liaison, which is im-
plemented by a TSpaces space. Agents, pods and
the liaison are Jini services that register with the

Site

[—

y Liaison

Message tl.\{)le

»
| |

Agent migration tuple

Agents —___ |

7
/

467

Jini Lookup Service (JLUS). Jini lookup and
proxy downloading mechanisms are used to tie
pods, liaisons and agents together. The TSpaces
hub is used to implement both inter-agent mes-
saging and agent migration. Executing agents mi-
grate between pods by migrating in (and out) of a
space that is accessible both to the source and
destination pod. The source pod stores a migrating
agent as an ‘“‘agent migration” tuple. The state of
the migrating agent is a MarshalledObject field in
the migration tuple. (Target) Pods that are willing
to host incoming agents use the TSpaces callback
mechanism to subscribe to “agent migration” tu-
ples. TSpaces query support is usable to implement
conditional agent migration, i.e. whereby an agent
migrates to any destination pod that provides a
certain kind of environment (e.g., low CPU utili-
zation). Conditional agent migration is important
to malleability and hard to implement without the

| <
Command/{result tuple
Agents X s
Status D
Check 7 Agents g ~
’ Status ~
Agents Check

Policies

Fig. 4. Motorola’s Mojave system.

468 T.J. Lehman et al. | Computer Networks 35 (2001) 457472

querying capabilities of a tuple space. Using a
tuplespace as the Mojave hub makes it easy to
build an agent console that monitors a running
agent computation. Since agent migration and
messaging are expressed as tuples, a console ap-
plication can subscribe to all (or selected) events in
an agent computation using standard tuple space
primitives. The hub-spoke architecture is thin-cli-
ent friendly, as interfacing to a TSpaces server is a
lightweight enough operation to be accomplished
from a Palmtop. Mojave demonstrates a KVM
(Palm) based monitoring interface that dispatches
command tuples and receives result tuples using an
extensible Palm HotSync daemon that interfaces
to the TSpaces hub of a running Mojave platform.

The processing chijects
are irnHalized from the
LDAP server. The

LS AP server cordairs
SEIVET HATES,
passarord s, XML

subs yiphion s tings and
ZML wsporse shings,

LDAFR Setver

Y
5 ervlet Engine
Stock mquests
cope 1n o the
webh . A load
balancer allowrs >.
fiom 1 to 258 wreh
servers or servlet .
o S ervlet Engine
A

Processes amthonze
logins, vahe portfolics,
change user data, ate

4.2. Brokerage systems and services — an XML-
based equity trading solution

Brokerage systems and services (BS&S) has
built a real-time equity trading system using
TSpaces as its middleware product. The system is
used to allow trading on different stock exchanges
from a variety of different front-end interfaces,
including HTML and WAP. Having chosen
TSpaces as the middleware product from the be-
ginning, they were able to take advantage of the
power and simplicity of the tuplespace-program-
ming model immediately. This allowed them to
build an extremely fast, flexible system very
quickly (see Fig. 5).

Process Fonmat the data
betareen servlat engines
and MaketMakes,
perfrrn calmalations,
athorize deals, ate

Crder and
Trade data 15
writhen to the
Data
warehose in
wal time.

Fig. 5. Brokerage systems and services.

T.J. Lehman et al. | Computer Networks 35 (2001) 457-472 469

To begin with, BS&S uses TSpaces XML
handling as the main method for passing mes-
sages. Java objects are used for information that
remains in the spaces on a more permanent basis.
Every process is designed to allow from 1 to N
instances to be run in parallel. This allows for
faster execution and increased fault tolerance by
spreading the services across several machines.
Apart from the servlet engines, the processes in-
volved can be run on any of the servers within
the network. This feature was very simple to
implement using the TSpaces model of pro-
gramming.

Fig. 5 provides a high-level overview of the
system. The four main sub-systems are the front-
end servlet engines, the back-end market makers,
the data warehouse, and the LDAP server. The
processes in-between control and format the in-
formation as it flows through the system.

As an example of how the system works we will
walk through the case of a user requesting a price
quote on a stock.

1. The user posts his stock selection to the servlet
engine from an HTML form.

2. The servlet engine receives the request and pars-
es the necessary data from the form.

3. The servlet engine then receives a unique identi-
fier for the quote request by taking the Quote-
Referenceld tuple out of the space, reading
the current id, iterating it by 1, and then putting
the tuple back into the space.

4. The servlet then packages up the quote request
into an XML message, writes it to the space,
and then does a waitToTake on the Response
with the supplied reference id.

5. A formatting process then takes this quote re-
quest and performs a look up of the market
makers that will provide a price for this certain
stock. It then formats the request into the proper
format for each market maker and writes it to
the proper space.

6. The market maker process takes the request
and fires it out to the third party.

7. The market maker receives the reply, adds the
XML header and writes it into the space.

8. A broker process takes the response, calculates
the total price, commission, taxes, etc., and
packages it into the proper XML message and

writes it into the space with the XML header

that the servlet engine has been waiting for.

9. The servlet engine transforms the XML into
HTML and writes it to the HTTP response
object.

10. The user receives his quote request.

Every process on startup looks for its entry in the
LDAP server to initialize itself. The process re-
ceives, among other information, the XML query
that it will pass to TSpaces to register itself as a
listener. It also receives the space name and the
XML Header required to append to the beginning
of each message written back to TSpaces. On
startup every process registers for “Command”
events. Command events can include process spe-
cific commands as well as a re-init command. The
re-init command tells the process to re-read its
startup parameters from the LDAP server. This
architecture allows for dynamic ordering of the
message flow through the system.

The data warehouse is used for analysis and
long-term storage. Through out the system each
process takes certain information from different
messages and fires a copy into a separate space.
Different data warehouse processes then take and
write into the RDB.

TSpaces was also helpful in the BS&S day-
to-day development. The BS&S programming
team could maintain several different versions of
the system using the same TSpace server. This was
achieved by simply changing the naming scheme of
the XML headers written into the messages. Team
A could be testing the pre-production release while
Team B was just rolling out a new proof-of-
concept design. This made BS&S more efficient
with fewer computing and IS staff resources.

We have described a very simple example of
how BS&S uses the TSpaces technology to deploy
a robust, efficient trading platform. Although
there many more agents and algorithms compris-
ing the complete system, they are not described
here, we hope that it demonstrates the power and
simplicity of the TSpaces programming model.

4.3. Cyberonix — ECP creates a true mirror world

Cyberonix, a California corporation, is a tech-
nology and solution vendor intending its products

470 T.J. Lehman et al. | Computer Networks 35 (2001) 457472

and services for the global market place. Its core
competency is “Embedded Scaled Automation™,
and it offers products as well as solutions to the
global enterprise. The solutions are vertically ori-
ented technologies like Gas Station Automation,
factory floor automation, etc.

Cyberonix created Enterprise Common Proto-
col (ECP), an integration product, to address the
needs of an enterprise to obtain real-time aware-
ness of its operation and optimize its operation in
an adaptive and swift manner. Based on Java and
targeted for the Internet, ECP employs a publish/
subscribe paradigm with real-time facilities that
can function as a real-time middleware compo-
nent, as well as a common ground for device in-
tegration and interfacing. ECP has application
development facilities and tools for a multitude of
implementations.

ECP uses TSpaces to provide a flexible, infor-
mation neutral environment to communicate in-
formation between loosely coupled systems and to
provide a flexible persistence mechanism that can
support ECP messages and objects. The TSpaces

persistence and flexible callback system allows
ECP control environments to implement object
models that utilize work-flow staging or multiple
production lines in a manner consistent with the
physical flow of work. TSpaces also provides a
way to share objects with stateless data paths such
as browser pages and bridge with XML object
representations.

TSpaces provides ECP with a mechanism for
dealing with disconnected clients. In modern con-
trol and manufacturing environments many de-
vices that are involved in the control process do
not maintain a continuous connection to ECP in-
formation channels. Examples of the devices are
Automatic Guided Vehicles (AGV’s), PDA’s,
portable batch terminals, barcode readers and
transponders. TSpaces allows ECP to provide a
communication pathway that maintains active
connections between cooperating parties.

The ECP paradigm is designed to help the
“global enterprise” to move toward a global event
driven operation. The spectrum is from ECP en-
abled embedded systems, factory floor devices all

Corporate LAN

BLC sensor FEC

[
 e—

PLE

-

e

= The Factory Mirror World: A live

= software system that reflects the
activity in the physical environment.

PLC

- sensor / Programmable
PLC PLC Logic Controller

Fig. 6. Cyberonix and ECP.

T.J. Lehman et al. | Computer Networks 35 (2001) 457472 471

the way to the middle layer and upper IT envi-
ronment. ECP will also provide facilities toward
real-time Internet integration of embedded opera-
tions.

In essence, Cyberonix Corporation has used
TSpaces to create a true implementation of a
“Mirror World”, as described in David Gelernter’s
book, Mirror Worlds [3]. A Mirror World is a
software system that represents a virtual copy of
a physical system, such as a town, a factory, or a
store. The benefit of a Mirror World is that a
person really can be everywhere at once, because it
is possible to monitor multiple virtual locations or
systems anytime from any vantage point.

Fig. 6 shows an instance of a Factory Mirror
World, where Programmable Logic Controllers
(PLCs) are hooked to various LANSs, but also
linked to a TSpaces server. The state of the PLCs,
sensors and other devices are reflected in the spaces
in the server, so anyone on the corporate LAN can
query the server to monitor the state of any part of
the factory. In addition, since the PLCs, actuators
and relays can be directed from TSpaces as well, a
remote person could not only monitor the factory
but also control all aspects of it as well.

5. Conclusion

We have given a brief overview of TSpaces and
provided a simple taxonomy of the primitive
functions (the basic uses) found in TSpaces ap-
plications. We have looked at case studies of six
systems — three from inside IBM and three from
outside IBM. Included in the six systems men-
tioned are the 8 basic uses of TSpaces: a hetero-
geneous message system, an event mechanism for
heterogeneous platforms and disparate devices, a
system for load sharing or load balancing, object
database, a semi-structured database or transac-
tion system, a local network controller, a gateway
and host for transcoders and transmogrifiers, an
XML Store and a Service Discovery Mechanism.

For such a simple system, TSpaces has an
amazing number of uses in distributed application
programming. In fact, as we have learned more
about distributed applications, both large and
small scale, it’s been rare to find an application

that would not benefit from TSpaces playing a role
somewhere. The fact is, programmers appreciate
simplicity. If they can get by with one system in-
stead of two, then they pick the one. TSpaces
provides so many essential features (messages,
events, database, XML, etc.) in one package, that
often solves most of the programmer’s distributed
application problems. Because of that, we claim
that it does, in fact, hit the sweet spot of distrib-
uted computing.

In our own research, we are building several
projects on top of TSpaces in order to make
some major strides in improving Internet com-
puting. With a communication network like
TSpaces to augment the Web, we are actively
working towards a mechanism to glue more
software components together dynamically,
which would give us all significantly increased
function at a reduced cost compared to today’s
static systems.

References

[1] Carriero and Gelernter, Linda in Context, Comm. ACM 32
(4) (1989).

[2] D. Gelernter, Generative communication in Linda,
TOPLAS 7 (1) (1985).

[3] D. Gelernter, Mirror Worlds, Oxford Press, Oxford, 1991.

[4] The main URL for IBM is http://www.ibm.com, but the
DB2 specific material can be found at http://www.
software.ibm.com/data/db2/.

[5] http://www.informix.com.

[6] http://www.oracle.com.

[71 The TSpaces Programmer’s Guide, located at http:/
www.almaden.ibm.com/cs/TSpaces/html/ProgrGuide.html.

[8] P. Wyckoff, S. McLaughry, T. Lehman, D. Ford, TSpaces,
IBM Syst. J. 37 (3) (1998) 454-474.

[9] http://www.almaden.ibm.com/cs/TSpaces.

Tobin J. Lehman (Toby) joined the
IBM Almaden Research Center in
1986, shortly after finishing his Ph.D.
degree from the University of Wis-
consin-Madison. Toby’s research in-
terests include server-based backup
systems, Object-Relation database
systems, large object management,
memory-resident database systems,
Tuplespace systems, and just about
any cool thing written in Java. Toby is
the leader of the TSpaces project and is
currently organizing a world domina-
tion project based on TSpaces.

472

T.J. Lehman et al. | Computer Networks 35 (2001) 457472

Alex Cozzi received a Ph.D. degree in
computer science from the University
of Dortmund (Germany) in 1998, and
a M.S. degree in computer science
from the Universita degli Studi, Mi-
lano, Italy, in 1994. He performed the
thesis work at IRST (Istituto per la
Ricerca Scientifica e Tecnologica), It-
aly. His research interests include
computer vision, robotics and object
oriented languages.

Yuhong Xiong received the B.S. degree
in electrical engineering from Tsinghua
University in China in 1990 and the
M.S. degree in electrical engineering
from the University of Washington in
1993. He is currently a Ph.D. student
in electrical engineering at the Uni-
versity of California, Berkeley. From
1993 to 1996, he worked at Acuson
Corp. as a software engineer. He has
also worked as an intern at Synopsys
and IBM. His research interests in-
clude component-based design, type
systems, and distributed computing.

Venu Vasudevan is a Member of Technical Staff at Motorola
Labs, where he leads the Mojave mobile agents project, and is
involved in projects related to IP-based communication archi-
tectures and home networking. He is interested in issues related
to the construction of large scale, pervasive distributed com-
puting platforms. He received a Ph.D. from Ohio State Uni-
versity in 1990.

Sean Landis is a senior staff software engineer at Motorola
Labs, where he researches Mobile Agents and their application
to service provisioning, systems management, home network-
ing, and personal mobile services. He received a Masters of
Engineering, Computer Science from Cornell University, and a
Bachelors of Science, Computer Science from University of
Utah.

Pace Davis is the head of development at Brokerage Systems &
Services, which is a UK based software company that designs,
builds, and hosts trading systems for the retail brokerage
industry.

