
Java™ 2 Platform
Enterprise Edition Specification, v1.4

Please send comments to: j2ee-spec-feedback@sun.com

Final Release - 11/24/03 Bill Shannon

ii

iii

Java™ 2 Platform, Enterprise Edition (J2EE™) Specification ("Specification")
Version: 1.4
Status: Final Release
Release: November 24, 2003
Copyright 2003 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS
Sun Microsystems, Inc. ("Sun") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license (without the right to sublicense), under the Sun’s applicable intellectual property rights to
view, download, use and reproduce the Specification only for the purpose of internal evaluation, which shall
be understood to include developing applications intended to run on an implementation of the Specification
provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (with-
out the right to sublicense) under any applicable copyrights or patent rights it may have in the Specification to
create and/or distribute an Independent Implementation of the Specification that: (i) fully implements the
Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset, superset or other-
wise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces,
fields or methods within the Licensor Name Space other than those required/authorized by the Specification
or Specifications being implemented; and (iii) passes the TCK (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification. The foregoing license is expressly conditioned on your
not acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass through"
requirements in any license You grant concerning the use of your Independent Implementation or products
derived from it. However, except with respect to implementations of the Specification (and products derived
from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant or other-
wise pass through to your licensees any licenses under Sun’s applicable intellectual property rights; nor (b)
authorize your licensees to make any claims concerning their implementation’s compliance with the Spec in
question.

For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the
Specification that neither derives from any of Sun’s source code or binary code materials nor, except with an
appropriate and separate license from Sun, includes any of Sun’s source code or binary code materials; and
"Licensor Name Space" shall mean the public class or interface declarations whose names begin with "java",
"javax", "com.sun" or their equivalents in any subsequent naming convention adopted by Sun through the
Java Community Process, or any recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any material
provision of or act outside the scope of the licenses granted above.
TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is
granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, Jini, J2EE, JavaServer Pages, Enterprise Jav-
aBeans, Java Compatible, JDK, JDBC, JavaBeans, JavaMail, Write Once, Run Anywhere, and Java Naming
and Directory Interface are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.
DISCLAIMER OF WARRANTIES

iv

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRAN-
TIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, THAT
THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not
represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY.
SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the
Specification will be governed by the then-current license for the applicable version of the Specification.
LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or clean
room implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to
you are incompatible with the Specification provided to you under this license.
RESTRICTED RIGHTS LEGEND
U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government’s rights in the Specification
and accompanying documentation shall be only as set forth in this license; this is in accordance with 48
C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R.
2.101 and 12.212 (for non-DoD acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your use of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subli-
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feed-
back for any purpose related to the Specification and future versions, implementations, and test suites
thereof.

(LFI#135810/Form ID#011801)

v

Contents

Java™ 2 Platform
Enterprise Edition Specification, v1.4 i

J2EE.1 Introduction .1
J2EE.1.1 Acknowledgements. 2
J2EE.1.2 Acknowledgements for Version 1.3 . 2
J2EE.1.3 Acknowledgements for Version 1.4 . 3

J2EE.2 Platform Overview. .5
J2EE.2.1 Architecture . 5
J2EE.2.2 Application Components . 6

J2EE.2.2.1 J2EE Server Support for Application Components. . . . 7
J2EE.2.3 Containers . 8

J2EE.2.3.1 Container Requirements . 8
J2EE.2.3.2 J2EE Servers . 8

J2EE.2.4 Resource Adapters . 9
J2EE.2.5 Database . 9
J2EE.2.6 J2EE Standard Services . 9

J2EE.2.6.1 HTTP . 9
J2EE.2.6.2 HTTPS. 9
J2EE.2.6.3 Java™ Transaction API (JTA) 10
J2EE.2.6.4 RMI-IIOP. 10
J2EE.2.6.5 Java IDL . 10
J2EE.2.6.6 JDBC™ API . 11
J2EE.2.6.7 Java™ Message Service (JMS) 11
J2EE.2.6.8 Java Naming and Directory Interface™ (JNDI) 11
J2EE.2.6.9 JavaMail™. 11

vi

J2EE.2.6.10 JavaBeans™ Activation Framework (JAF). 11
J2EE.2.6.11 Java™ API for XML Parsing (JAXP). 11
J2EE.2.6.12 J2EE™ Connector Architecture 12
J2EE.2.6.13 Security Services . 13
J2EE.2.6.14 Web Services. 13
J2EE.2.6.15 Management . 13
J2EE.2.6.16 Deployment . 13

J2EE.2.7 Interoperability . 14
J2EE.2.8 Flexibility of Product Requirements . 15
J2EE.2.9 J2EE Product Extensions . 15
J2EE.2.10 Platform Roles . 16

J2EE.2.10.1 J2EE Product Provider . 16
J2EE.2.10.2 Application Component Provider 17
J2EE.2.10.3 Application Assembler . 17
J2EE.2.10.4 Deployer . 17
J2EE.2.10.5 System Administrator . 18
J2EE.2.10.6 Tool Provider. 18
J2EE.2.10.7 System Component Provider. 18

J2EE.2.11 Platform Contracts . 18
J2EE.2.11.1 J2EE APIs . 19
J2EE.2.11.2 J2EE Service Provider Interfaces (SPIs) 19
J2EE.2.11.3 Network Protocols . 19
J2EE.2.11.4 Deployment Descriptors . 19

J2EE.2.12 Changes in J2EE 1.3. 20
J2EE.2.13 Changes in J2EE 1.4. 20

J2EE.3 Security. .23
J2EE.3.1 Introduction . 23
J2EE.3.2 A Simple Example . 24
J2EE.3.3 Security Architecture . 27

J2EE.3.3.1 Goals . 27
J2EE.3.3.2 Non Goals . 28
J2EE.3.3.3 Terminology . 28
J2EE.3.3.4 Container Based Security . 30
J2EE.3.3.5 Distributed Security. 31
J2EE.3.3.6 Authorization Model . 32
J2EE.3.3.7 HTTP Login Gateways . 33
J2EE.3.3.8 User Authentication. 33
J2EE.3.3.9 Lazy Authentication . 36

vii

J2EE.3.4 User Authentication Requirements. 36
J2EE.3.4.1 Login Sessions. 36
J2EE.3.4.2 Required Login Mechanisms. 37
J2EE.3.4.3 Unauthenticated Users. 38
J2EE.3.4.4 Application Client User Authentication 38
J2EE.3.4.5 Resource Authentication Requirements 39

J2EE.3.5 Authorization Requirements. 41
J2EE.3.5.1 Code Authorization . 41
J2EE.3.5.2 Caller Authorization . 41
J2EE.3.5.3 Propagated Caller Identities. 41
J2EE.3.5.4 Run As Identities . 42

J2EE.3.6 Deployment Requirements . 42
J2EE.3.7 Future Directions . 43

J2EE.3.7.1 Auditing . 43
J2EE.3.7.2 Instance-based Access Control 43
J2EE.3.7.3 User Registration . 43

J2EE.4 Transaction Management. .45
J2EE.4.1 Overview. 45
J2EE.4.2 Requirements . 47

J2EE.4.2.1 Web Components . 47
J2EE.4.2.2 Transactions in Web Component Life Cycles. 48
J2EE.4.2.3 Transactions and Threads . 49
J2EE.4.2.4 Enterprise JavaBeans™ Components 49
J2EE.4.2.5 Application Clients . 50
J2EE.4.2.6 Applet Clients . 50
J2EE.4.2.7 Transactional JDBC™ Technology Support 50
J2EE.4.2.8 Transactional JMS Support . 50
J2EE.4.2.9 Transactional Resource Adapter (Connector) Support 51

J2EE.4.3 Transaction Interoperability . 51
J2EE.4.3.1 Multiple J2EE Platform Interoperability 51
J2EE.4.3.2 Support for Transactional Resource Managers 51

J2EE.4.4 Local Transaction Optimization . 52
J2EE.4.4.1 Requirements . 52
J2EE.4.4.2 A Possible Design . 52

J2EE.4.5 Connection Sharing . 53
J2EE.4.6 JDBC and JMS Deployment Issues . 54
J2EE.4.7 Two-Phase Commit Support. 54
J2EE.4.8 System Administration Tools . 55

viii

J2EE.5 Naming .57
J2EE.5.1 Overview . 57

J2EE.5.1.1 Chapter Organization . 57
J2EE.5.1.2 Required Access to the JNDI Naming Environment. . 58

J2EE.5.2 Java Naming and Directory Interface™ (JNDI) Naming Context
 . 59

J2EE.5.2.1 Application Component Provider’s Responsibilities . 60
J2EE.5.2.2 Application Assembler’s Responsibilities. 63
J2EE.5.2.3 Deployer’s Responsibilities. 63
J2EE.5.2.4 J2EE Product Provider’s Responsibilities 63

J2EE.5.3 Enterprise JavaBeans™ (EJB) References. 64
J2EE.5.3.1 Application Component Provider’s Responsibilities . 64
J2EE.5.3.2 Application Assembler’s Responsibilities. 67
J2EE.5.3.3 Deployer’s Responsibilities. 68
J2EE.5.3.4 J2EE Product Provider’s Responsibilities 69

J2EE.5.4 Resource Manager Connection Factory References. 69
J2EE.5.4.1 Application Component Provider’s Responsibilities . 70
J2EE.5.4.2 Deployer’s Responsibilities. 74
J2EE.5.4.3 J2EE Product Provider’s Responsibilities 74
J2EE.5.4.4 System Administrator’s Responsibilities 76

J2EE.5.5 Resource Environment References. 76
J2EE.5.5.1 Application Component Provider’s Responsibilities . 76
J2EE.5.5.2 Deployer’s Responsibilities. 77
J2EE.5.5.3 J2EE Product Provider’s Responsibilities 78

J2EE.5.6 Message Destination References . 78
J2EE.5.6.1 Application Component Provider’s Responsibilities . 78
J2EE.5.6.2 Application Assembler’s Responsibilities. 80
J2EE.5.6.3 Deployer’s Responsibilities. 82
J2EE.5.6.4 J2EE Product Provider’s Responsibilities 82

J2EE.5.7 UserTransaction References. 82
J2EE.5.7.1 Application Component Provider’s Responsibilities . 83
J2EE.5.7.2 Deployer’s Responsibilities. 83
J2EE.5.7.3 J2EE Product Provider’s Responsibilities 83
J2EE.5.7.4 System Administrator’s Responsibilities 84

J2EE.5.8 ORB References . 84
J2EE.5.8.1 Application Component Provider’s Responsibilities . 84
J2EE.5.8.2 Deployer’s Responsibilities. 84
J2EE.5.8.3 J2EE Product Provider’s Responsibilities 84
J2EE.5.8.4 System Administrator’s Responsibilities 84

ix

J2EE.6 Application Programming Interface85
J2EE.6.1 Required APIs. 85

J2EE.6.1.1 Java Compatible APIs . 85
J2EE.6.1.2 Java Optional Packages . 86

J2EE.6.2 Java 2 Platform, Standard Edition (J2SE) Requirements 87
J2EE.6.2.1 Programming Restrictions . 87
J2EE.6.2.2 The J2EE Security Permissions Set. 88
J2EE.6.2.3 Listing of the J2EE Security Permissions Set 89
J2EE.6.2.4 Additional Requirements. 90

J2EE.6.3 Enterprise JavaBeans™ (EJB) 2.1 Requirements. 101
J2EE.6.4 Servlet 2.4 Requirements . 102
J2EE.6.5 JavaServer Pages™ (JSP) 2.0 Requirements 103
J2EE.6.6 Java™ Message Service (JMS) 1.1 Requirements 103
J2EE.6.7 Java™ Transaction API (JTA) 1.0 Requirements 104
J2EE.6.8 JavaMail™ 1.3 Requirements. 104
J2EE.6.9 JavaBeans™ Activation Framework 1.0 Requirements 106
J2EE.6.10 Java™ API for XML Processing (JAXP) 1.2 Requirements . 106
J2EE.6.11 J2EE™ Connector Architecture 1.5 Requirements 107
J2EE.6.12 Web Services for J2EE 1.1 Requirements 107
J2EE.6.13 Java™ API for XML-based RPC (JAX-RPC) 1.1 Requirements

 . 107
J2EE.6.14 SOAP with Attachments API for Java™ (SAAJ) 1.2 108
J2EE.6.15 Java™ API for XML Registries (JAXR) 1.0 Requirements . 108
J2EE.6.16 Java™ 2 Platform, Enterprise Edition Management API 1.0 Re-

quirements. 108
J2EE.6.17 Java™ Management Extensions (JMX) 1.2 Requirements . . 109
J2EE.6.18 Java™ 2 Platform, Enterprise Edition Deployment API 1.1 Re-

quirements. 109
J2EE.6.19 Java™ Authorization Service Provider Contract for Containers

(JACC) 1.0 Requirements. 109

J2EE.7 Interoperability .111
J2EE.7.1 Introduction to Interoperability. 111
J2EE.7.2 Interoperability Protocols . 112

J2EE.7.2.1 Internet and Web Protocols . 112
J2EE.7.2.2 OMG Protocols . 113
J2EE.7.2.3 Java Technology Protocols . 114

x

J2EE.7.2.4 Data Formats . 114

J2EE.8 Application Assembly and Deployment117
J2EE.8.1 Application Development Life Cycle. 118

J2EE.8.1.1 Component Creation . 119
J2EE.8.1.2 Application Assembly . 120
J2EE.8.1.3 Deployment . 120

J2EE.8.2 Optional Package Support . 121
J2EE.8.3 Application Assembly . 124

J2EE.8.3.1 Assembling a J2EE Application 124
J2EE.8.3.2 Adding and Removing Modules 126

J2EE.8.4 Deployment . 127
J2EE.8.4.1 Deploying a Stand-Alone J2EE Module 128
J2EE.8.4.2 Deploying a J2EE Application 129
J2EE.8.4.3 Deploying an Optional Package 130

J2EE.8.5 J2EE Application XML Schema . 130
J2EE.8.6 Common J2EE XML Schema Definitions 138

J2EE.9 Application Clients. .175
J2EE.9.1 Overview . 175
J2EE.9.2 Security. 175
J2EE.9.3 Transactions . 176
J2EE.9.4 Naming . 177
J2EE.9.5 Application Programming Interfaces 177
J2EE.9.6 Packaging and Deployment . 177
J2EE.9.7 J2EE Application Client XML Schema 178

J2EE.10 Service Provider Interface. .187

J2EE.11 Future Directions .189
J2EE.11.1 XML Data Binding API . 189
J2EE.11.2 JNLP (Java™ Web Start) . 190
J2EE.11.3 J2EE SPI. 190
J2EE.11.4 JDBC RowSets . 190
J2EE.11.5 Security APIs . 191
J2EE.11.6 SQLJ Part 0. 191

Appendix J2EE.A: Previous Version DTDs .193
J2EE.A.1 J2EE:application 1.3 XML DTD . 193
J2EE.A.2 J2EE:application 1.2 XML DTD . 199

xi

J2EE.A.3 J2EE:application-client 1.3 XML DTD 204
J2EE.A.4 J2EE:application-client 1.2 XML DTD 213

Appendix J2EE.B: Revision History . 221
J2EE.B.1 Changes in Expert Draft 1 . 221

J2EE.B.1.1 Additional Requirements. 221
J2EE.B.1.2 Removed Requirements. 222
J2EE.B.1.3 Editorial Changes . 222

J2EE.B.2 Changes in Expert Draft 2 . 222
J2EE.B.2.1 Additional Requirements. 222
J2EE.B.2.2 Removed Requirements. 223
J2EE.B.2.3 Editorial Changes . 223

J2EE.B.3 Changes in Community Draft . 224
J2EE.B.3.1 Additional Requirements. 224
J2EE.B.3.2 Removed Requirements. 224
J2EE.B.3.3 Editorial Changes . 224

J2EE.B.4 Changes in Public Draft . 224
J2EE.B.4.1 Additional Requirements. 224
J2EE.B.4.2 Removed Requirements. 225
J2EE.B.4.3 Editorial Changes . 225

J2EE.B.5 Changes in Proposed Final Draft . 225
J2EE.B.5.1 Additional Requirements. 225
J2EE.B.5.2 Removed Requirements. 226
J2EE.B.5.3 Editorial Changes . 226

J2EE.B.6 Changes in Proposed Final Draft 2. 226
J2EE.B.6.1 Additional Requirements. 226
J2EE.B.6.2 Removed Requirements. 226
J2EE.B.6.3 Editorial Changes . 226

J2EE.B.7 Changes in Proposed Final Draft 3. 227
J2EE.B.7.1 Additional Requirements. 227
J2EE.B.7.2 Removed Requirements. 227
J2EE.B.7.3 Editorial Changes . 227

J2EE.B.8 Changes in Final Release . 227
J2EE.B.8.1 Additional Requirements. 227
J2EE.B.8.2 Removed Requirements. 227
J2EE.B.8.3 Editorial Changes . 227

Appendix J2EE.C: Related Documents . 229

xii

1

C H A P T E RJ2EE.1
Introduction

Enterprises today need to extend their reach, reduce their costs, and lower the
response times of their services to customers, employees, and suppliers.

Typically, applications that provide these services must combine existing
enterprise information systems (EISs) with new business functions that deliver
services to a broad range of users. The services need to be:

• Highly available, to meet the needs of today’s global business environment.

• Secure, to protect the privacy of users and the integrity of the enterprise.

• Reliable and scalable, to ensure that business transactions are accurately and
promptly processed.

In most cases, enterprise services are implemented as multitier applications.
The middle tiers integrate existing EISs with the business functions and data of
the new service. Maturing web technologies are used to provide first tier users
with easy access to business complexities, and eliminate or drastically reduce user
administration and training.

The Java™ 2 Platform, Enterprise Edition (J2EE™) reduces the cost and
complexity of developing multitier, enterprise services. J2EE applications can be
rapidly deployed and easily enhanced as the enterprise responds to competitive
pressures.

J2EE achieves these benefits by defining a standard architecture with the
following elements:

• J2EE Platform - A standard platform for hosting J2EE applications.

• J2EE Compatibility Test Suite - A suite of compatibility tests for verifying
that a J2EE platform product complies with the J2EE platform standard.

INTRODUCTION2

• J2EE Reference Implementation - A reference implementation for proto-
typing J2EE applications and for providing an operational definition of the
J2EE platform.

• J2EE BluePrints - A set of best practices for developing multitier, thin-client
services.

This document is the J2EE platform specification. It sets out the requirements
that a J2EE platform product must meet.

J2EE.1.1 Acknowledgements

This specification is the work of many people. Vlada Matena wrote the first draft as
well as the Transaction Management and Naming chapters. Sekhar Vajjhala, Kevin
Osborn, and Ron Monzillo wrote the Security chapter. Hans Hrasna wrote the
Application Assembly and Deployment chapter. Seth White wrote the JDBC API
requirements. Jim Inscore, Eric Jendrock, and Beth Stearns provided editorial
assistance. Shel Finkelstein, Mark Hapner, Danny Coward, Tom Kincaid, and Tony
Ng provided feedback on many drafts. And of course this specification was formed
and molded based on conversations with and review feedback from our many
industry partners.

J2EE.1.2 Acknowledgements for Version 1.3

Version 1.3 of this specification grew out of discussions with our partners during the
creation of version 1.2, as well as meetings with those partners subsequent to the
final release of version 1.2. Version 1.3 was created under the Java Community
Process as JSR-058. The JSR-058 Expert Group included representatives from the
following companies and organizations: Allaire, BEA Systems, Bluestone Software,
Borland, Bull S.A., Exoffice, Fujitsu Limited, GemStone Systems, Inc., IBM, Inline
Software, IONA Technologies, iPlanet, jGuru.com, Orion Application Server,
Persistence, POET Software, SilverStream, Sun, and Sybase. In addition, most of
the people who helped with the previous version continued to help with this version,
along with Jon Ellis and Ram Jeyaraman. Alfred Towell provided significant
editorial assistance with this version.

Acknowledgements for Version 1.4 3

J2EE.1.3 Acknowledgements for Version 1.4

Version 1.4 of this specification was created under the Java Community Process as
JSR-151. The JSR-151 Expert Group included the following members: Larry W.
Allen (SilverStream Software), Karl Avedal (Individual), Charlton Barreto
(Borland Software Corporation), Edward Cobb (BEA), Alan Davies (SeeBeyond
Technology Corporation), Sreeram Duvvuru (iPlanet), B.J. Fesq (Individual),
Mark Field (Macromedia), Mark Hapner (Sun Microsystems, Inc.), Pierce Hickey
(IONA), Hemant Khandelwal (Pramati Technologies), Jim Knutson (IBM), Elika
S. Kohen (Individual), Ramesh Loganathan (Pramati Technologies), Jasen Minton
(Oracle Corporation), Jeff Mischkinsky (Oracle Corporation), Richard Monson-
Haefel (Individual), Sean Neville (Macromedia), Bill Shannon (Sun Microsystems,
Inc.), Simon Tuffs (Lutris Technologies), Jeffrey Wang (Persistence Software,
Inc.), and Ingo Zenz (SAP AG). My colleagues at Sun provided invaluable
assistance: Umit Yalcinalp converted the deployment descriptors to XML Schema;
Tony Ng and Sanjeev Krishnan helped with transaction requirements; Jonathan
Bruce helped with JDBC requirements; Suzette Pelouch, Eric Jendrock, and Ian
Evans provided editorial assistance. Thanks also to all the external reviewers,
including Jeff Estefan (Adecco Technical Services).

INTRODUCTION4

5

C H A P T E RJ2EE.2
Platform Overview

This chapter provides an overview of the Java™ 2 Platform, Enterprise Edition
(J2EE™).

J2EE.2.1 Architecture

The required relationships of architectural elements of the J2EE platform are shown
in Figure J2EE.2-1. Note that this figure shows the logical relationships of the
elements; it isnot meant to imply a physical partitioning of the elements into
separate machines, processes, address spaces, or virtual machines.

The Containers, denoted by the separate rectangles, are J2EE runtime
environments that provide required services to the application components
represented in the upper half of the rectangle. The services provided are denoted
by the boxes in the lower half of the rectangle. For example, the Application
Client Container provides Java Message Service (JMS) APIs to Application
Clients, as well as the other services represented. All these services are explained
below. See Section J2EE.2.6, “J2EE Standard Services”.

The arrows represent required access to other parts of the J2EE platform. The
Application Client Container provides Application Clients with direct access to
the J2EE required Database through the Java API for connectivity with database
systems, the JDBCTM API. Similar access to databases is provided to JSP pages
and servlets by the Web Container, and to enterprise beans by the EJB Container.

As indicated the APIs of the JavaTM 2 Platform, Standard Edition (J2SETM),
are supported by J2SE runtime environments for each type of application
component.

PLATFORM OVERVIEW6

Figure J2EE.2-1 J2EE Architecture Diagram

The following sections describe the J2EE Platform requirements for each kind
of J2EE platform element.

J2EE.2.2 Application Components

The J2EE runtime environment defines four application component types that a
J2EE product must support:

• Application clients are Java programming language programs that are typically
GUI programs that execute on a desktop computer. Application clients offer a
user experience similar to that of native applications, and have access to all of
the facilities of the J2EE middle tier.

• Applets are GUI components that typically execute in a web browser, but can
execute in a variety of other applications or devices that support the applet
programming model. Applets can be used to provide a powerful user interface
for J2EE applications. (Simple HTML pages can also be used to provide a
more limited user interface for J2EE applications.)

J2SE

HTTP
SSL

Database

Web Container

J2SE

ServletJSP

EJB Container

J2SE

EJB

Applet Container

J2SE

Applet
HTTP
SSL

Application Client
Container

Application
Client

W
eb S

rvcs

Mgmt

JMX

JM
S

 C
onnectors

Java
Mail

JAF

 JT
A

JAX-
RPC

SAAJ

JA
X

R

 JA
C

C

W
eb S

rvcs

Mgmt

JMX

JM
S

 C
onnectors

Java
Mail

JAF

 JT
A

JAX-
RPC

SAAJ

JA
X

R

 JA
C

C

JAX-
RPC

SAAJ

JA
X

R

JM
S

W
eb S

rvcs

Mgmt

JMX

New in J2EE 1.4

Application Components 7

• Servlets, JSP pages, filters, and web event listeners typically execute in a web
container and may respond to HTTP requests from web clients. Servlets, JSP
pages, and filters may be used to generate HTML pages that are an applica-
tion’s user interface. They may also be used to generate XML or other format
data that is consumed by other application components. A special kind of
servlet provides support for web services using the SOAP/HTTP protocol.
Servlets, pages created with the JavaServer Pages™ technology, web filters,
and web event listeners are referred to collectively in this specification as
“web components.” Web applications are composed of web components and
other data such as HTML pages. Web components execute in a web container.
A web server includes a web container and other protocol support, security
support, and so on, as required by J2EE specifications.

• Enterprise JavaBeans™ (EJB) components execute in a managed environment
that supports transactions. Enterprise beans typically contain the business logic
for a J2EE application. Enterprise beans may directly provide web services us-
ing the SOAP/HTTP protocol.

J2EE.2.2.1 J2EE Server Support for Application Components

The J2EE servers provide deployment, management, and execution support for
conforming application components. Application components can be divided into
three categories according to their dependence on a J2EE server:

• Components that are deployed, managed, and executed on a J2EE server.
These components include web components and Enterprise JavaBeans compo-
nents. See the separate specifications for these components.

• Components that are deployed and managed on a J2EE server, but are loaded
to and executed on a client machine. These components include web resourc-
es such as HTML pages and applets embedded in HTML pages.

• Components whose deployment and management is not completely defined by
this specification. Application Clients fall into this category. Future versions
of this specification may more fully define deployment and management of
Application Clients. See Chapter J2EE.9, “Application Clients” for a descrip-
tion of Application Clients.

PLATFORM OVERVIEW8

J2EE.2.3 Containers

Containers provide the runtime support for J2EE application components.
Containers provide a federated view of the underlying J2EE APIs to the application
components. J2EE application components never interact directly with other J2EE
application components. They use the protocols and methods of the container for
interacting with each other and with platform services. Interposing a container
between the application components and the J2EE services allows the container to
transparently inject the services defined by the components’ deployment
descriptors, such as declarative transaction management, security checks, resource
pooling, and state management.

A typical J2EE product will provide a container for each application
component type: application client container, applet container, web component
container, and enterprise bean container.

J2EE.2.3.1 Container Requirements

This specification requires that containers provide a Java Compatible™ runtime
environment, as defined by the Java 2 Platform, Standard Edition, v1.4 specification
(J2SE). The applet container may use the Java Plugin product to provide this
environment, or it may provide it natively. The use of applet containers providing
JDK™ 1.1 APIs is outside the scope of this specification.

The container tools must understand the file formats for the packaging of
application components for deployment.

The containers are implemented by a J2EE Product Provider. See the
description of the Product Provider role in Section J2EE.2.10.1, “J2EE Product
Provider“.

This specification defines a set of standard services that each J2EE product
must support. These standard services are described below. The J2EE containers
provide the APIs that application components use to access these services. This
specification also describes standard ways to extend J2EE services with
connectors to other non-J2EE application systems, such as mainframe systems
and ERP systems.

J2EE.2.3.2 J2EE Servers

Underlying a J2EE container is the server of which it is a part. A J2EE Product
Provider typically implements the J2EE server-side functionality using an existing
transaction processing infrastructure in combination with Java 2 Platform, Standard

Resource Adapters 9

Edition (J2SE) technology. The J2EE client functionality is typically built on J2SE
technology.

J2EE.2.4 Resource Adapters

A resource adapter is a system-level software component that implements network
connectivity to an external resource manager. A resource adapter can extend the
functionality of the J2EE platform either by implementing one of the J2EE standard
service APIs (such as a JDBC™ driver), or by defining and implementing a resource
adapter for a connector to an external application system. Resource adpaters
interface with the J2EE platform through the J2EE service provider interfaces (J2EE
SPI). A resource adpater that uses the J2EE SPIs to attach to the J2EE platform will
be able to work with all J2EE products.

J2EE.2.5 Database

The J2EE platform requires a database, accessible through the JDBC API, for the
storage of business data. The database is accessible from web components,
enterprise beans, and application client components. The database need not be
accessible from applets.

J2EE.2.6 J2EE Standard Services

The J2EE standard services include the following (specified in more detail later in
this document). Some of these standard services are actually provided by J2SE.

J2EE.2.6.1 HTTP

The HTTP client-side API is defined by thejava.net package. The HTTP server-
side API is defined by the servlet and JSP interfaces.

J2EE.2.6.2 HTTPS

Use of the HTTP protocol over the SSL protocol is supported by the same client and
server APIs as HTTP.

PLATFORM OVERVIEW10

J2EE.2.6.3 Java™ Transaction API (JTA)

The Java Transaction API consists of two parts:

• An application-level demarcation interface that is used by the container and
application components to demarcate transaction boundaries.

• An interface between the transaction manager and a resource manager used at
the J2EE SPI level (in a future release).

J2EE.2.6.4 RMI-IIOP

The RMI-IIOP subsystem is composed of APIs that allow for the use of RMI-style
programming that is independent of the underlying protocol, as well as an
implementation of those APIs that supports both the J2SE native RMI protocol
(JRMP) and the CORBA IIOP protocol. J2EE applications can use RMI-IIOP, with
IIOP protocol support, to access CORBA services that are compatible with the RMI
programming restrictions (see the RMI-IIOP spec for details). Such CORBA
services would typically be defined by components that live outside of a J2EE
product, usually in a legacy system. Only J2EE application clients are required to be
able to define their own CORBA services directly, using the RMI-IIOP APIs.
Typically such CORBA objects would be used for callbacks when accessing other
CORBA objects.

J2EE applications are required to use the RMI-IIOP APIs (specifically the
narrow method ofjavax.rmi.PortableRemoteObject) when accessing Enterprise
JavaBeans components, as described in the EJB specification. This allows
enterprise beans to be protocol independent. In addition, J2EE products must be
capable of exporting enterprise beans using the IIOP protocol, and accessing
enterprise beans using the IIOP protocol, as specified in the EJB specification.
The ability to use the IIOP protocol is required to enable interoperability between
J2EE products, however a J2EE product may also use other protocols.

J2EE.2.6.5 Java IDL

Java IDL allows J2EE application components to invoke external CORBA objects
using the IIOP protocol. These CORBA objects may be written in any language and
typically live outside a J2EE product. J2EE applications may use Java IDL to act as
clients of CORBA services, but only J2EE application clients are required to be
allowed to use Java IDL directly to present CORBA services themselves.

J2EE Standard Services 11

J2EE.2.6.6 JDBC™ API

The JDBC API is the API for connectivity with relational database systems. The
JDBC API has two parts: an application-level interface used by the application
components to access a database, and a service provider interface to attach a JDBC
driver to the J2EE platform. Support for the service provider interface is not
required in J2EE products.

J2EE.2.6.7 Java™ Message Service (JMS)

The Java Message Service is a standard API for messaging that supports reliable
point-to-point messaging as well as the publish-subscribe model. This specification
requires a JMS provider that implements both point-to-point messaging as well as
publish-subscribe messaging.

J2EE.2.6.8 Java Naming and Directory Interface™ (JNDI)

The JNDI API is the standard API for naming and directory access. The JNDI API
has two parts: an application-level interface used by the application components to
access naming and directory services and a service provider interface to attach a
provider of a naming and directory service.

J2EE.2.6.9 JavaMail™

Many Internet applications require the ability to send email notifications, so the
J2EE platform includes the JavaMail API along with a JavaMail service provider
that allows an application component to send Internet mail. The JavaMail API has
two parts: an application-level interface used by the application components to send
mail, and a service provider interface used at the J2EE SPI level.

J2EE.2.6.10 JavaBeans™ Activation Framework (JAF)

The JAF API provides a framework for handling data in different MIME types,
originating in different formats and locations. The JavaMail API makes use of the
JAF API, so it must be included as well.

J2EE.2.6.11 Java™ API for XML Parsing (JAXP)

JAXP provides support for the industry standard SAX and DOM APIs for parsing
XML documents, as well as support for XSLT transform engines.

PLATFORM OVERVIEW12

J2EE.2.6.12 J2EE™ Connector Architecture

The Connector architecture is a J2EE SPI that allows resource adapters that support
access to Enterprise Information Systems to be plugged in to any J2EE product. The
Connector architecture defines a standard set of system-level contracts between a
J2EE server and a resource adapter. The standard contracts include:

• A connection management contract that lets a J2EE server pool connections to
an underlying EIS, and lets application components connect to an EIS. This
leads to a scalable application environment that can support a large number of
clients requiring access to EIS systems.

• A transaction management contract between the transaction manager and an
EIS that supports transactional access to EIS resource managers. This contract
lets a J2EE server use a transaction manager to manage transactions across
multiple resource managers. This contract also supports transactions that are
managed internal to an EIS resource manager without the necessity of involv-
ing an external transaction manager.

• A security contract that enables secure access to an EIS. This contract pro-
vides support for a secure application environment, which reduces security
threats to the EIS and protects valuable information resources managed by the
EIS.

• A thread management contract that allows a resource adapter to delegate work
to other threads and allows the application server to manage a pool of threads.
The resource adapter can control the security context and transaction context
used by the worker thread.

• A contract that allows a resource adapter to deliver messages to message driv-
en beans independent of the specific messaging style, messaging semantics,
and messaging infrastructure used to deliver messages. This contract also
serves as the standard message provider pluggability contract that allows a
message provider to be plugged into any J2EE server via a resource adapter.

• A contract that allows a resource adapter to propagate an imported transaction
context to the J2EE server such that its interactions with the server and any
application components are part of the imported transaction. This contract
preserves the ACID (atomicity, consistency, isolation, durability) properties of
the imported transaction.

• An optional contract providing a generic command interface between an appli-
cation program and a resource adapter.

J2EE Standard Services 13

J2EE.2.6.13 Security Services

The Java™ Authentication and Authorization Service (JAAS) enables services to
authenticate and enforce access controls upon users. It implements a Java
technology version of the standard Plugable Authentication Module (PAM)
framework, and extends the access control architecture of the Java 2 Platform in a
compatible fashion to support user-based authorization. The Java™ Authorization
Service Provider Contract for Containers (JACC) defines a contract between a J2EE
application server and an authroization service provider, allowing custom
authorization service providers to be plugged into any J2EE product.

J2EE.2.6.14 Web Services

J2EE provides full support for both clients of web services as well as web service
endpoints. Several Java technologies work together to provide support for web
services. The Java API for XML-based RPC (JAX-RPC) provides support for web
service calls using the SOAP/HTTP protocol. JAX-RPC defines the mapping
between Java classes and XML as used in SOAP RPC calls. The SOAP with
Attachments API for Java (SAAJ) provides support for manipulating low level
SOAP messages. The Web Services for J2EE specification fully defines the
deployment of web service clients and web service endpoints in J2EE, as well as the
implementation of web service endpoints using enterprise beans. The Java API for
XML Registries (JAXR) provides client access to XML registry servers.

J2EE.2.6.15 Management

The Java 2 Platform, Enterprise Edition Management Specification defines APIs for
managing J2EE servers using a special management enterprise bean. The Java™
Management Extensions (JMX) API is also used to provide some management
support.

J2EE.2.6.16 Deployment

The Java 2 Platform, Enterprise Edition Deployment Specification defines a contract
between deployment tools and J2EE products. The J2EE products provide plug-in
components that run in the deployment tool and allow the deployment tool to deploy

PLATFORM OVERVIEW14

applications into the J2EE product. The deployment tool provides services used by
these plug-in components.

J2EE.2.7 Interoperability

Many of the APIs described above provide interoperability with components that
are not a part of the J2EE platform, such as external web or CORBA services.

Figure J2EE.2-2illustrates the interoperability facilities of the J2EE platform.
(The directions of the arrows indicate the client/server relationships of the
components.)

Figure J2EE.2-2 J2EE Interoperability

J2EE Platform

Database

Applet
Container

HTTP
SSL

IIOP

JRMP

Web
Container

EJB
Container

HTTP
SSL

SOAP
HTTP

JRMP

Application
Client

Container

EJB / IIOP / SSL

IIOP

JRMP

HTTP
SSL

SOAP
HTTP

IIOP

JRMP

HTTP
SSL

SOAP
HTTP

IIOP

Flexibility of Product Requirements 15

J2EE.2.8 Flexibility of Product Requirements

This specification doesn’t require that a J2EE product be implemented by a single
program, a single server, or even a single machine. In general, this specification
doesn’t describe the partitioning of services or functions between machines, servers,
or processes. As long as the requirements in this specification are met, J2EE Product
Providers can partition the functionality however they see fit. A J2EE product must
be able to deploy application components that execute with the semantics described
by this specification.

A typical low end J2EE product will support applets using the Java Plugin in
one of the popular browsers, application clients each in their own Java virtual
machine, and will provide a single server that supports both web components and
enterprise beans. A high end J2EE product might split the server components into
multiple servers, each of which can be distributed and load-balanced across a
collection of machines. This specification does not prescribe or preclude any of
these configurations.

A wide variety of J2EE product configurations and implementations, all of
which meet the requirements of this specification, are possible. A portable J2EE
application will function correctly when successfully deployed in any of these
products.

J2EE.2.9 J2EE Product Extensions

This specification describes a minimum set of facilities that all J2EE products must
provide. Most J2EE products will provide facilities beyond the minimum required
by this specification. This specification includes only a few limits to the ability of a
product to provide extensions. In particular, it includes the same restrictions as J2SE
on extensions to Java APIs. A J2EE product may not add classes to the Java
programming language packages included in this specification, and may not add
methods or otherwise alter the signatures of the specified classes.

However, many other extensions are allowed. A J2EE product may provide
additional Java APIs, either other Java optional packages or other (appropriately
named) packages. A J2EE product may include support for additional protocols or
services not specified here. A J2EE product may support applications written in
other languages, or may support connectivity to other platforms or applications.

Of course, portable applications will not make use of any platform extensions.
Applications that do make use of facilities not required by this specification will
be less portable. Depending on the facility used, the loss of portability may be
minor or it may be significant. The documentDesigning Enterprise Applications

PLATFORM OVERVIEW16

with the Java 2 Platform, Enterprise Editionsupplies information to help
application developers construct portable applications, and contains advice on
how best to manage the use of non-portable code when the use of such facilities is
necessary.

We expect J2EE products to vary widely and compete vigorously on various
aspects of quality of service. Products will provide different levels of
performance, scalability, robustness, availably, and security. In some cases this
specification requires minimum levels of service. Future versions of this
specification may allow applications to describe their requirements in these areas.

J2EE.2.10 Platform Roles

This section describes typical Java 2 Platform, Enterprise Edition roles. In an actual
instance, an organization may divide role functionality differently to match that
organization’s application development and deployment workflow.

The roles are described in greater detail in later sections of this specification.
Relevant subsets of these roles are described in the EJB, JSP, and servlet
specifications included herein as parts of the J2EE specification.

J2EE.2.10.1 J2EE Product Provider

A J2EE Product Provider is the implementor and supplier of a J2EE product that
includes the component containers, J2EE platform APIs, and other features defined
in this specification. A J2EE Product Provider is typically an operating system
vendor, database system vendor, application server vendor, or a web server vendor.
A J2EE Product Provider must make available the J2EE APIs to the application
components through containers. A Product Provider frequently bases their
implementation on an existing infrastructure.

A J2EE Product Provider must provide the mapping of the application
components to the network protocols as specified by this specification. A J2EE
product is free to implement interfaces that are not specified by this specification
in an implementation-specific way.

A J2EE Product Provider must provide application deployment and
management tools. Deployment tools enable a Deployer (see Section J2EE.2.10.4,
“Deployer”) to deploy application components on the J2EE product. Management
tools allow a System Administrator (see Section J2EE.2.10.5, “System
Administrator”) to manage the J2EE product and the applications deployed on the
J2EE product. The form of these tools is not prescribed by this specification.

Platform Roles 17

J2EE.2.10.2 Application Component Provider

There are multiple roles for Application Component Providers, including HTML
document designers, document programmers, and enterprise bean developers. These
roles use tools to produce J2EE applications and components.

J2EE.2.10.3 Application Assembler

The Application Assembler takes a set of components developed by Application
Component Providers and assembles them into a complete J2EE application
delivered in the form of an Enterprise Archive (.ear) file. The Application
Assembler will generally use GUI tools provided by either a Platform Provider or
Tool Provider. The Application Assembler is responsible for providing assembly
instructions describing external dependencies of the application that the Deployer
must resolve in the deployment process.

J2EE.2.10.4 Deployer

The Deployer is responsible for deploying application clients, web applications, and
Enterprise JavaBeans components into a specific operational environment. The
Deployer uses tools supplied by the J2EE Product Provider to carry out deployment
tasks. Deployment is typically a three-stage process:

1. DuringInstallation the Deployer moves application media to the server, gen-
erates the additional container-specific classes and interfaces that enable the
container to manage the application components at runtime, and installs appli-
cation components, and additional classes and interfaces, into the appropriate
J2EE containers.

2. DuringConfiguration, external dependencies declared by the Application
Component Provider are resolved and application assembly instructions de-
fined by the Application Assembler are followed. For example, the Deployer
is responsible for mapping security roles defined by the Application Assem-
bler onto user groups and accounts that exist in the target operational environ-
ment.

3. Finally, the Deployer starts up Execution of the newly installed and config-
ured application.

In some cases, a specially qualified Deployer may customize the business
logic of the application’s components at deployment time. For example, using
tools provided with a J2EE product, the Deployer may provide simple application

PLATFORM OVERVIEW18

code that wraps an enterprise bean’s business methods, or customizes the
appearance of a JSP page.

The Deployer’s output is web applications, enterprise beans, applets, and
application clients that have been customized for the target operational
environment and are deployed in a specific J2EE container.

J2EE.2.10.5 System Administrator

The System Administrator is responsible for the configuration and administration of
the enterprise’s computing and networking infrastructure. The System
Administrator is also responsible for overseeing the runtime well-being of the
deployed J2EE applications. The System Administrator typically uses runtime
monitoring and management tools provided by the J2EE Product Provider to
accomplish these tasks.

J2EE.2.10.6 Tool Provider

A Tool Provider provides tools used for the development and packaging of
application components. A variety of tools are anticipated, corresponding to the
types of application components supported by the J2EE platform. Platform
independent tools can be used for all phases of development through the deployment
of an application and the management and monitoring of an application server.

J2EE.2.10.7 System Component Provider

A varienty of system level components may be provided by System Component
Providers. The Connector Architecture defines the primary APIs used to provide
resource adapters of many types. These resource adapters may connect to existing
enterprise information systems of many types, including databases and messaging
systems. Another type of system component is an authorization policy provider as
defined by the Java Authorization Service Provider Contract for Containers
specification.

J2EE.2.11 Platform Contracts

This section describes the Java 2 Platform, Enterprise Edition contracts that must be
fulfilled by the J2EE Product Provider.

Platform Contracts 19

J2EE.2.11.1 J2EE APIs

The J2EE APIs define the contract between the J2EE application components and
the J2EE platform. The contract specifies both the runtime and deployment
interfaces.

The J2EE Product Provider must implement the J2EE APIs in a way that
supports the semantics and policies described in this specification. The
Application Component Provider provides components that conform to these
APIs and policies.

J2EE.2.11.2 J2EE Service Provider Interfaces (SPIs)

The J2EE Service Provider Interfaces (SPIs) define the contract between the J2EE
platform and service providers that may be plugged into a J2EE product. The
Connector APIs define service provider interfaces for integrating resource adapters
with a J2EE application server. Resource adapter components implementing the
Connector APIs are called Connectors. The J2EE Authorization APIs define service
provider interfaces for integrating security authorization mechanisms with a J2EE
application server.

The J2EE Product Provider must implement the J2EE SPIs in a way that
supports the semantics and policies described in this specification. A provider of
Service Provider components (for example, a Connector Provider) should provide
components that conform to these SPIs and policies.

J2EE.2.11.3 Network Protocols

This specification defines the mapping of application components to industry-
standard network protocols. The mapping allows client access to the application
components from systems that have not installed J2EE product technology. See
Chapter J2EE.7, “Interoperability” for details on the network protocol support
required for interoperability.

The J2EE Product Provider is required to publish the installed application
components on the industry-standard protocols. This specification defines the
mapping of servlets and JSP pages to the HTTP and HTTPS protocols, and the
mapping of EJB components to IIOP and SOAP protocols.

J2EE.2.11.4 Deployment Descriptors

Deployment descriptors are used to communicate the needs of application
components to the Deployer. The deployment descriptor is a contract between the

PLATFORM OVERVIEW20

Application Component Provider or Assembler and the Deployer. The Application
Component Provider or Assembler is required to specify the application
component’s external resource requirements, security requirements, environment
parameters, and so forth in the component’s deployment descriptor. The J2EE
Product Provider is required to provide a deployment tool that interprets the J2EE
deployment descriptors and allows the Deployer to map the application
component’s requirements to the capabilities of a specific J2EE product and
environment.

J2EE.2.12 Changes in J2EE 1.3

The J2EE 1.3 specification extends the J2EE platform with additional enterprise
integration facilities. The Connector API supports integration with external
enterprise information systems. A JMS provider is now required. The JAXP API
provides support for processing XML documents. The JAAS API provides security
support for the Connector API. The EJB specification now requires support for
interoperability using the IIOP protocol.

Significant changes have been made to the EJB specification. The EJB
specification has a new container-managed persistence model, support for
message driven beans, and support for local enterprise beans.

Other existing J2EE APIs have been updated as well. See the individual API
specifications for details. Finally, J2EE 1.3 requires support for J2SE 1.3.

J2EE.2.13 Changes in J2EE 1.4

The primary focus of J2EE 1.4 is support for web services. The JAX-RPC and
SAAJ APIs provide the basic web services interoperability support. The Web
Services for J2EE specification describes the packaging and deployment
requirements for J2EE applications that provide and use web services. The EJB
specification was also extended to support implementing web services using
stateless session beans. The JAXR API supports access to registries and
repositories.

Several other APIs have been added to J2EE 1.4. The J2EE Management and
J2EE Deployment APIs enable enhanced tool support for J2EE products. The
JMX API supports the J2EE Management API. The J2EE Authorization Contract
for Containers provides an SPI for security providers.

Many of the existing J2EE APIs have been enhanced in J2EE 1.4. J2EE 1.4
builds on J2SE 1.4. The JSP specification has been enhanced to simplify the

Changes in J2EE 1.4 21

development of web applications. The Connector API now supports integration
with asynchronous messaging systems, including the ability to plug in JMS
providers.

Changes in this J2EE platform specification include support for deploying
class libraries independently of any application and the conversion of deployment
descriptor DTDs to XML Schemas.

Other J2EE APIs have been enhanced as well. For additional details, see each
of the referenced specifications.

PLATFORM OVERVIEW22

23

C H A P T E RJ2EE.3
Security

This chapter describes the security requirements for the Java™ 2 Platform,
Enterprise Edition (J2EE) that must be satisfied by J2EE products.

In addition to the J2EE requirements, each J2EE Product Provider will
determine the level of security and security assurances that will be provided by
their implementation.

J2EE.3.1 Introduction

Almost every enterprise has security requirements and specific mechanisms and
infrastructure to meet them. Sensitive resources that can be accessed by many users,
or that often traverse unprotected open networks (such as the Internet) need to be
protected.

Although the quality assurances and implementation details may vary, they all
share some of the following characteristics:

• Authentication: The means by which communicating entities (for example,
client and server) prove to one another that they are acting on behalf of specific
identities that are authorized for access.

• Access control for resources: The means by which interactions with resourc-
es are limited to collections of users or programs for the purpose of enforcing
integrity, confidentiality, or availability constraints.

• Data integrity: The means used to prove that information has not been modi-
fied by a third party (some entity other than the source of the information).
For example, a recipient of data sent over an open network must be able to de-
tect and discard messages that were modified after they were sent.

SECURITY24

• Confidentiality or Data Privacy: The means used to ensure that information
is made available only to users who are authorized to access it.

• Non-repudiation: The means used to prove that a user performed some ac-
tion such that the user cannot reasonably deny having done so.

• Auditing: The means used to capture a tamper-resistant record of security re-
lated events for the purpose of being able to evaluate the effectiveness of secu-
rity policies and mechanisms.

This chapter specifies how J2EE platform requirements address security
requirements, and identifies requirements that may be addressed by J2EE Product
Providers. Finally, issues being considered for future versions of this specification
are briefly mentioned in Section J2EE.3.7, “Future Directions”.

J2EE.3.2 A Simple Example

The security behavior of a J2EE environment may be better understood by
examining what happens in a simple application with a web client, a JSP user
interface, and enterprise bean business logic. (The example is not meant to specify
requirements.)

In this example, the web client relies on the web server to act as its
authentication proxy by collecting user authentication data from the client and
using it to establish an authenticated session.

Step 1: Initial Request
The web client requests the main application URL, shown inFigure J2EE.3-
1.

Figure J2EE.3-1 Initial Request

Since the client has not yet authenticated itself to the application environment,
the server responsible for delivering the web portion of the application (here-
after referred to as “web server”) detects this and invokes the appropriate
authentication mechanism for this resource.

Step 2: Initial Authentication

Web Client
Web Server

Request access to
protected resource

A Simple Example 25

The web server returns a form that the web client uses to collect authentica-
tion data (for example, username and password) from the user. The web client
forwards the authentication data to the web server, where it is validated by the
web server, as shown inFigure J2EE.3-2.

Figure J2EE.3-2 Initial Authentication

The validation mechanism may be local to the server, or it may leverage the
underlying security services. On the basis of the validation, the web server
sets a credential for the user.

Step 3: URL Authorization

The credential is used for future determinations of whether the user is autho-
rized to access restricted resources it may request. The web server consults
the security policy (derived from the deployment descriptor) associated with
the web resource to determine the security roles that are permitted access to
the resource. The web container then tests the user’s credential against each
role to determine if it can map the user to the role.Figure J2EE.3-3 shows
this process.

Figure J2EE.3-3 URL Authorization

The web server’s evaluation stops with an “is authorized” outcome when the
web server is able to map the user to a role. A “not authorized” outcome is
reached if the web server is unable to map the user to any of the permitted
roles.

Web Client

Web Server

credential

Authentication data

Form

Web Client

Request access to
protected resource

Web Server

credential

Session
Context

A
uthorization

JSP/servlet
Object

SECURITY26

Step 4: Fulfilling the Original Request

If the user is authorized, the web server returns the result of the original URL-
request, as shown inFigure J2EE.3-4.

Figure J2EE.3-4 Fulfilling the Original Request

In our example, the response URL of a JSP page is returned, enabling the user
to post form data that needs to be handled by the business logic component of
the application.

Step 5: Invoking Enterprise Bean Business Methods

The JSP page performs the remote method call to the enterprise bean, using
the user’s credential to establish a secure association between the JSP page
and the enterprise bean (as shown inFigure J2EE.3-5). The association is
implemented as two related security contexts, one in the web server and one
in the EJB container.

Figure J2EE.3-5 Invoking an Enterprise Bean Business Method

The EJB container is responsible for enforcing access control on the
enterprise bean method. It consults the security policy (derived from the
deployment descriptor) associated with the enterprise bean to determine the
security roles that are permitted access to the method. For each role, the EJB
container uses the security context associated with the call to determine if it can
map the caller to the role.

Web Client

Web Server

credential

Session
Context

 JSP/Servlet
Object

Post to business logic

Result of request

Web Client

Web Server

credential

Session
Context

JSP/servlet
Object

EJB Container

EJB

A
uthorization

 Credential used to
establish security association

remote call

Security
Context

Security
Context

Security Architecture 27

The container’s evaluation stops with an “is authorized” outcome when the
container is able to map the caller’s credential to a role. A “not authorized”
outcome is reached if the container is unable to map the caller to any of the
permitted roles. A “not authorized” result causes an exception to be thrown by the
container, and propagated back to the calling JSP page.

If the call “is authorized”, the container dispatches control to the enterprise
bean method. The result of the bean’s execution of the call is returned to the JSP,
and ultimately to the user by the web server and the web client.

J2EE.3.3 Security Architecture

This section describes the J2EE security architecture on which the security
requirements defined by this specification are based.

J2EE.3.3.1 Goals

The following are goals for the J2EE security architecture:

1. Portability: The J2EE security architecture must support the Write Once, Run
Anywhere™ application property.

2. Transparency: Application Component Providers should not have to know
anything about security to write an application.

3. Isolation: The J2EE platform should be able to perform authentication and ac-
cess control according to instructions established by the Deployer using de-
ployment attributes, and managed by the System Administrator.

Note that divorcing the application from responsibility for security ensures
greater portability of J2EE applications.

4. Extensibility: The use of platform services by security aware-applications
must not compromise application portability.

This specification provides APIs in the component programming model for
interacting with container/server security information. Applications that
restrict their interactions to the provided APIs will retain portability.

5. Flexibility: The security mechanisms and declarations used by applications un-
der this specification should not impose a particular security policy, but facil-
itate the implementation of security policies specific to the particular J2EE
installation or application.

6. Abstraction: An application component’s security requirements will be logi-

SECURITY28

cally specified using deployment descriptors. Deployment descriptors will
specify how security roles and access requirements are to be mapped into en-
vironment-specific security roles, users, and policies. A Deployer may choose
to modify the security properties in ways consistent with the deployment envi-
ronment. The deployment descriptor should document which security proper-
ties can be modified and which cannot.

7. Independence: Required security behaviors and deployment contracts should
be implementable using a variety of popular security technologies.

8. Compatibility testing: The J2EE security requirements architecture must be
expressed in a manner that allows for an unambiguous determination of wheth-
er or not an implementation is compatible.

9. Secure interoperability: Application components executing in a J2EE product
must be able to invoke services provided in a J2EE product from a different
vendor, whether with the same or a different security policy. The services may
be provided by web components or enterprise beans.

J2EE.3.3.2 Non Goals

The following are not goals for the J2EE security architecture:

1. This specification does not dictate a specific security policy. Security policies
for applications and for enterprise information systems vary for many reasons
unconnected with this specification. Product Providers can provide the tech-
nology needed to implement and administer desired security policies while ad-
hering to the requirements of this specification.

2. This specification does not mandate a specific security technology, such as
Kerberos, PK, NIS+, or NTLM.

3. This specification does not require that the J2EE security behaviors be univer-
sally implementable using any or all security technologies.

4. This specification does not provide any warranty or assurance of the effective
security of a J2EE product.

J2EE.3.3.3 Terminology

This section introduces the terminology that is used to describe the security
requirements of the J2EE platform.

Principal

Security Architecture 29

A principal is an entity that can be authenticated by an authentication protocol
in a security service that is deployed in an enterprise. A principal is identified
using aprincipal nameand authenticated usingauthentication data.The con-
tent and format of the principal name and the authentication data can vary
depending upon the authentication protocol.

Security Policy Domain

A security policy domain,also referred to as asecurity domain,is a scope
over which a common security policy is defined and enforced by the security
administrator of the security service.

A security policy domain is also sometimes referred to as arealm.This speci-
fication uses the security policy domain, or security domain, terminology.

Security Technology Domain

A security technology domain is the scope over which the same security
mechanism (for example Kerberos) is used to enforce a security policy.

A single security technology domain may include multiple security policy
domains, for example.

Security Attributes

A set ofsecurity attributes is associated with every principal. The security
attributes have many uses (for example, access to protected resources and
auditing of users). Security attributes can be associated with a principal by an
authentication protocol and/or by the J2EE Product Provider.

The J2EE platform does not specify what security attributes are associated
with a principal.

Credential

A credentialcontains or references information (security attributes) used to
authenticate a principal for J2EE product services. A principal acquires a cre-
dential upon authentication, or from another principal that allows its creden-
tial to be used (delegation).

This specification does not specify the contents or the format of a credential.
The contents and format of a credential can vary widely.

SECURITY30

J2EE.3.3.4 Container Based Security

Security for components is provided by their containers in order to achieve the goals
for security specified above in a J2EE environment. A container provides two kinds
of security (discussed in the following sections):

• Declarative security

• Programmatic security

J2EE.3.3.4.1 Declarative Security

Declarative security refers to the means of expressing an application’s security
structure, including security roles, access control, and authentication requirements
in a form external to the application. The deployment descriptor is the primary
vehicle for declarative security in the J2EE platform.

A deployment descriptor is a contract between an Application Component
Provider and a Deployer or Application Assembler. It can be used by an
application programmer to represent an application’s security related
environmental requirements. A deployment descriptor can be associated with
groups of components.

A Deployer maps the deployment descriptor’s representation of the
application’s security policy to a security structure specific to the particular
environment. A Deployer uses a deployment tool to process the deployment
descriptor.

At runtime, the container uses the security policy security structure derived
from the deployment descriptor and configured by the Deployer to enforce
authorization (see Section J2EE.3.3.6, “Authorization Model”).

J2EE.3.3.4.2 Programmatic Security

Programmatic security refers to security decisions made by security aware
applications. Programmatic security is useful when declarative security alone is not
sufficient to express the security model of the application. The API for
programmatic security required by this specification consists of two methods of the
EJBEJBContext interface and two methods of the servletHttpServletRequest

interface:

Security Architecture 31

• isCallerInRole (EJBContext)

• getCallerPrincipal (EJBContext)

• isUserInRole (HttpServletRequest)

• getUserPrincipal (HttpServletRequest)

These methods allow components to make business logic decisions based on
the security role of the caller or remote user. For example they allow the
component to determine the principal name of the caller or remote user to use as a
database key. (Note that the form and content of principal names will vary widely
between products and enterprises, and portable components will not depend on
the actual contents of a principal name. Due to principal name mapping, the same
logical principal may have different names in different containers, although
usually it will be possible to configure a single product to use consistent principal
names. In particular, if a principal name is used as a key into a database table, and
that database table is accessed from multiple components, containers, or products,
the same logical principal may map to different entries in the database.)

J2EE.3.3.5 Distributed Security

Some Product Providers may produce J2EE products in which the containers for
various component types are distributed. In a distributed environment,
communication between J2EE components can be subject to security attacks (for
example, data modification and replay attacks).

Such threats can be countered by using asecure associationto secure
communications. A secure association is shared security state information that
establishes the basis of a secure communication between components.
Establishing a secure association could involve several steps, such as:

1. Authenticating the target principal to the client and/or authenticating the client
to the target principal.

2. Negotiating a quality of protection, such as confidentiality or integrity.

3. Setting up a security context for the association between the components.

Since a container provides security in J2EE, secure associations for a
component are typically established by a container. Secure associations for web
access are specified here. Secure associations for access to enterprise beans are
described in the EJB specification.

Product Providers may allow for control over the quality of protection or other
aspects of secure association at deployment time. Applications can specify their

SECURITY32

requirements for access to web resources using elements in their deployment
descriptor.

This specification does not define mechanisms that an Application
Component Provider can use to communicate requirements for secure
associations with an enterprise bean.

J2EE.3.3.6 Authorization Model

The J2EE authorization model is based on the concept of security roles. A security
role is a logical grouping of users that is defined by an Application Component
Provider or Assembler. A Deployer maps roles to security identities (for example
principals, and groups) in the operational environment. Security roles are used with
both declarative security and programmatic security.

Declarative authorization can be used to control access to an enterprise bean
method and is specified in the enterprise bean deployment descriptor. An
enterprise bean method can be associated with amethod-permission element in
the deployment descriptor. Themethod-permission element contains a list of
methods that can be accessed by a given security role. If the calling principal is in
one of the security roles allowed access to a method, the principal is allowed to
execute the method. Conversely, if the calling principal is in none of the roles, the
caller is not allowed to execute the method. Access to web resources can be
protected in a similar manner.

Security roles are used in theEJBContext methodisCallerInRole and the
HttpServletRequest methodisUserInRole. Each method returnstrue if the
calling principal is in the specified security role.

J2EE.3.3.6.1 Role Mapping

Enforcement of security constraints on web resources or enterprise beans, whether
programmatic or declarative, depends upon determination of whether the principal
associated with an incoming request is in a given security role. A container makes
this determination based on the security attributes of the calling principal. For
example,

1. A Deployer may have mapped a security role to a user group in the operational
environment. In this case, the user group of the calling principal is retrieved
from its security attributes. The principal is in the security role if the principal’s
user group matches a user group to which the security role has been mapped.

2. A Deployer may have mapped a security role to a principal name in a security
policy domain. In this case, the principal name of the calling principal is re-

Security Architecture 33

trieved from its security attributes. If this principal name is the same as a prin-
cipal name to which the security role was mapped, the calling principal is in
the security role.

The source of security attributes may vary across implementations of the
J2EE platform. Security attributes may be transmitted in the calling principal’s
credential or in the security context. In other cases, security attributes may be
retrieved from a trusted third party, such as a directory service or a security
service.

J2EE.3.3.7 HTTP Login Gateways

Secure interoperability between enterprise beans in different security policy
domains is addressed in the EJB specification. In addition, a component may choose
to log in to a foreign server via HTTP. An application component can be configured
to use SSL mutual authentication for security when accessing a remote resource
using HTTP. Applications using HTTP in this way may choose to use XML or some
other structured format, rather than HTML.

We call the use of HTTP with SSL mutual authentication to access a remote
service anHTTP Login Gateway. Requirements in this area are specified in
Section J2EE.3.3.8.1, “Authentication by Web Clients.”

J2EE.3.3.8 User Authentication

User authentication is the process by which a user proves his or her identity to the
system. This authenticated identity is then used to perform authorization decisions
for accessing J2EE application components. An end user can authenticate using
either of the two supported client types:

• Web client

• Application client

J2EE.3.3.8.1 Authentication by Web Clients

It is required that a web client be able to authenticate a user to a web server using
any of the following mechanisms. The Deployer or System Administrator
determines which method to apply to an application or to a group of applications.

• HTTP Basic Authentication

HTTP Basic Authentication is the authentication mechanism supported by the

SECURITY34

HTTP protocol. This mechanism is based on a username and password. A
web server requests a web client to authenticate the user. As part of the
request, the web server passes therealm in which the user is to be authenti-
cated. The web client obtains the username and the password from the user
and transmits them to the web server. The web server then authenticates the
user in the specified realm (referred to asHTTP Realm in this document).

HTTP Basic Authentication is not secure. Passwords are sent in simple
base64 encoding. The target server is not authenticated. Additional protection
can be applied to overcome these weaknesses. The password may be pro-
tected by applying security at the transport layer (for example HTTPS) or at
the network layer (for example, IPSEC or VPN).

Despite its limitations, the HTTP Basic Authentication mechanism is
included in this specification because it is widely used in form based applica-
tions.

• HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authenti-
cation mechanism. This mechanism requires the user to possess a Public Key
Certificate (PKC). Currently, a PKC is rarely used by end users on the Inter-
net. However, it is useful for e-commerce applications and also for a single-
signon from within the browser. For these reasons, it is a required feature of
the J2EE platform.

• Form Based Authentication

The look and feel of a login screen cannot be varied using the web browser’s
built-in authentication mechanisms. This specification introduces the ability
to package standard HTML or servlet/JSP based forms for logging in, allow-
ing customization of the user interface. The form based authentication mecha-
nism introduced by this specification is described in the servlet specification.

HTTP Digest Authentication is not widely supported by web browsers and
hence is not required.

A web client can employ a web server as its authentication proxy. In this case,
a client’s credential is established in the server, where it may be used by the server
for various purposes: to perform authorization decisions, to act as the client in
calls to enterprise beans, or to negotiate secure associations with resources.
Current web browsers commonly rely on proxy authentication.

Security Architecture 35

J2EE.3.3.8.2 Web Single Signon

HTTP is a stateless protocol. However, many web applications need support for
sessions that can maintain state across multiple requests from a client. Therefore, it
is desirable to:

1. Make login mechanisms and policies a property of the environment the web
application is deployed in.

2. Be able to use the same login session to represent a user to all the applications
that they access.

3. Require re-authentication of users only when a security policy domain bound-
ary has been crossed.

Credentials that are acquired through a web login process are associated with
a session. The container uses the credentials to establish a security context for the
session. The container uses the security context to determine authorization for
access to web resources and for the establishment of secure associations with
other components (including enterprise beans).

J2EE.3.3.8.3 Login Session

In the J2EE platform, login session support is provided by a web container. When a
user successfully authenticates with a web server, the container establishes a login
session context for the user. The login session contains the credentials associated
with the user.1

J2EE.3.3.8.4 Authentication by Application Clients

Application clients (described in detail in Chapter J2EE.9, “Application Clients) are
client programs that may interact with enterprise beans directly (that is without the
help of a web browser and without traversing a web server. Application clients may
also access web resources.

Application clients, like the other J2EE application component types, execute
in a managed environment that is provided by an appropriate container.

1. While the client is stateless with respect to authentication, the client re-
quires that the server act as its proxy and maintain its login context. A ref-
erence to the login session state is made available to the client through
cookies or URL re-writing. If SSL mutual authentication is used as the
authentication protocol, the client can manage its own authentication
context, and need not depend on references to the login session state.

SECURITY36

Application clients are expected to have access to a graphical display and input
device, and are expected to communicate with a human user.

Application clients are used to authenticate end users to the J2EE platform,
when the users access protected web resources or enterprise beans.

J2EE.3.3.9 Lazy Authentication

There is a cost associated with authentication. For example, an authentication
process may require exchanging multiple messages across the network. Therefore, it
is desirable to use lazy authentication, that is perform authentication only when it is
needed. With lazy authentication, a user is not required to authenticate until there is
a request to access a protected resource.

Lazy authentication can be used with first-tier clients (applets, application
clients) when they request access to protected resources that require
authentication. At that point the user can be asked to provide appropriate
authentication data. If a user is successfully authenticated, the user is allowed to
access the resource.

J2EE.3.4 User Authentication Requirements

The J2EE Product Provider must meet the following requirements concerning user
authentication.

J2EE.3.4.1 Login Sessions

All J2EE web servers must maintain a login session for each web user. It must be
possible for a login session to span more than one application, allowing a user to log
in once and access multiple applications. The required login session support is
described in the servlet specification. This requirement of a session for each web
user supports single signon.

Applications can remain independent of the details of implementing the
security and maintenance of login information. The J2EE Product Provider has
the flexibility to choose authentication mechanisms independent of the
applications secured by these mechanisms.

Lazy authentication must be supported by web servers for protected web
resources. When authentication is required, one of the three required login
mechanisms listed in the next section may be used.

User Authentication Requirements 37

J2EE.3.4.2 Required Login Mechanisms

All J2EE products are required to support three login mechanisms: HTTP basic
authentication, SSL mutual authentication, and form-based login. An application is
not required to use any of these mechanisms, but they are required to be available
for any application’s use.

J2EE.3.4.2.1 HTTP Basic Authentication

All J2EE products are required to support HTTP basic authentication (RFC2068).
Platform Providers are also required to support basic authentication over SSL.

J2EE.3.4.2.2 SSL Mutual Authentication

SSL 3.02 and the means to perform mutual (client and server) certificate based
authentication are required by this specification.

All J2EE products must support the following cipher suites to ensure
interoperable authentication with clients:

• TLS_RSA_WITH_RC4_128_MD5

• SSL_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

• SSL_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

These cipher suites are supported by the major web browsers and meet the
U.S. government export restrictions.

J2EE.3.4.2.3 Form Based Login

The web application deployment descriptor contains an element that causes a J2EE
product to associate an HTML form resource (perhaps dynamically generated) with
the web application. If the Deployer chooses this form of authentication (over HTTP
basic, or SSL certificate based authentication), this form must be used as the user
interface for login to the application.

The form based login mechanism and web application deployment descriptors
are described in the servlet specification.

2. The SSL 3.0 specification is available at:http://home.netscape.com/

eng/ssl3

SECURITY38

J2EE.3.4.3 Unauthenticated Users

Web containers are required to support access to web resources by clients that have
not authenticated themselves to the container. This is the common mode of access to
web resources on the Internet.

A web container reports that no user has been authenticated by returningnull

from theHttpServletRequest methodgetUserPrincipal. This is different than
the corresponding result for EJB containers. The EJB specification requires that
theEJBContext methodgetCallerPrincipal always return a validPrincipal
object. The method can never returnnull.

Components running in a web container must be able to call enterprise beans
even when no user has been authenticated in the web container. When a call is
made in such a case from a component in a web container to an enterprise bean, a
J2EE product must provide a principal for use in the call.

A J2EE product may provide a principal for use by unauthenticated callers
using many approaches, including, but not limited to:

• Always use a single distinguished principal.

• Use a different distinguished principal per server, or per session, or per appli-
cation.

• Allow the deployer or system administrator to choose which principal to use
through the Run As capability of the web and enterprise bean containers.

This specification does not specify how a J2EE product should choose a
principal to represent unauthenticated users, although future versions of this
specification may add requirements in this area. Note that the EJB specification
does include requirements in this area when using the EJB interoperability
protocol. Applications are encouraged to use the Run As capability in cases where
the web component may be unauthenticated and needs to call EJB components.

J2EE.3.4.4 Application Client User Authentication

The application client container must provide authentication of application users to
satisfy the authentication and authorization constraints enforced by the enterprise
bean containers and web containers. The techniques used may vary with the
implementation of the application client container, and are beyond the control of the
application. The application client container may integrate with a J2EE product’s
authentication system, to provide a single signon capability, or the container may
authenticate the user when the application is started. The container may delay

User Authentication Requirements 39

authentication until there is a request to access a protected resource or enterprise
bean.

The container will provide an appropriate user interface for interactions with
the user to gather authentication data. In addition, an application client may
provide a class that implements the
javax.security.auth.callback.CallbackHandler interface and specify the class
name in its deployment descriptor (see Section J2EE.9.7, “J2EE Application
Client XML Schema” for details). The Deployer may override the callback
handler specified by the application and require use of the container’s default
authentication user interface instead.

If use of a callback handler has been configured by the Deployer, the
application client container must instantiate an object of this class and use it for all
authentication interactions with the user. The application’s callback handler must
support all theCallback objects specified in thejavax.security.auth.callback
package.

Application clients execute in an environment controlled by a J2SE security
manager and are subject to the security permissions defined in Section J2EE.6.2,
“Java 2 Platform, Standard Edition (J2SE) Requirements.” Although this
specification does not define the relationship between the operating system
identity associated with a running application client and the authenticated user
identity, support for single signon requires that the J2EE product be able to relate
these identities. Additional application client requirements are described in
Chapter J2EE.9.7 of this specification.

J2EE.3.4.5 Resource Authentication Requirements

Resources within an enterprise are often deployed in security policy domains
different from the security policy domain of the application component. The wide
variance of authentication mechanisms used to authenticate the caller to resources
leads to the requirement that a J2EE product provide the means to authenticate in
the security policy domain of the resource.

A Product Provider must support both of the following:

1. Configured Identity. A J2EE container must be able to authenticate for access
to the resource using a principal and authentication data specified by a Deploy-
er at deployment time.The authentication must not depend in any way on data
provided by the application components. Providing for the confidential storage
of the authentication information is the responsibility of the Product Provider.

2. Programmatic Authentication. The J2EE product must provide for specifi-

SECURITY40

cation of the principal and authentication data for a resource by the application
component at runtime using appropriate APIs. The application may obtain the
principal and authentication data through a variety of mechanisms, including
receiving them as parameters, obtaining them from the component’s environ-
ment, and so forth.

In addition, the following techniques are recommended but not required by
this specification:

3. Principal Mapping. A resource can have a principal and attributes that are de-
termined by a mapping from the identity and security attributes of the request-
ing principal. In this case, a resource principal is not based on inheritance of
the identity or security attributes from a requesting principal, but gets its iden-
tity and security attributes based on the mapping.

4. Caller Impersonation. A resource principal acts on behalf of a requesting
principal. Acting on behalf of a caller principal requires delegation of the call-
er’s identity and credentials to the underlying resource manager. In some sce-
narios, a requesting principal can be a delegate of an initiating principal and
the resource principal is transitively impersonating an initiating principal.

The support for principal delegation is typically specific to a security mecha-
nism. For example, Kerberos supports a mechanism for the delegation of
authentication. (Refer to the Kerberos v5 specification for more details.)

5. Credentials Mapping. This technique may be used when an application serv-
er and an EIS support different authentication domains. For example:

a. The initiating principal may have been authenticated and have public key
certificate-based credentials.

b. The security environment for the resource manager may be configured
with the Kerberos authentication service.

The application server is configured to map the public key certificate-based
credentials associated with the initiating principal to the Kerberos credentials.

Additional information on resource authentication requirements can be found
in the Connector specification.

Authorization Requirements 41

J2EE.3.5 Authorization Requirements

To support the authorization models described in this chapter, the following
requirements are imposed on J2EE products.

J2EE.3.5.1 Code Authorization

A J2EE product may restrict the use of certain J2SE classes and methods to secure
and ensure proper operation of the system. The minimum set of permissions that a
J2EE product is required to grant to a J2EE application is defined in
Section J2EE.6.2, “Java 2 Platform, Standard Edition (J2SE) Requirements.” All
J2EE products must be capable of deploying application components with exactly
these permissions.

A J2EE Product Provider may choose to enable selective access to resources
using the Java 2 protection model. The mechanism used is J2EE product
dependent.

A future version of the J2EE deployment descriptor definition (see
Chapter J2EE.8, “Application Assembly and Deployment”) may make it possible
to express additional permissions that a component needs for access.

J2EE.3.5.2 Caller Authorization

A J2EE product must enforce the access control rules specified at deployment time
(see Section J2EE.3.6, “Deployment Requirements”) and more fully described in
the EJB and servlet specifications.

J2EE.3.5.3 Propagated Caller Identities.

It must be possible to configure a J2EE product so that a propagated caller identity is
used in all authorization decisions. With this configuration, for all calls to all
enterprise beans from a single application within a single J2EE product, the
principal name returned by theEJBContext methodgetCallerPrincipal must be
the same as that returned by the first enterprise bean in the call chain. If the first
enterprise bean in the call chain is called by a servlet or JSP page, the principal
name must be the same as that returned by theHttpServletRequest method
getUserPrincipal in the calling servlet or JSP page. (However, if the
HttpServletRequest methodgetUserPrincipal returnsnull, the principal used in
calls to enterprise beans is not specified by this specification, although it must still
be possible to configure enterprise beans to be callable by such components.)

SECURITY42

Note that this does not require delegation of credentials, only identification of
the caller. A single principal must be the principal used in authorization decisions
for access to all enterprise beans in the call chain. The requirements in this section
apply only when a J2EE product has been configured to propagate caller identity.

J2EE.3.5.4 Run As Identities

J2EE products must also support the Run As capability that allows the Application
Component Provider and the Deployer to specify an identity under which an
enterprise bean or web component must run. In this case it is the Run As identity
that is propagated to subsequent EJB components, rather than the original caller
identity.

Note that this specification doesn’t specify any relationship between the Run
As identity and any underlying operating system identity that may be used to
access system resources such as files. However, the Java Authorization Contract
for Containers specification does specify the relationship between the Run As
identity and the access control context used by the J2SE security manager.

J2EE.3.6 Deployment Requirements

All J2EE products must implement the access control semantics described in the
EJB, JSP, and servlet specifications, and provide a means of mapping the
deployment descriptor security roles to the actual roles exposed by a J2EE product.

While most J2EE products will allow the Deployer to customize the role
mappings and change the assignment of roles to methods, all J2EE products must
support the ability to deploy applications and components using exactly the
mappings and assignments specified in their deployment descriptors.

As described in the EJB specification and the servlet specification, a J2EE
product must provide a deployment tool or tools capable of assigning the security
roles in deployment descriptors to the entities that are used to determine role
membership at authorization time.

Application developers will need to specify (in the application’s deployment
descriptors) the security requirements of an application in which some
components may be accessed by unauthenticated users as well as authenticated
users (as described above in Section J2EE.3.4.3, “Unauthenticated Users”).
Applications express their security requirements in terms of security roles, which
the Deployer maps to users (principals) in the operational environment at
deployment time. An application might define a role representing all authenticated

Future Directions 43

and unauthenticated users and configure some enterprise bean methods to be
accessible by this role.

To support such usage, this specification requires that it be possible to map an
application defined security role to the universal set of application principals
independent of authentication.

J2EE.3.7 Future Directions

J2EE.3.7.1 Auditing

This specification does not specify requirements for the auditing of security relevant
events, nor APIs for application components to generate audit records. A future
version of this specification may include such a specification for products that
choose to provide auditing.

J2EE.3.7.2 Instance-based Access Control

Some applications need to control access to their data based on the content of the
data, rather than simply the type of the data. We refer to this as “instance-based”
rather than “class-based” access control. We hope to address this in a future release.

J2EE.3.7.3 User Registration

Web-based internet applications often need to manage a set of customers
dynamically, allowing users to register themselves as new customers. This scenario
was widely discussed in the servlet expert group (JSR-53) but we were unable to
achieve consensus on the appropriate solution. We had to abandon this work for
J2EE 1.3, and were not able to address it for J2EE 1.4, but hope to pursue it further
in a future release.

SECURITY44

45

C H A P T E RJ2EE.4
Transaction Management

This chapter describes the required Java™ 2 Platform, Enterprise Edition (J2EE)
transaction management and runtime environment.

Product Providers must transparently support transactions that involve
multiple components and transactional resources within a single J2EE product, as
described in this chapter. This requirement must be met regardless of whether the
J2EE product is implemented as a single process, multiple processes on the same
network node, or multiple processes on multiple network nodes.

The following components are considered transactional resources and must
behave as specified here:

• JDBC connections

• JMS sessions

• Resource adapter connections for resource adapters specifying the
XATransaction transaction level

J2EE.4.1 Overview

A J2EE Product Provider must support a transactional application comprised of
combinations of servlets or JSP pages accessing multiple enterprise beans within a
single transaction. Each component may also acquire one or more connections to
access one or more transactional resource managers.

For example, inFigure J2EE.4-1, the call tree starts from a servlet or JSP
page accessing multiple enterprise beans, which in turn may access other
enterprise beans. The components access resource managers via connections.

TRANSACTION MANAGEMENT46

Figure J2EE.4-1 Servlets/JSP Pages Accessing Enterprise Beans

The Application Component Provider specifies, using a combination of
programmatic and declarative transaction demarcation APIs, how the platform
must manage transactions on behalf of the application.

For example, the application may require that all the components inFigure
J2EE.4-1 access resources as part of a single transaction. The Platform Provider
must provide the transaction capabilities to support such a scenario.

This specification does not define how the components and the resources are
partitioned or distributed within a single J2EE product. In order to achieve the
transactional semantics required by the application, the J2EE Product Provider is
free to execute the application components sharing a transaction in the same Java
virtual machine, or distribute them across multiple virtual machines.

The rest of this chapter describes the transactional requirements for a J2EE
product in more detail.

Client JSP/
servlet

EJBean

EJBean

EJBean

EJBean

EJBean

EJBean

connection

connection

connection

connection
connection

connection
connections

O
ne or m

ore transactional resource m
anagers

1a

1b

2a

2b

2c

2d

:

:

:

:

Requirements 47

J2EE.4.2 Requirements

This section defines the transaction support requirements of J2EE Products that
must be supported by Product Providers.

J2EE.4.2.1 Web Components

Servlets and JSP pages demarcate a transaction using the
javax.transaction.UserTransaction interface which is defined in the JTA
specification. They may access multiple resource managers and invoke multiple
enterprise beans within a single transaction. The specified transaction context is
automatically propagated to the enterprise beans and transactional resource
managers. The result of the propagation may be subject to the enterprise bean
transaction attributes (for example, a bean may be required to use Container
Managed Transactions).

Servlet filters and web application event listeners must not demarcate
transactions using thejavax.transaction.UserTransaction interface. Servlet
filters may use transactional resources in a local transaction mode within their
doFilter methods but should not use any transactional resources in the methods of
any objects used to wrap the request or response objects.

J2EE.4.2.1.1 Transaction Requirements

The J2EE platform must meet the following requirements:

• The J2EE platform must provide an object implementing the
javax.transaction.UserTransaction interface to all web components. The
platform must publish theUserTransaction object in the Java™ Naming and
Directory Interface (JNDI) name space available to web components under the
namejava:comp/UserTransaction.

• If a web component invokes an enterprise bean from a thread associated with
a JTA transaction, the J2EE platform must propagate the transaction context
with the enterprise bean invocation. Whether the target enterprise bean will be
invoked in this transaction context or not is determined by the rules defined in
the EJB specification.

Note that this transaction propagation requirement applies only to invocations

of enterprise beans in the same J2EE product instance1 as the invoking com-
ponent. Invocations of enterprise beans in another J2EE product instance (for
example, using the EJB interoperability protocol) need not propagate the
transaction context. See the EJB specification for details.

TRANSACTION MANAGEMENT48

• If a web component accesses a transactional resource manager from a thread
associated with a JTA transaction, the J2EE platform must ensure that the re-
source access is included as part of the JTA transaction.

• If a web component creates a thread, the J2EE platform must ensure that the
newly created thread is not associated with any JTA transaction.

J2EE.4.2.1.2 Transaction Non-Requirements

The Product Provider is not required to support the importing of a transaction
context from a client to a web component.

The Product Provider is not required to support transaction context
propagation via an HTTP request across web components. The HTTP protocol
does not support such transaction context propagation. When a web component
associated with a transaction makes an HTTP request to another web component,
the transaction context is not propagated to the target servlet or page.

However, when a web component is invoked through theRequestDispatcher

interface, any active transaction context must be propagated to the called servlet
or JSP page.

J2EE.4.2.2 Transactions in Web Component Life Cycles

Transactions may not span web requests from a client. A web component starts a
transaction in theservice method of a servlet (or, for a JSP page, theservice

method of the equivalent JSP page Implementation Class) and it must be completed
before theservice method returns. Returning from theservice method with an
active transaction context is an error. The web container is required to detect this
error and abort the transaction.

1. A product instance corresponds to a single installation of a J2EE product.
A single product instance might use multiple operating system processes,
or might support multiple host machines as part of a distributed contain-
er. In contrast, it might be possible to run multiple instances of a product
on a single host machine, or possibly even in a single Java virtual ma-
chine, for example, as part of a virtual hosting solution. The transaction
propagation requirement applies within a single product instance and is
independent of the number of Java virtual machines, operating system
processes, or host machines used by the product instance.

Requirements 49

J2EE.4.2.3 Transactions and Threads

There are many subtle and complex interactions between the use of transactional
resources and threads. To ensure correct operation, web components should obey
the following guidelines, and the web container must support at least these usages.

• JTA transactions should be started and completed in the thread in which the
service method is called. Additional threads that are created for any purpose
should not attempt to start JTA transactions.

• Transactional resources may be acquired and released by a thread other than
theservice method thread, but should not be shared between threads.

• Transactional resource objects (for example, JDBCConnection objects)
should not be stored in static fields. Such objects can only be associated with
one transaction at a time. Storing them in static fields would make it easy to
erroneously share them between threads in different transactions.

• Web components implementingSingleThreadModel may store top-level
transactional resource objects in class instance fields. A top-level object is one
acquired directly from a container managed connection factory object (for ex-
ample, a JDBCConnection acquired from a JDBCConnectionFactory), as
opposed to other objects acquired from these top-level objects (for example, a
JDBCStatement acquired from a JDBCConnection). The web container en-
sures that requests to aSingleThreadModel servlet are serialized and thus only
one thread and one transaction will be able to use the object at a time, and that
the top-level object will be enlisted in any new transaction started by the com-
ponent.

• In web components not implementingSingleThreadModel, transactional re-
source objects should not be stored in class instance fields, and should be ac-
quired and released within the same invocation of theservice method.

• Web components that are called by other web components (using theforward

or include methods) should not store transactional resource objects in class
instance fields.

• Enterprise beans may be invoked from any thread used by a web component.
Transaction context propagation requirements are described above and in the
EJB specification.

J2EE.4.2.4 Enterprise JavaBeans™ Components

The J2EE Product Provider must provide support for transactions as defined in the
EJB specification.

TRANSACTION MANAGEMENT50

J2EE.4.2.5 Application Clients

The J2EE Product Provider is not required to provide transaction management
support for application clients.

J2EE.4.2.6 Applet Clients

The J2EE Product Provider is not required to provide transaction management
support for applets.

J2EE.4.2.7 Transactional JDBC™ Technology Support

A J2EE product must support a JDBC technology database as a transactional
resource manager. The platform must enable transactional JDBC API access from
web components and enterprise beans.

It must be possible to access the JDBC technology database from multiple
application components within a single transaction. For example, a servlet may
wish to start a transaction, access a database, invoke an enterprise bean that
accesses the same database as part of the same transaction, and, finally, commit
the transaction.

A J2EE product must provide a transaction manager that is capable of
coordinating two-phase commit operations across multiple XA-capable JDBC
databases. If a JDBC driver supports the Java Transaction API’s XA interfaces (in
thejavax.transaction.xa package), then the J2EE product must be capable of
using the XA interfaces provided by the JDBC driver to accomplish two-phase
commit operations. The J2EE product may discover the XA capabilities of JDBC
drivers through product-specific means, although normally such JDBC drivers
would be delivered as resource adapters using the Connector API.

J2EE.4.2.8 Transactional JMS Support

A J2EE product must support a JMS provider as a transactional resource manager.
The platform must enable transactional JMS access from servlets, JSP pages, and
enterprise beans.

It must be possible to access the JMS provider from multiple application
components within a single transaction. For example, a servlet may wish to start a
transaction, send a JMS message, invoke an enterprise bean that also sends a JMS
message as part of the same transaction, and, finally, commit the transaction.

Transaction Interoperability 51

J2EE.4.2.9 Transactional Resource Adapter (Connector) Support

A J2EE product must support resource adapters that useXATransaction mode as
transactional resource managers. The platform must enable transactional access to
the resource adapter from servlets, JSP pages, and enterprise beans.

It must be possible to access the resource adapter from multiple application
components within a single transaction. For example, a servlet may wish to start a
transaction, access the resource adapter, invoke an enterprise bean that also
accesses the resource adapter as part of the same transaction, and, finally, commit
the transaction.

J2EE.4.3 Transaction Interoperability

J2EE.4.3.1 Multiple J2EE Platform Interoperability

This specification does not require the Product Provider to implement any particular
protocol for transaction interoperability across multiple J2EE products. J2EE
compatibility requires neither interoperability among identical J2EE products from
the same Product Provider, nor among heterogeneous J2EE products from multiple
Product Providers.

We recommend that J2EE Product Providers use the IIOP transaction
propagation protocol defined by OMG and described in the OTS specification
(and implemented by the Java Transaction Service), for transaction
interoperability when using the EJB interoperability protocol based on RMI-IIOP.
We plan to require the IIOP transaction propagation protocol as the EJB server
transaction interoperability protocol in a future release of this specification.

J2EE.4.3.2 Support for Transactional Resource Managers

This specification requires all J2EE products to support the
javax.transaction.xa.XAResource interface, as specified in the Connector
specification. This specification also requires all J2EE products to support the
javax.transaction.xa.XAResource interface for performing two-phase commit
operations on JDBC drivers that support the JTA XA APIs. This specification does
not require that JDBC drivers or JMS providers use the
javax.transaction.xa.XAResource interface, although they may use this interface
and in all cases they must meet the transactional resource manager requirements
described in this chapter. In particular, it must be possible to combine operations on
one or more JDBC databases, one or more JMS sessions, one or more enterprise

TRANSACTION MANAGEMENT52

beans, and multiple resource adapters supporting theXATransaction mode in a
single JTA transaction.

J2EE.4.4 Local Transaction Optimization

J2EE.4.4.1 Requirements

If a transaction uses a single resource manager, performance may be improved by
using a resource manager specific local optimization. A local transaction is typically
more efficient than a global transaction and provides better performance. Local
optimization is not available for transactions that are imported from a different
container.

Containers may choose to provide local transaction optimization, but are not
required to do so. Local transaction optimization must be transparent to a J2EE
application.

The following section describes a possible mechanism for local transaction
optimization by containers.

J2EE.4.4.2 A Possible Design

This section illustrates how the previously described requirements might be
implemented.

When the first connection to a resource manager is established as part of the
transaction, a resource manager specific local transaction is started on the
connection. Any subsequent connection acquired as part of the transaction that
can share the local transaction on the first connection is allowed to share the local
transaction.

A global transaction is started lazily under the following conditions:

• When a subsequent connection cannot share the resource manager local trans-
action on the first connection, or if it uses a different resource manager.

• When a transaction is exported to a different container.

After the lazy start of a global transaction, any subsequent connection
acquired may either share the local transaction on the first connection, or be part
of the global transaction, depending on the resource manager it accesses.

When a transaction completion (commit or rollback) is attempted, there are
two possibilities:

Connection Sharing 53

• If only a single resource manager had been accessed as part of the transaction,
the transaction is completed using the resource manager specific local transac-
tion mechanism.

• If a global transaction had been started, the transaction is completed treating
the resource manager local transaction as a last resource in the global 2-phase
commit protocol, that is using the last resource 2-phase commit optimization.

J2EE.4.5 Connection Sharing

When multiple connections acquired by a J2EE application use the same resource
manager, containers may choose to provide connection sharing within the same
transaction scope. Sharing connections typically results in efficient usage of
resources and better performance. Containers are required to provide connection
sharing in certain situations; see the Connector specification for details..

Connections to resource managers acquired by J2EE applications are
considered potentially shared or shareable. A J2EE application component that
intends to use a connection in an unshareable way must provide deployment
information to that effect, to prevent the connection from being shared by the
container. Examples of when this may be needed include situations with changed
security attributes, isolation levels, character settings, and localization
configuration. Containers must not attempt to share connections that are marked
unshareable. If a connection is not marked unshareable, it must be transparent to
the application whether the connection is actually shared or not.

J2EE application components may use the optional deployment descriptor
elementres-sharing-scope to indicate whether a connection to a resource
manager is shareable or unshareable. Containers must assume connections to be
shareable if no deployment hint is provided. Section J2EE.9.7, “J2EE Application
Client XML Schema”, the EJB specification, and the servlet specification provide
descriptions of the deployment descriptor element.

J2EE application components may cache connection objects and reuse them
across multiple transactions. Containers that provide connection sharing must
transparently switch such cached connection objects (at dispatch time) to point to
an appropriate shared connection with the correct transaction scope. Refer to the
Connector specification for a detailed description of connection sharing.

TRANSACTION MANAGEMENT54

J2EE.4.6 JDBC and JMS Deployment Issues

The JDBC transaction requirements in Section J2EE.4.2.7, “Transactional JDBC™
Technology Support” and the JMS transaction requirements in Section J2EE.4.2.8,
“Transactional JMS Support” may impose some restrictions on a Deployer’s
configuration of an application’s JDBC and JMS resources. J2EE Product Providers
may impose the restrictions described in this section to meet these requirements.

If the deployer configures a non-XA-capable JDBC resource manager in a
transaction, then a J2EE Product Provider may restrict all JDBC access within that
transaction to that non-XA-capable JDBC resource manager. Otherwise, a J2EE
Product Provider must support use of multiple XA-capable JDBC resource
managers wthin a transaction. In addition, a J2EE Product Provider may restrict
the security configuration of all JDBC connections within a transaction to a single
user identity. A J2EE Product Provider is not required to support transactions
where more than one JDBC identity is used. Specifically, this means that
transactions that require the use of more than one JDBC security identity (which
can be done explicitly via component provided user name and password) may not
be portable.

A J2EE Product Provider may make the same restrictions as above, resulting
in a transaction being restricted to a single JMS resource manager and user
identity.

In addition, when both a JDBC resource manager and a JMS resource
manager are used in the same transaction, a J2EE Product Provider may restrict
both to a pairing that allows their combination to deliver the full transactional
semantics required by the application, and may restrict the security identity of
both to a single identity. To fully support such usage, portable applications that
wish to include JDBC and JMS access in a single global transaction must not
mark the corresponding transactional resources as “unshareable”.

Although these restrictions are allowed, it is recommended that J2EE Product
Providers support JDBC and JMS resource managers that provide full two-phase
commit functionality and, as a result, do not impose these restrictions.

J2EE.4.7 Two-Phase Commit Support

A J2EE product must support the use of multiple XA-capable resource adapters in a
single transaction. To support such a scenario, full two-phase commit support is
required. A JMS provider may be provided as an XA-capable resource adapter. In
such a case, it must be possible to include JMS operations in the same global
transaction as other resource adapters. While JDBC drivers are not required to be

System Administration Tools 55

XA-capable, a JDBC driver may be delivered as an XA-capable resource adapter. In
such a case, it must be possible to include JDBC operations in the same global
transaction as other XA-capable resource adapters. See also Section J2EE.4.2.7,
“Transactional JDBC™ Technology Support.”

J2EE.4.8 System Administration Tools

Although there are no compatibility requirements for system administration
capabilities, the J2EE Product Provider will typically include tools that allow the
System Administrator to perform the following tasks:

• Integrate transactional resource managers with the platform.

• Configure the transaction management parts of the platform.

• Monitor transactions at runtime.

• Receive notifications of abnormal transaction processing conditions (such as
abnormally high number of transaction rollbacks).

TRANSACTION MANAGEMENT56

57

C H A P T E RJ2EE.5
Naming

This chapter describes the naming system requirements for the Java™ 2 Platform,
Enterprise Edition (J2EE). These requirements are based on features defined in the
JNDI specification.

Note –This chapter is largely derived from the EJB specification chapter,
“Enterprise bean environment.”

J2EE.5.1 Overview

The naming requirements for the J2EE platform address the following two issues:

• The Application Assembler and Deployer should be able to customize the be-
havior of an application’s business logic without accessing the application’s
source code. Typically this will involve specification of parameter values, con-
nection to external resources, and so on.

• Applications must be able to access resources and external information in their
operational environment without knowledge of how the external information
is named and organized in that environment.

J2EE.5.1.1 Chapter Organization

The following sections contain the J2EE platform solutions to the above issues:

• Section J2EE.5.2, “Java Naming and Directory Interface™ (JNDI) Naming
Context” defines the interfaces that specify and access the application compo-
nent’s naming environment. The section illustrates the use of the application

NAMING58

component’s naming environment for generic customization of the application
component’s business logic.

• Section J2EE.5.3, “Enterprise JavaBeans™ (EJB) References” defines the in-
terfaces for obtaining the home interface of an enterprise bean using an EJB
reference. An EJB reference is a special entry in the application component’s
environment.

• Section J2EE.5.4, “Resource Manager Connection Factory References” de-
fines the interfaces for obtaining a resource manager connection factory using
a resource manager connection factory reference. A resource manager con-
nection factory reference is a special entry in the application component’s en-
vironment.

• Section J2EE.5.5, “Resource Environment References” defines the interfaces
for obtaining an administered object that is associated with a resource (e.g., a
JMS destination) using a resource environment reference. A resource environ-
ment reference is a special entry in the application component’s environment.

• Section J2EE.5.6, “Message Destination References” defines the interfaces
for declaring and using message destination references.

• Section J2EE.5.7, “UserTransaction References” describes the use by eligible
application components of references to aUserTransaction object in the
component’s environment to start, commit, and abort transactions.

• Section J2EE.5.8, “ORB References” describes the use by eligible application
components of references to a CORBAORB object in the component’s environ-
ment.

J2EE.5.1.2 Required Access to the JNDI Naming Environment

J2EE application clients, enterprise beans, and web components are required to have
access to a JNDI naming environment. The containers for these application
component types are required to provide the naming environment support described
here.

Deployment descriptors are the main vehicle for conveying access
information to the Application Assembler and Deployer about application
components’ requirements for customization of business logic and access to
external information. The deployment descriptor entries described here are
present in identical form in the deployment descriptor schemas for each of these
application component types. See the corresponding specification of each
application component type for the details.

Java Naming and Directory Interface™ (JNDI) Naming Context 59

J2EE.5.2 Java Naming and Directory Interface™ (JNDI)
Naming Context

The application component’s naming environment is a mechanism that allows
customization of the application component’s business logic during deployment or
assembly. Use of the application component’s environment allows the application
component to be customized without the need to access or change the application
component’s source code.

The container implements the application component’s environment, and
provides it to the application component instance as a JNDI naming context. The
application component’s environment is used as follows:

1. The application component’s business methods access the environment using
the JNDI interfaces. The Application Component Provider declares in the de-
ployment descriptor all the environment entries that the application component
expects to be provided in its environment at runtime.

2. The container provides an implementation of the JNDI naming context that
stores the application component environment. The container also provides the
tools that allow the Deployer to create and manage the environment of each ap-
plication component.

3. The Deployer uses the tools provided by the container to initialize the environ-
ment entries that are declared in the application component’s deployment de-
scriptor. The Deployer can set and modify the values of the environment
entries.

4. The container makes the environment naming context available to the applica-
tion component instances at runtime. The application component’s instances
use the JNDI interfaces to obtain the values of the environment entries.

Each application component defines its own set of environment entries. All
instances of an application component within the same container share the same
environment entries. Application component instances are not allowed to modify
the environment at runtime.

In general, lookups of objects in the JNDIjava: namespace are required to
return a new instance of the requested object every time. Exceptions are allowed
for the following:

NAMING60

• The container knows the object is immutable (for example, objects of type
java.lang.String), or knows that the application can’t change the state of the
object.

• The object is defined to be a singleton, such that only one instance of the ob-
ject may exist in the JVM.

• The name used for the lookup is defined to return an instance of the object that
might be shared. The namejava:comp/ORB is such a name.

In these cases, a shared instance of the object may be returned. In all other
cases, a new instance of the requested object must be returned on each lookup.
Note that, in the case of resource adapter connection objects, it is the resource
adapter’sManagedConnectionFactory implementation that is responsible for
satisfying this requirement.

Note –Terminology warning: The application component’s “environment”
should not be confused with the “environment properties” defined in the JNDI
documentation. The JNDI environment properties are used to initialize and con-
figure the JNDI naming context itself. The application component’s environment
is accessed through a JNDI naming context for direct use by the application com-
ponent.

The following subsections describe the responsibilities of each J2EE Role.

J2EE.5.2.1 Application Component Provider’s Responsibilities

This section describes the Application Component Provider’s view of the
application component’s environment, and defines his or her responsibilities. It does
so in two sections, the first describing the API for accessing environment entries,
and the second describing syntax for declaring the environment entries.

J2EE.5.2.1.1 Access to Application Component’s Environment

An application component instance locates the environment naming context using
the JNDI interfaces. An instance creates ajavax.naming.InitialContext object
by using the constructor with no arguments, and looks up the naming environment
via theInitialContext under the namejava:comp/env. The application
component’s environment entries are stored directly in the environment naming
context, or in its direct or indirect subcontexts.

Java Naming and Directory Interface™ (JNDI) Naming Context 61

Environment entries have the Java programming language type declared by
the Application Component Provider in the deployment descriptor.

The following code example illustrates how an application component
accesses its environment entries.

public void setTaxInfo(int numberOfExemptions,...)

throws InvalidNumberOfExemptionsException {

...

// Obtain the application component’s

// environment naming context.

Context initCtx = new InitialContext();

Context myEnv = (Context)initCtx.lookup(“java:comp/env”);

// Obtain the maximum number of tax exemptions

// configured by the Deployer.

Integer max = (Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions

// configured by the Deployer.

Integer min = (Integer)myEnv.lookup(“minExemptions”);

// Use the environment entries to

// customize business logic.

if (numberOfExemptions > max.intValue() ||

numberOfExemptions < min.intValue())

throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment

// entries are stored in subcontexts.

String val1 = (String)myEnv.lookup(“foo/name1”);

Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

// The application component can also

// lookup using full pathnames.

Integer val3 = (Integer)initCtx.lookup(“java:comp/env/name3”);

Integer val4 =

(Integer)initCtx.lookup(“java:comp/env/foo/name4”);

...

}

J2EE.5.2.1.2 Declaration of Environment Entries

The Application Component Provider must declare all the environment entries
accessed from the application component’s code. The environment entries are

NAMING62

declared using theenv-entry elements in the deployment descriptor. Eachenv-

entry element describes a single environment entry. Theenv-entry element
consists of an optional description of the environment entry, the environment entry
name relative to thejava:comp/env context, the expected Java programming
language type of the environment entry value (the type of the object returned from
the JNDIlookup method), and an optional environment entry value.

An environment entry is scoped to the application component whose
declaration contains theenv-entry element. This means that the environment
entry is not accessible from other application components at runtime, and that
other application components may defineenv-entry elements with the sameenv-
entry-name without causing a name conflict.

The environment entry values may be one of the following Java types:String,
Character, Byte, Short, Integer, Long, Boolean, Double, and Float.

If the Application Component Provider provides a value for an environment
entry using theenv-entry-value element, the value can be changed later by the
Application Assembler or Deployer. The value must be a string that is valid for the
constructor of the specified type that takes a singleString parameter, or in the
case ofCharacter, a single character.

The following example is the declaration of environment entries used by the
application component whose code was illustrated in the previous subsection.

...

<env-entry>

<description>

The maximum number of tax exemptions

allowed to be set.

</description>

<env-entry-name>maxExemptions</env-entry-name>

<env-entry-type>java.lang.Integer</env-entry-type>

<env-entry-value>15</env-entry-value>

</env-entry>

<env-entry>

<description>

The minimum number of tax exemptions

allowed to be set.

</description>

<env-entry-name>minExemptions</env-entry-name>

<env-entry-type>java.lang.Integer</env-entry-type>

<env-entry-value>1</env-entry-value>

</env-entry>

<env-entry>

<env-entry-name>foo/name1</env-entry-name>

Java Naming and Directory Interface™ (JNDI) Naming Context 63

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>value1</env-entry-value>

</env-entry>

<env-entry>

<env-entry-name>foo/bar/name2</env-entry-name>

<env-entry-type>java.lang.Boolean</env-entry-type>

<env-entry-value>true</env-entry-value>

</env-entry>

<env-entry>

<description>Some description.</description>

<env-entry-name>name3</env-entry-name>

<env-entry-type>java.lang.Integer</env-entry-type>

</env-entry>

<env-entry>

<env-entry-name>foo/name4</env-entry-name>

<env-entry-type>java.lang.Integer</env-entry-type>

<env-entry-value>10</env-entry-value>

</env-entry>

...

J2EE.5.2.2 Application Assembler’s Responsibilities

The Application Assembler is allowed to modify the values of the environment
entries set by the Application Component Provider, and is allowed to set the values
of those environment entries for which the Application Component Provider has not
specified any initial values.

J2EE.5.2.3 Deployer’s Responsibilities

The Deployer must ensure that all the environment entries declared by an
application component are set to meaningful values.

The Deployer can modify the values of the environment entries that have been
previously set by the Application Component Provider and/or Application
Assembler, and must set the values of those environment entries for which no
value has been specified.

Thedescription elements provided by the Application Component Provider
or Application Assembler help the Deployer with this task.

J2EE.5.2.4 J2EE Product Provider’s Responsibilities

The J2EE Product Provider has the following responsibilities:

NAMING64

• Provide a deployment tool that allows the Deployer to set and modify the val-
ues of the application component’s environment entries.

• Implement thejava:comp/env environment naming context, and provide it to
the application component instances at runtime. The naming context must in-
clude all the environment entries declared by the Application Component Pro-
vider, with their values supplied in the deployment descriptor or set by the
Deployer. The environment naming context must allow the Deployer to create
subcontexts if they are needed by an application component.

• The container must ensure that the application component instances have only
read access to their environment variables. The container must throw the
javax.naming.OperationNotSupportedException from all the methods of the
javax.naming.Context interface that modify the environment naming context
and its subcontexts.

J2EE.5.3 Enterprise JavaBeans™ (EJB) References

This section describes the programming and deployment descriptor interfaces that
allow the Application Component Provider to refer to the homes of enterprise beans
using “logical” names called EJB references. The EJB references are special entries
in the application component’s naming environment. The Deployer binds the EJB
references to the enterprise bean’s homes in the target operational environment.

The deployment descriptor also allows the Application Assembler tolink an
EJB reference declared in one application component to an enterprise bean
contained in an ejb-jar file in the same J2EE application. The link is an instruction
to the tools used by the Deployer describing the binding of the EJB reference to
the home of the specified target enterprise bean.

J2EE.5.3.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and
responsibilities with respect to EJB references. It does so in two sections, the first
describing the API for accessing EJB references, and the second describing the
syntax for declaring the EJB references.

J2EE.5.3.1.1 Programming Interfaces for EJB References

The Application Component Provider must use EJB references to locate the home
interfaces of enterprise bean as follows.

Enterprise JavaBeans™ (EJB) References 65

• Assign an entry in the application component’s environment to the reference.
(See subsection 5.3.1.2 for information on how EJB references are declared in
the deployment descriptor.)

• This specification recommends, but does not require, that all references to en-
terprise beans be organized in theejb subcontext of the application compo-
nent’s environment (that is, in thejava:comp/env/ejb JNDI context).

• Look up the home interface of the referenced enterprise bean in the application
component’s environment using JNDI.

The following example illustrates how an application component uses an EJB
reference to locate the home interface of an enterprise bean.

public void changePhoneNumber(...) {

...

// Obtain the default initial JNDI context.

Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord

// enterprise bean in the environment.

Object result = initCtx.lookup("java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.

EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)

javax.rmi.PortableRemoteObject.narrow(result,

EmployeeRecordHome.class);

...

}

In the example, the Application Component Provider assigned the
environment entryejb/EmplRecord as the EJB reference name to refer to the
home of an enterprise bean.

J2EE.5.3.1.2 Declaration of EJB References

Although the EJB reference is an entry in the application component’s environment,
the Application Component Provider must not use aenv-entry element to declare
it. Instead, the Application Component Provider must declare all the EJB references
using theejb-ref elements of the deployment descriptor. This allows the consumer
of the application component’s JAR file (the Application Assembler or Deployer) to
discover all the EJB references used by the application component.

Eachejb-ref element describes the interface requirements that the
referencing application component has for the referenced enterprise bean. The

NAMING66

ejb-ref element contains an optionaldescription element and the mandatory
ejb-ref-name, ejb-ref-type, home, andremote elements.

Theejb-ref-name element specifies the EJB reference name. Its value is the
environment entry name used in the application component code. Theejb-ref-

type element specifies the expected type of the enterprise bean. Its value must be
eitherEntity or Session. Thehome andremote elements specify the expected Java
programming language types of the referenced enterprise bean’s home and remote
interfaces.

An EJB reference is scoped to the application component whose declaration
contains theejb-ref element. This means that the EJB reference is not accessible
from other application components at runtime, and that other application
components may defineejb-ref elements with the sameejb-ref-name without
causing a name conflict.

The following example illustrates the declaration of EJB references in the
deployment descriptor.

...

<ejb-ref>

<description>

This is a reference to the entity bean that

encapsulates access to employee records.

</description>

<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>com.wombat.empl.EmployeeRecordHome</home>

<remote>com.wombat.empl.EmployeeRecord</remote>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>com.aardvark.payroll.PayrollHome</home>

<remote>com.aardvark.payroll.Payroll</remote>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>com.wombat.empl.PensionPlanHome</home>

<remote>com.wombat.empl.PensionPlan</remote>

</ejb-ref>

...

Enterprise JavaBeans™ (EJB) References 67

J2EE.5.3.2 Application Assembler’s Responsibilities

The Application Assembler can use theejb-link element in the deployment
descriptor to link an EJB reference to a target enterprise bean.

The Application Assembler specifies the link to an enterprise bean as follows:

• The Application Assembler uses the optionalejb-link element of theejb-ref
element of the referencing application component. The value of theejb-link

element is the name of the target enterprise bean. (It is the name defined in the
ejb-name element of the target enterprise bean.) The target enterprise bean can
be in any ejb-jar file in the same J2EE application as the referencing applica-
tion component.

• Alternatively, to avoid the need to rename enterprise beans to have unique
names within an entire J2EE application, the Application Assembler may use
the following syntax in theejb-link element of the referencing application
component. The Application Assembler specifies the path name of the ejb-jar
file containing the referenced enterprise bean and appends theejb-name of the
target bean separated from the path name by “#”. The path name is relative to
the referencing application component JAR file. In this manner, multiple
beans with the sameejb-name may be uniquely identified when the Applica-
tion Assembler cannot change ejb-names.

• The Application Assembler must ensure that the target enterprise bean is type-
compatible with the declared EJB reference. This means that the target enter-
prise bean must be of the type indicated in theejb-ref-type element, and that
the home and remote interfaces of the target enterprise bean must be Java type-
compatible with the interfaces declared in the EJB reference.

The following example illustrates the use of theejb-link element in the
deployment descriptor. The enterprise bean reference should be satisfied by the
bean namedEmployeeRecord. TheEmployeeRecord enterprise bean may be
packaged in the same module as the component making this reference, or it may
be packaged in another module within the same J2EE application as the
component making this reference.

...

<ejb-ref>

<description>

This is a reference to the entity bean that

encapsulates access to employee records. It

has been linked to the entity bean named

EmployeeRecord in this application.

NAMING68

</description>

<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>com.wombat.empl.EmployeeRecordHome</home>

<remote>com.wombat.empl.EmployeeRecord</remote>

<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>

...

The following example illustrates using theejb-link element to indicate an
enterprise bean reference to theProductEJB enterprise bean that is in the same
J2EE application unit but in a different ejb-jar file.

...

<ejb-ref>

<description>

This is a reference to the entity bean that

encapsulates access to a product. It

has been linked to the entity bean named

ProductEJB in the product.jar file in this

application.

</description>

<ejb-ref-name>ejb/Product</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>com.acme.products.ProductHome</home>

<remote>com.acme.products.Product</remote>

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

</ejb-ref>

...

J2EE.5.3.3 Deployer’s Responsibilities

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared EJB references are bound to the
homes of enterprise beans that exist in the operational environment. The De-
ployer may use, for example, the JNDILinkRef mechanism to create a sym-
bolic link to the actual JNDI name of the target enterprise bean’s home.

• The Deployer must ensure that the target enterprise bean is type-compatible
with the types declared for the EJB reference. This means that the target en-
terprise bean must be of the type indicated in theejb-ref-type element, and
that the home and remote interfaces of the target enterprise bean must be Java

Resource Manager Connection Factory References 69

type-compatible with the home and remote interfaces declared in the EJB ref-
erence.

• If an EJB reference declaration includes theejb-link element, the Deployer
should bind the enterprise bean reference to the home of the enterprise bean
specified as the link’s target.

J2EE.5.3.4 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the J2EE Product Provider must be able to process the
information supplied in theejb-ref elements in the deployment descriptor.

At the minimum, the tools must be able to:

• Preserve the application assembly information in theejb-link elements by
binding an EJB reference to the home interface of the specified target enter-
prise bean.

• Inform the Deployer of any unresolved EJB references, and allow him or her
to resolve an EJB reference by binding it to a specified compatible target en-
terprise bean.

J2EE.5.4 Resource Manager Connection Factory References

A resource manager connection factory is an object that is used to create
connections to a resource manager. For example, an object that implements the
javax.sql.DataSource interface is a resource manager connection factory for
java.sql.Connection objects that implement connections to a database
management system.

This section describes the application component programming and
deployment descriptor interfaces that allow the application component code to
refer to resource factories using logical names called resource manager
connection factory references. The resource manager connection factory
references are special entries in the application component’s environment. The
Deployer binds the resource manager connection factory references to the actual
resource manager connection factories that exist in the target operational
environment. Because these resource manager connection factories allow the
Container to affect resource management, the connections acquired through the
resource manager connection factory references are called managed resources (for

NAMING70

example, these resource manager connection factories allow the Container to
implement connection pooling and automatic enlistment of the connection with a
transaction).

Resource manager connection factory objects accessed through the naming
environment are only valid within the component instance that performed the
lookup. See the individual component specifications for additional restrictions
that may apply.

J2EE.5.4.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating
resource factories and defines his or her responsibilities. It does so in two sections,
the first describing the API for accessing resource manager connection factory
references, and the second describing the syntax for declaring the factory references.

J2EE.5.4.1.1 Programming Interfaces for Resource Manager Connection
Factory References

The Application Component Provider must use resource manager connection
factory references to obtain connections to resources as follows.

• Assign an entry in the application component’s naming environment to the re-
source manager connection factory reference. (See subsection 5.4.1.2 for in-
formation on how resource manager connection factory references are
declared in the deployment descriptor.)

• This specification recommends, but does not require, that all resource manag-
er connection factory references be organized in the subcontexts of the appli-
cation component’s environment, using a different subcontext for each
resource manager type. For example, all JDBC™ DataSource references
should be declared in thejava:comp/env/jdbc subcontext, all JMS connec-
tion factories in thejava:comp/env/jms subcontext, all JavaMail connection
factories in thejava:comp/env/mail subcontext, and all URL connection fac-
tories in thejava:comp/env/url subcontext.

• Lookup the resource manager connection factory object in the application
component’s environment using the JNDI interface.

• Invoke the appropriate method on the resource manager connection factory ob-
ject to obtain a connection to the resource. The factory method is specific to
the resource type. It is possible to obtain multiple connections by calling the
factory object multiple times.

Resource Manager Connection Factory References 71

The Application Component Provider can control the shareability of the
connections acquired from the resource manager connection factory. By default,
connections to a resource manager are shareable across other application
components in the application that use the same resource in the same transaction
context. The Application Component Provider can specify that connections
obtained from a resource manager connection factory reference are not shareable
by specifying the value of theres-sharing-scope deployment descriptor element
to beUnshareable. The sharing of connections to a resource manager allows the
container to optimize the use of connections and enables the container’s use of
local transaction optimizations.

The Application Component Provider has two choices with respect to dealing
with associating a principal with the resource manager access:

• Allow the Deployer to set up principal mapping or resource manager sign on
information. In this case, the application component code invokes a resource
manager connection factory method that has no security-related parameters.

• Sign on to the resource from the application component code. In this case, the
application component invokes the appropriate resource manager connection
factory method that takes the sign on information as method parameters.

The Application Component Provider uses theres-auth deployment
descriptor element to indicate which of the two resource authentication
approaches is used.

We expect that the first form (that is letting the Deployer set up the resource
sign on information) will be the approach used by most application components.

The following code sample illustrates obtaining a JDBC connection.

public void changePhoneNumber(...) {

...

// obtain the initial JNDI context

Context initCtx = new InitialContext();

// perform JNDI lookup to obtain resource manager

// connection factory

javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a resource. The security

// principal for the resource is not given, and

// therefore it will be configured by the Deployer.

NAMING72

java.sql.Connection con = ds.getConnection();

...

}

J2EE.5.4.1.2 Declaration of Resource Manager Connection Factory
References in Deployment Descriptor

Although a resource manager connection factory reference is an entry in the
application component’s environment, the Application Component Provider must
not use anenv-entry element to declare it.

Instead, the Application Component Provider must declare all the resource
manager connection factory references in the deployment descriptor using the
resource-ref elements. This allows the consumer of the application component’s
JAR file (the Application Assembler or Deployer) to discover all the resource
manager connection factory references used by an application component.

Eachresource-ref element describes a single resource manager connection
factory reference. Theresource-ref element consists of thedescription
element, the mandatoryres-ref-name, res-type, andres-auth elements, and the
optionalres-sharing-scope element. Theres-ref-name element contains the
name of the environment entry used in the application component’s code. The
name of the environment entry is relative to thejava:comp/env context (for
example, the name should bejdbc/EmployeeAppDB rather thanjava:comp/env/
jdbc/EmployeeAppDB). Theres-type element contains the Java programming
language type of the resource manager connection factory that the application
component code expects. Theres-auth element indicates whether the
application component code performs resource sign on programmatically, or
whether the container signs on to the resource based on the principal mapping
information supplied by the Deployer. The Application Component Provider
indicates the sign on responsibility by setting the value of theres-auth element to
Application or Container. Theres-sharing-scope element indicates whether
connections to the resource manager obtained through the given resource manager
connection factory reference can be shared or whether connections are
unshareable. The value of theres-sharing-scope element isShareable or
Unshareable. If theres-sharing-scope element is not specified, connections are
assumed to be shareable.

A resource manager connection factory reference is scoped to the application
component whose declaration contains theresource-ref element. This means
that the resource manager connection factory reference is not accessible from
other application components at runtime, and that other application components

Resource Manager Connection Factory References 73

may defineresource-ref elements with the sameres-ref-name without causing
a name conflict.

The type declaration allows the Deployer to identify the type of the resource
manager connection factory.

Note that the indicated type is the Java programming language type of the
resource manager connection factory, not the type of the connection.

The following example is the declaration of resource references used by the
application component illustrated in the previous subsection.

...

<resource-ref>

<description>

A data source for the database in which

the EmployeeService enterprise bean will

record a log of all transactions.

</description>

<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

J2EE.5.4.1.3 Standard Resource Manager Connection Factory Types

The Application Component Provider must use thejavax.sql.DataSource

resource manager connection factory type for obtaining JDBC API connections.
The Application Component Provider must use the

javax.jms.QueueConnectionFactory, thejavax.jms.TopicConnectionFactory,
or thejavax.jms.ConnectionFactory for obtaining JMS connections.

The Application Component Provider must use thejavax.mail.Session

resource manager connection factory type for obtaining JavaMail API
connections.

The Application Component Provider must use thejava.net.URL resource
manager connection factory type for obtaining URL connections.

It is recommended that the Application Component Provider name JDBC API
data sources in thejava:comp/env/jdbc subcontext, all JMS connection factories
in thejava:comp/env/jms subcontext, all JavaMail API connection factories in
thejava:comp/env/mail subcontext, and all URL connection factories in the
java:comp/env/url subcontext.

NAMING74

The J2EE Connector Architecture allows an application component to use the
API described in this section to obtain resource objects that provide access to
additional back-end systems.

J2EE.5.4.2 Deployer’s Responsibilities

The Deployer uses deployment tools to bind the resource manager connection
factory references to the actual resource factories configured in the target
operational environment.

The Deployer must perform the following tasks for each resource manager
connection factory reference declared in the deployment descriptor:

• Bind the resource manager connection factory reference to a resource manager
connection factory that exists in the operational environment. The Deployer
may use, for example, the JNDILinkRef mechanism to create a symbolic link
to the actual JNDI name of the resource manager connection factory. The re-
source manager connection factory type must be compatible with the type de-
clared in theres-type element.

• Provide any additional configuration information that the resource manager
needs for opening and managing the resource. The configuration mechanism
is resource manager specific, and is beyond the scope of this specification.

• If the value of theres-auth element isContainer, the Deployer is responsible
for configuring the sign on information for the resource manager. This is per-
formed in a manner specific to the container and resource manager; it is be-
yond the scope of this specification.

For example, if principals must be mapped from the security domain and
principal realm used at the application component level to the security domain and
principal realm of the resource manager, the Deployer or System Administrator
must define the mapping. The mapping is performed in a manner specific to the
container and resource manager; it is beyond the scope of this specification.

J2EE.5.4.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider is responsible for the following:

Resource Manager Connection Factory References 75

• Provide the deployment tools that allow the Deployer to perform the tasks de-
scribed in the previous subsection.

• Provide the implementation of the resource manager connection factory class-
es that are required by this specification.

• If the Application Component Provider set theres-auth of a resource refer-
ence toApplication, the container must allow the application component to
perform explicit programmatic sign on using the resource manager’s API.

• If the Application Component Provider sets theres-sharing-scope of a re-
source manager connection factory reference toUnshareable, the container
must not attempt to share the connections obtained from the resource manager
connection factory reference1.

• The container must provide tools that allow the Deployer to set up resource
sign on information for the resource manager references whoseres-auth ele-
ment is set toContainer. The minimum requirement is that the Deployer must
be able to specify the username/password information for each resource man-
ager connection factory reference declared by the application component, and
the container must be able to use the username/password combination for user
authentication when obtaining a connection by invoking the resource manager
connection factory.

Although not required by this specification, we expect that containers will
support some form of a single sign on mechanism that spans the application server
and the resource managers. The container will allow the Deployer to set up the
resources such that the principal can be propagated (directly or through principal
mapping) to a resource manager, if required by the application.

While not required by this specification, most J2EE products will provide the
following features:

• A tool to allow the System Administrator to add, remove, and configure a re-
source manager for the J2EE Server.

• A mechanism to pool resources for the application components and otherwise
manage the use of resources by the container. The pooling must be transparent
to the application components.

1. Connections obtained from the same resource manager connection facto-
ry through a different resource manager connection factory reference
many be shareable.

NAMING76

J2EE.5.4.4 System Administrator’s Responsibilities

The System Administrator is typically responsible for the following:

• Add, remove, and configure resource managers in the J2EE Server environ-
ment.

In some scenarios, these tasks can be performed by the Deployer.

J2EE.5.5 Resource Environment References

This section describes the programming and deployment descriptor interfaces that
allow the Application Component Provider to refer to administered objects that are
associated with a resource (for example, a Connector CCIInteractionSpec

instance) by using “logical” names called resource environment references. The
resource environment references are special entries in the application component’s
environment. The Deployer binds the resource environment references to
administered objects in the target operational environment.

J2EE.5.5.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and
responsibilities with respect to resource environment references.

J2EE.5.5.1.1 Resource Environment Reference Programming Interfaces

The Application Component Provider is required to use resource environment
references to locate administered objects that are associated with resources as
follows.

• Assign an entry in the application component’s environment to the reference.
(See subsection 5.5.1.2 for information on how resource environment refer-
ences are declared in the deployment descriptor.)

• This specification recommends, but does not require, that all resource envi-
ronment references be organized in the appropriate subcontext of the compo-
nent’s environment for the resource type.

• Look up the administered object in the application component’s environment
using JNDI.

Resource Environment References 77

J2EE.5.5.1.2 Declaration of Resource Environment References in
Deployment Descriptor

Although the resource environment reference is an entry in the application
component’s environment, the Application Component Provider must not use a
env-entry element to declare it. Instead, the Application Component Provider must
declare all references to administered objects associated with resources using the
resource-env-ref elements of the deployment descriptor. This allows the
application component’s JAR file consumer to discover all the resource environment
references used by the application component.

Eachresource-env-ref element describes the requirements that the
referencing application component has for the referenced administered object.
Theresource-env-ref element contains an optionaldescription element and the
mandatoryresource-env-ref-name and resource-env-ref-type elements.

Theresource-env-ref-name element specifies the resource environment
reference name. Its value is the environment entry name used in the application
component code. The name of the resource environment reference is relative to
thejava:comp/env context. Theresource-env-ref-type element specifies the
expected type of the referenced object.

A resource environment reference is scoped to the application component
whose declaration contains theresource-env-ref element. This means that the
resource environment reference is not accessible to other application components
at runtime, and that other application components may defineresource-env-ref

elements with the sameresource-env-ref-name without causing a name conflict.

J2EE.5.5.2 Deployer’s Responsibilities

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared resource environment referenc-
es are bound to administered objects that exist in the operational environment.
The Deployer may use, for example, the JNDILinkRef mechanism to create a
symbolic link to the actual JNDI name of the target object.

• The Deployer must ensure that the target object is type-compatible with the
type declared for the resource environment reference. This means that the tar-
get object must be of the type indicated in theresource-env-ref-type ele-
ment.

NAMING78

J2EE.5.5.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the J2EE Product Provider must be able to process the
information supplied in theresource-env-ref elements in the deployment
descriptor.

At the minimum, the tools must be able to inform the Deployer of any
unresolved resource environment references, and allow him or her to resolve a
resource environment reference by binding it to a specified compatible target
object in the environment.

J2EE.5.6 Message Destination References

This section describes the programming and deployment descriptor interfaces that
allow the Application Component Provider to refer to message destination objects
by using “logical” names called message destination references. Message
destination references are special entries in the application component’s
environment. The Deployer binds the message destination references to
administered message destinations in the target operational environment.

J2EE.5.6.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and
responsibilities with respect to message destination references.

J2EE.5.6.1.1 Message Destination Reference Programming Interfaces

The Application Component Provider uses message destination references to locate
message destinations, as follows.

• Assign an entry in the application component’s environment to the reference.
(See subsection 5.6.1.2 for information on how message destination references
are declared in the deployment descriptor.)

• This specification recommends, but does not require, that all message destina-
tion references be organized in the appropriate subcontext of the component’s
environment for the resource type (for example, in thejava:comp/env/jms

JNDI context for JMS Destinations).

• Look up the administered object in the application component’s environment

Message Destination References 79

using JNDI.

The following example illustrates how an application component uses a
message destination reference to locate a JMS Destination.

// Obtain the default initial JNDI context.

Context initCtx = new InitialContext();

// Look up the JMS StockQueue in the environment.

Object result = initCtx.lookup("java:comp/env/jms/StockQueue");

// Convert the result to the proper type.

javax.jms.Queue queue = (javax.jms.Queue)result;

In the example, the Application Component Provider assigned the
environment entryjms/StockQueue as the message destination reference name to
refer to a JMS queue.

J2EE.5.6.1.2 Declaration of Message Destination References in Deployment
Descriptor

Although the message destination reference is an entry in the application
component’s environment, the Application Component Provider must not use a
env-entry element to declare it. Instead, the Application Component Provider
should declare all references to message destinations using themessage-

destination-ref elements of the deployment descriptor. This allows the
application component’s JAR file consumer to discover all the message destination
references used by the application component.

Eachmessage-destination-ref element describes the requirements that the
referencing application component has for the referenced destination. The
message-destination-ref element contains an optionaldescription element and
the mandatorymessage-destination-ref-name, message-destination-type, and
message-destination-usage elements.

Themessage-destination-ref-name element specifies the message
destination reference name. Its value is the environment entry name used in the
application component code. The name of the message destination reference is
relative to thejava:comp/env context (for example, the name should bejms/

StockQueue rather thanjava:comp/env/jms/StockQueue). Themessage-
destination-type element specifies the expected type of the referenced
destination. For example, in the case of a JMS Destination, its value might be
javax.jms.Queue. Themessage-destination-usage element specifies whether

NAMING80

messages are consumed from the message destination, produced for the
destination, or both.

A message destination reference is scoped to the application component
whose declaration contains themessage-destination-ref element. This means
that the message destination reference is not accessible to other application
components at runtime, and that other application components may define
message-destination-ref elements with the samemessage-destination-ref-
name without causing a name conflict.

The following example illustrates the declaration of message destination
references in the deployment descriptor.

...

<message-destination-ref>

<description>

This is a reference to a JMS queue used in the

processing of Stock info

</description>

<message-destination-ref-name>

jms/StockInfo

</message-destination-ref-name>

<message-destination-type>

javax.jms.Queue

</message-destination-type>

<message-destination-usage>

Produces

</message-destination-usage>

</message-destination-ref>

...

J2EE.5.6.2 Application Assembler’s Responsibilities

By means of linking message consumers and producers to one or more common
logical destinations specified in the enterprise bean deployment descriptor, the
Application Assembler can specify the flow of messages within an application. The
Application Assembler uses themessage-destination element in an ejb-jar file, the
message-destination-link element of themessage-destination-ref element,
and themessage-destination-link element of an ejb-jar’smessage-driven
element to link message destination references to a common logical destination.

The Application Assembler specifies the link between message consumers
and producers as follows:

Message Destination References 81

• The Application Assembler uses themessage-destination element in an ejb-
jar deployment descriptor to specify a logical message destination within the
application. Themessage-destination element defines amessage-
destination-name, which is used for the purpose of linking.

• The Application Assembler uses themessage-destination-link element of
themessage-destination-ref element of an application component that pro-
duces messages to link it to the target destination. The value of themessage-

destination-link element is the name of the target destination, as defined in
themessage-destination-name element of themessage-destination ele-
ment. Themessage-destination element can be in any EJB module in the
same J2EE application as the referencing component. The Application As-
sembler uses themessage-destination-usage element of themessage-
destination-ref element to indicate that the referencing application compo-
nent produces messages to the referenced destination.

• If the consumer of messages from the common destination is a message-driv-
en bean, the Application Assembler uses themessage-destination-link ele-
ment of themessage-driven element to reference the logical destination. If
the Application Assembler links a message-driven bean to its source destina-
tion, he or she should use themessage-destination-type element of the
message-driven element to specify the expected destination type. Otherwise,
the Application Assembler uses themessage-destination-link element of
themessage-destination-ref element of the application component that
consumes messages to link to the common destination. In the latter case, the
Application Assembler uses themessage-destination-usage element of the
message-destination-ref element to indicate that the application component
consumes messages from the referenced destination.

• To avoid the need to rename message destinations to have unique names with-
in an entire J2EE application, the Application Assembler may use the follow-
ing syntax in themessage-destination-link element of the referencing
application component. The Application Assembler specifies the path name
of the ejb-jar file containing the referenced message destination and appends
themessage-destination-name of the target destination separated from the
path name by #. The path name is relative to the referencing application com-
ponent JAR file. In this manner, multiple destinations with the samemessage-

destination-name may be uniquely identified.

• When linking message destinations, the Application Assembler must ensure
that the consumers and producers for the destination require a message desti-
nation of the same or compatible type, as determined by the messaging system.

NAMING82

J2EE.5.6.3 Deployer’s Responsibilities

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared message destination references
are bound to administered objects that exist in the operational environment.
The Deployer may use, for example, the JNDILinkRef mechanism to create a
symbolic link to the actual JNDI name of the target object.

• The Deployer must ensure that the target object is type-compatible with the
type declared for the message destination reference. This means that the target
object must be of the type indicated in themessage-destination-type ele-
ment.

• The Deployer must observe the message destination links specified by the Ap-
plication Assembler.

J2EE.5.6.4 J2EE Product Provider’s Responsibilities

The J2EE Product Provider must provide the deployment tools that allow the
Deployer to perform the tasks described in the previous subsection. The deployment
tools provided by the J2EE Product Provider must be able to process the
information supplied in themessage-destination-ref elements in the deployment
descriptor.

At the minimum, the tools must be able to inform the Deployer of any
unresolved message destination references, and allow him or her to resolve a
message destination reference by binding it to a specified compatible target object
in the environment.

J2EE.5.7 UserTransaction References

Certain J2EE application component types are allowed to use the JTA
UserTransaction interface to start, commit, and abort transactions. Such
application components can find an appropriate object implementing the
UserTransaction interface by looking up the JNDI namejava:comp/
UserTransaction. The container is only required to provide thejava:comp/

UserTransaction name for those components that can validly make use of it. Any
such reference to aUserTransaction object is only valid within the component
instance that performed the lookup. See the individual component definitions for
further information.

UserTransaction References 83

The following example illustrates how an application component acquires and
uses aUserTransaction object.

public void updateData(...) {

...

// Context initCtx = new InitialContext();

// Look up the UserTransaction object.

UserTransaction tx = (UserTransaction)initCtx.lookup(

"java:comp/UserTransaction");

// Start a transaction.

tx.begin();

...

// Perform transactional operations on data.

...

// Commit the transaction.

tx.commit();

...

}

J2EE.5.7.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for using the defined name to
look up theUserTransaction object.

Only some application component types are required to have access to a
UserTransaction object; seeTable J2EE.6-1 in this specification and the EJB
specification for details.

J2EE.5.7.2 Deployer’s Responsibilities

The Deployer has no specific responsibilities associated with theUserTransaction

object.

J2EE.5.7.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider is responsible for providing an appropriate
UserTransaction object as required by this specification.

NAMING84

J2EE.5.7.4 System Administrator’s Responsibilities

The System Administrator has no specific responsibilities associated with the
UserTransaction object.

J2EE.5.8 ORB References

Some J2EE applications will need to make use of the CORBA ORB to perform
certain operations. Such applications can find an appropriate object implementing
theORB interface by looking up the JNDI namejava:comp/ORB. The container is
required to provide thejava:comp/ORB name for all components except applets.
Any such reference to aORB object is only valid within the component instance that
performed the lookup.

J2EE.5.8.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for using the defined name to
look up theORB object.

J2EE.5.8.2 Deployer’s Responsibilities

The Deployer has no specific responsibilities associated with theORB object.

J2EE.5.8.3 J2EE Product Provider’s Responsibilities

The J2EE Product Provider is responsible for providing an appropriateORB object as
required by this specification.

J2EE.5.8.4 System Administrator’s Responsibilities

The System Administrator has no specific responsibilities associated with theORB

object.

85

C H A P T E RJ2EE.6
Application Programming

Interface

This Chapter describes API requirements for the Java™ 2 Platform, Enterprise
Edition (J2EE). J2EE requires the provision of a number of APIs for use by J2EE
applications, starting with the core Java APIs and including several Java optional
packages1.

J2EE.6.1 Required APIs

J2EE application components execute in runtime environments provided by the
containers that are a part of the J2EE platform. The J2EE platform supports four
types of containers corresponding to J2EE application component types: application
client containers, applet containers, web containers for servlets and JSP pages, and
enterprise bean containers.

J2EE.6.1.1 Java Compatible APIs

The containers provide all application components with the Java 2 Platform,
Standard Edition, v1.4 (J2SE) APIs, which include the following enterprise APIs:

1. Note that “optional packages” were previously called “standard exten-
sions”. The packages described here are optional relative to J2SE, butre-
quired for J2EE.

APPLICATION PROGRAMMING INTERFACE86

• Java IDL API

• JDBC API

• RMI-IIOP API

• JNDI API

• JAXP API

• JAAS API

In particular, the applet execution environment must be J2SE 1.4 compatible.
Since typical browsers don’t yet provide such support, J2EE products may make
use of the Java Plugin to provide the required applet execution environment. Use
of the Java Plugin is not required, but is one method of meeting the requirement to
provide a J2SE 1.4 compatible applet execution environment.

Note that the version of the JDBC API that is included in J2SE includes the
JDBC Extension API that was previously a separate API. Both the JDBC Core
API and the JDBC Extension API are now part of J2SE, and thus continue to be
part of J2EE as well.

The specifications for the J2SE APIs are available athttp://java.sun.com/

j2se/1.4/docs/.

J2EE.6.1.2 Java Optional Packages

The J2EE platform also requires a number of Java optional packages.Table
J2EE.6-1 indicates the required optional packages with their required versions.

Table J2EE.6-1 J2EE-Required Java Optional Packages

Optional Package App Client Applet Web EJB

EJB 2.1 Ya N Yb Y

Servlet 2.4 N N Y N

JSP 2.0 N N Y N

JMS 1.1 Y N Y Y

JTA 1.0 N N Y Y

JavaMail 1.3 Y N Y Y

JAF 1.0 Y N Y Y

JAXP 1.2 Y N Y Y

Java 2 Platform, Standard Edition (J2SE) Requirements 87

All classes and interfaces required by the specifications for the APIs must be
provided by the J2EE containers. In some cases, a J2EE product is not required to
provide objects that implement interfaces intended to be implemented by an
application server, nevertheless, the definitions of such interfaces must be
included in the J2EE platform.

J2EE.6.2 Java 2 Platform, Standard Edition (J2SE)
Requirements

J2EE.6.2.1 Programming Restrictions

The J2EE programming model divides responsibilities between Application
Component Providers and J2EE Product Providers: Application Component
Providers focus on writing business logic and the J2EE Product Providers focus on
providing a managed system infrastructure in which the application components can
be deployed.

This division leads to a restriction on the functionality that application
components can contain. If application components contain the same functionality

Connector 1.5 N N Y Y

Web Services 1.1 Y N Y Y

JAX-RPC 1.1 Y N Y Y

SAAJ 1.2 Y N Y Y

JAXR 1.0 Y N Y Y

J2EE Management 1.0Y N Y Y

JMX 1.2 Y N Y Y

J2EE Deployment 1.1c N N N N

JACC 1.0 N N Y Y

a. Client APIs only.
b. Client APIs only.
c. See section J2EE.6.18 on page 109 for details.

Table J2EE.6-1 J2EE-Required Java Optional Packages

Optional Package App Client Applet Web EJB

APPLICATION PROGRAMMING INTERFACE88

provided by J2EE system infrastructure, there are clashes and mis-management of
the functionality.

For example, if enterprise beans were allowed to manage threads, the J2EE
platform could not manage the life cycle of the enterprise beans, and it could not
properly manage transactions.

Since we do not want to subset the J2SE platform, and we want J2EE Product
Providers to be able to use J2SE products without modification in the J2EE
platform, we use the J2SE security permissions mechanism to express the
programming restrictions imposed on Application Component Providers.

In this section, we specify the J2SE security permissions that the J2EE
Product Provider must provide for each application component type. We call these
permissions the J2EE security permissions set. The J2EE security permissions set
is a required part of the J2EE API contract. To ensure the integrity of J2EE
containers, all J2EE containers must install a security manager and must prevent
applications from replacing or overriding the security manager.

J2EE.6.2.2 The J2EE Security Permissions Set

The J2EE security permissions set defines the minimum set of permissions that
application components can expect. All J2EE products must be capable of
deploying application components that require the set of permissions described
here. The Product Provider must ensure that the application components do not use
functions that conflict with the J2EE security permission set.

The exact set of security permissions for application components in use at a
particular installation is a matter of policy outside the scope of this specification.
Some J2EE products will allow the set of permissions available to a component to
be configurable, providing some components with more or fewer permissions than
those described here. A future version of this specification will allow these
security requirements to be specified in the deployment descriptor for application
components. At the present time, application components that need permissions
not in this minimal set should describe their requirements in their documentation.
Note that it may not be possible to deploy applications that require more than this
minimal set on some J2EE products.

The J2SE security permissions are fully described inhttp://java.sun.com/

j2se/1.4/docs/guide/security/permissions.html.

Java 2 Platform, Standard Edition (J2SE) Requirements 89

J2EE.6.2.3 Listing of the J2EE Security Permissions Set

Table J2EE.6-2 lists the J2EE security permissions set. This is the typical set of
permissions that components of each type should expect to have.

Table J2EE.6-2 J2EE Security Permissions Set

Security Permissions Target Action

Application Clients

java.awt.AWTPermission accessClipboard

java.awt.AWTPermission accessEventQueue

java.awt.AWTPermission showWindowWithout
WarningBanner

java.lang.RuntimePermission exitVM

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.net.SocketPermission localhost:1024- accept,listen

java.io.FilePermission * read,write

java.util.PropertyPermission * read

Applet Clients

java.net.SocketPermission codebase connect

java.util.PropertyPermission limited read

Web Components

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.io.FilePermission * read,write

java.util.PropertyPermission * read

EJB Components

java.lang.RuntimePermission queuePrintJob

APPLICATION PROGRAMMING INTERFACE90

Note that an operating system that hosts a J2EE product may impose
additional security restrictions of its own that must be taken into account. For
instance, the user identity under which a servlet executes is not likely to have
permission to read and write all files.

J2EE.6.2.4 Additional Requirements

J2EE.6.2.4.1 Networking

The J2SE platform includes a pluggable mechanism for supporting multiple URL
protocols through thejava.net.URLStreamHandler class and the
java.net.URLStreamHandlerFactory interface.

The following URL protocols must be supported:

• file: Only reading from afile URL need be supported. That is, the corre-
spondingURLConnection object’sgetOutputStream method may fail with an
UnknownServiceException. File access is restricted according to the permis-
sions described above.

• http: Version 1.1 of the HTTP protocol must be supported Anhttp URL
must support both input and output.

• https: SSL version 3.0 and TLS version 1.0 must be supported byhttps URL
objects. Both input and output must be supported.

The J2SE platform also includes a mechanism for converting a URL’s byte
stream to an appropriate object, using thejava.net.ContentHandler class and
java.net.ContentHandlerFactory interface. AContentHandler object can
convert a MIME byte stream to an object.ContentHandler objects are typically
accessed indirectly using thegetContent method ofURL andURLConnection.

java.net.SocketPermission * connect

java.util.PropertyPermission * read

Table J2EE.6-2 J2EE Security Permissions Set

Security Permissions Target Action

Java 2 Platform, Standard Edition (J2SE) Requirements 91

When accessing data of the following MIME types using thegetContent

method, objects of the corresponding Java type listed inTable J2EE.6-3 must be
returned.

Many environments will use HTTP proxies rather than connecting directly to
HTTP servers. If HTTP proxies are being used in the local environment, the
HTTP support in the J2SE platform should be configured to use the proxy
appropriately. Application components must not be required to configure proxy
support in order to use anhttp URL.

Most enterprise environments will include a firewall that limits access from
the internal network (intranet) to the public Internet, and vice versa. It is typical
for access using the HTTP protocol to pass through such firewalls, perhaps by
using proxy servers. It is not typical that general TCP/IP traffic, including RMI-
JRMP, and RMI-IIOP, can pass through firewalls.

These considerations have implications on the use of various protocols to
communicate between application components. This specification requires that
HTTP access through firewalls be possible where local policy allows. Some J2EE
products may provide support for tunneling other communication through
firewalls, but this is neither specified nor required.

J2EE.6.2.4.2 AWT

AWT provides the ability to read binary image data and convert it into a
java.awt.image object, using thecreateImage methods injava.awt.Toolkit. The
AWT Toolkit must support binary data in the GIF and JPEG formats.

J2EE.6.2.4.3 JDBC™ API

The JDBC API, which is part of the J2SE platform, allows for access to a wide
range of data storage systems. The J2SE platform, however, does not require that a
system meeting the Java Compatible™ quality standards provide a database that is
accessible through the JDBC API.

Table J2EE.6-3 Java Type of Objects Returned When Using the
getContent Method

MIME Type Java Type

image/gif java.awt.Image

image/jpeg java.awt.Image

APPLICATION PROGRAMMING INTERFACE92

To allow for the development of portable applications, the J2EE specification
does require that such a database be available and accessible from a J2EE product
through the JDBC API. Such a database must be accessible from web
components, enterprise beans, and application clients, but need not be accessible
from applets. In addition, the driver for the database must meet the JDBC
Compatible requirements in the JDBC specification.

J2EE applications should not attempt to load JDBC drivers directly. Instead,
they should use the technique recommended in the JDBC specification and
perform a JNDI lookup to locate aDataSource object. The JNDI name of the
DataSource object should be chosen as described in Section J2EE.5.4, “Resource
Manager Connection Factory References.” The J2EE platform must be able to
supply aDataSource that does not require the application to supply any
authentication information when obtaining a database connection. In the usual
case, applications typically will supply a user name and password when
connecting to the database.

When a JDBC API connection is used in an enterprise bean, the transaction
characteristics will typically be controlled by the container. The component
should not attempt to change the transaction characteristics of the connection,
commit the transaction, roll back the transaction, or set autocommit mode.
Attempts to make changes that are incompatible with the current transaction
context may result in aSQLException being thrown. The EJB specification
contains the precise rules for enterprise beans.

Note that similar restrictions apply when a component creates a transaction
using the JTAUserTransaction interface. The component should not attempt
operations on the JDBCConnection object that would conflict with the
transaction context.

Drivers supporting the JDBC API in a J2EE environment must meet the
JDBC 3.0 API Compliance requirements as specified in the JDBC specification
and must meet a number of additional requirements in their implementation of
JDBC APIs, as described below:

• Drivers are required to provide accurate and complete metadata through the
Connection.getMetaData method. J2EE applications should examine the
DatabaseMetaData object and adapt their behavior to the capabilities of the
current database. How this information is used to create portable applications
that are independent of the underlying database vendor and driver is beyond
the scope of this specification.

• Drivers must support stored procedures. TheDatabaseMetaData method
supportsStoredProcedures must returntrue. The driver must also support

Java 2 Platform, Standard Edition (J2SE) Requirements 93

the full JDBC API escape syntax for calling stored procedures with the fol-
lowing methods on theStatement, PreparedStatement, and
CallableStatement classes:

■ executeUpdate

■ executeQuery

Support for calling stored procedures using the methodexecute on the
Statement, PreparedStatement, andCallableStatement interfaces is not
required because some databases don’t support returning more than a single
ResultSet from a stored procedure.

• Drivers must support all of theCallableStatement methods that apply to
SQL92 types, including the following:

■ getBigDecimal

■ getBoolean

■ getByte

■ getBytes

■ getDate

■ getDouble

■ getFloat

■ getInt

■ getLong

■ getObject

■ getShort

■ getString

■ getTime

■ getTimestamp

■ registerOutParameter

■ wasNull

Support for the newBLOB, CLOB, ARRAY, REF, STRUCT, andJAVA_OBJECT types is
not required. All parameter types (IN, OUT, andINOUT) must be supported.

APPLICATION PROGRAMMING INTERFACE94

• Drivers must support all of thePreparedStatement methods that apply to
SQL92 types, including the following:

■ setAsciiStream

■ setBigDecimal

■ setBinaryStream

■ setBoolean

■ setByte

■ setBytes

■ setCharacterStream

■ setDate

■ setDouble

■ setFloat

■ setInt

■ setLong

■ setNull

■ setObject

■ setShort

■ setString

■ setTime

■ setTimestamp

Support for the newBLOB, CLOB, ARRAY, REF, STRUCT, andJAVA_OBJECT types is
not required. Support for thePreparedStatement methodgetMetaData is not
required. This method must throw anSQLException if it is not supported. Sup-
port for thePreparedStatement methodgetParameterMetaData is required.

• Full support for batch updates is required. This implies support for the follow-
ing methods on theStatement, PreparedStatement, andCallableStatement
classes:

■ addBatch

■ clearBatch

■ executeBatch

Drivers are free to implement these methods any way they choose (including a

Java 2 Platform, Standard Edition (J2SE) Requirements 95

non-batching implementation) as long as the semantics are correct.

• Drivers must support theResultSet typeTYPE_FORWARD_ONLY, with a concur-
rency ofCONCUR_READ_ONLY. Support for otherResultSet types
TYPE_SCROLL_INSENSITIVE andTYPE_SCROLL_SENSITIVE, and concurrency
CONCUR_UPDATABLE, is not required.

• A driver must provide full support forDatabaseMetaData and
ResultSetMetaData. This implies that all of the methods in the
DatabaseMetaData interface must be implemented and must behave as speci-
fied in the JDBC specification. None of the methods inDatabaseMetaData and
ResultSetMetaData may throw an exception because they are not implement-
ed.

• The JDBC API core specification requires that JDBC compliant drivers pro-
vide support for the SQL92, Transitional Level,DROP TABLE command, full
support for theCASCADE andRESTRICT options is required. As many popular
databases do not supportDROP TABLE as specified in the SQL92 specification,
the following clarification is required.

A JDBC compliant driver is required to support theDROP TABLE command as
specified by the SQL92, Transitional Level. However, support for theCASCADE

andRESTRICT options ofDROP TABLE is optional. In addition, the behavior of
DROP TABLE is implementation defined when there are views or integrity con-
straints defined that reference the table that is being dropped.

• A driver must support theStatement escape syntax for the following func-
tions as specified by the JDBC specification:

■ CONCAT

■ SUBSTRING

■ LOCATE (two argument version only)

■ LENGTH

■ ABS

■ SQRT

■ MOD

The JDBC API includes APIs for row sets, connection naming via JNDI, connection
pooling, and distributed transaction support. The connection pooling and distributed
transaction features are intended for use by JDBC drivers to coordinate with an
application server. J2EE products are not required to support the application server
facilities described by these APIs, although they may prove useful.

APPLICATION PROGRAMMING INTERFACE96

The Connector architecture defines an SPI that essentially extends the
functionality of the JDBC SPI with additional security functionality, and a full
packaging and deployment functionality for resource adapters. A future version of
this specification may require support for deploying JDBC drivers as resource
adapters using the Connector architecture.

The JDBC 3.0 specification is available athttp://java.sun.com/products/

jdbc/download.html.

J2EE.6.2.4.4 Java IDL

Java IDL allows applications to access any CORBA object, written in any language,
using the standard IIOP protocol. The J2EE security restrictions typically prevent all
application component types except application clients from creating and exporting
a CORBA object, but all J2EE application component types can be clients of
CORBA objects.

A J2EE product must support Java IDL as defined by chapters 1 - 8, 13, and
15 of the CORBA 2.3.1 specification, available athttp://www.omg.org/cgi-bin/

doc?formal/99-10-07, and the IDL To Java Language Mapping Specification,
available athttp://www.omg.org/cgi-bin/doc?ptc/2000-01-08.

The IIOP protocol supports the ability to multiplex calls over a single
connection. All J2EE products must support requests from clients that multiplex
calls on a connection to either Java IDL server objects or RMI-IIOP server objects
(such as enterprise beans). The server must allow replies to be sent in any order, to
avoid deadlocks where one call would be blocked waiting for another call to
complete. J2EE clients are not required to multiplex calls, although such support
is highly recommended.

J2EE applications need to use an instance oforg.omg.CORBA.ORB to perform
many Java IDL and RMI-IIOP operations. The default ORB returned by a call to
ORB.init(new String[0], null) must be usable for such purposes; an
application need not be aware of the implementation classes used for the ORB and
RMI-IIOP support.

In addition, for performance reasons it is often advantageous to share an ORB
instance among components in an application. To support such usage, all web,
enterprise bean, and application client containers are required to provide an ORB
instance in the JNDI namespace under the namejava:comp/ORB. The container is
allowed, but not required, to share this instance between components. The
container may also use this ORB instance itself. To support isolation between
applications, an ORB instance should not be shared between components in
different applications. To allow this ORB instance to be safely shared between

Java 2 Platform, Standard Edition (J2SE) Requirements 97

components, portable components must restrict their usage of certain ORB APIs
and functionality:

• Do not call the ORBshutdown method.

• Do not call theorg.omg.CORBA_2_3.ORB methodsregister_value_factory
andunregister_value_factory with anid used by the container.

A J2EE product must provide a COSNaming service to support the EJB
interoperability requirements. It must be possible to access this COSNaming
service using the Java IDL COSNaming APIs. Applications with appropriate
privileges must be able to lookup objects in the COSNaming service.
COSNaming is defined in the Interoperable Naming Service specification,
available athttp://www.omg.org/cgi-bin/doc?formal/2000-06-19.

J2EE.6.2.4.5 RMI-JRMP

JRMP is the Java technology-specific Remote Method Invocation (RMI) protocol.
The J2EE security restrictions typically prevent all application component types
except application clients from creating and exporting an RMI object, but all J2EE
application component types can be clients of RMI objects.

J2EE.6.2.4.6 RMI-IIOP

RMI-IIOP allows objects defined using RMI style interfaces to be accessed using
the IIOP protocol. It must be possible to make any enterprise bean accessible via
RMI-IIOP. Some J2EE products will simply make all enterprise beans always (and
only) accessible via RMI-IIOP; other products might control this via an
administrative or deployment action. These and other approaches are allowed,
provided that any enterprise bean (or by extension, all enterprise beans) can be made
accessible using RMI-IIOP.

All components accessing enterprise beans must use thenarrow method of the
javax.rmi.PortableRemoteObject class, as described in the EJB specification.
Because enterprise beans may be deployed using other RMI protocols, portable
applications must not depend on the characteristics of RMI-IIOP objects (for
example, the use of theStub andTie base classes) beyond what is specified in the
EJB specification.

The J2EE security restrictions typically prevent all application component
types, except application clients, from creating and exporting an RMI-IIOP
object. All J2EE application component types can be clients of RMI-IIOP objects.
J2EE applications should also use JNDI to lookup non-EJB RMI-IIOP objects.

APPLICATION PROGRAMMING INTERFACE98

The JNDI names used for such non-EJB RMI-IIOP objects should be configured
at deployment time using the standard environment entries mechanism (see
Section J2EE.5.2, “Java Naming and Directory Interface™ (JNDI) Naming
Context”). The application should fetch a name from JNDI using an environment
entry, and use the name to lookup the RMI-IIOP object. Typically such names will
be configured to be names in the COSNaming name service.

This specification does not provide a portable way for applications to bind
objects to names in a name service. Some products may support use of JNDI and
COSNaming for binding objects, but this is not required. Portable J2EE
application clients can create non-EJB RMI-IIOP server objects for use as
callback objects, or to pass in calls to other RMI-IIOP objects.

Note that while RMI-IIOP doesn’t specify how to propagate the current
security context or transaction context, the EJB interoperability specification does
define such context propagation. This specification only requires that the
propagation of context information as defined in the EJB specification be
supported in the use of RMI-IIOP to access enterprise beans. The propagation of
context information is not required in the uses of RMI-IIOP to access objects
other than enterprise beans.

The RMI-IIOP specification describes how portableStub andTie classes can
be created. A J2EE application that defines or uses RMI-IIOP objects other than
enterprise beans must include such portableStub andTie classes in the
application package.Stub andTie objects for enterprise beans, however, must not
be included with the application: they will be generated, if needed, by the J2EE
product at deployment time or at run time.

RMI-IIOP is defined by chapters 5, 6, 13, 15, and section 10.6.2 of the
CORBA 2.3.1 specification, available athttp://www.omg.org/cgi-bin/

doc?formal/99-10-07, and by theJava™ Language To IDL Mapping
Specification, available athttp://www.omg.org/cgi-bin/doc?ptc/2000-01-06.

J2EE.6.2.4.7 JNDI

A J2EE product must be able to make the following types of objects available in the
application’s JNDI namespace:EJBHome objects, JTAUserTransaction objects,
JDBC APIDataSource objects, JMSConnectionFactory andDestination objects,
JavaMailSession objects,URL objects, resource managerConnectionFactory

objects (as specified in the Connector specification),ORB objects, and other Java
language objects as described in Chapter J2EE.5, “Naming.” The JNDI
implementation in a J2EE product must be capable of supporting all of these uses in
a single application component using a single JNDIInitialContext. Application
components will generally create a JNDIInitialContext using the default

Java 2 Platform, Standard Edition (J2SE) Requirements 99

constructor with no arguments. The application component may then perform
lookups on thatInitialContext to find objects as specified above.

The names used to perform lookups for J2EE objects are application
dependent. The application component’s deployment descriptor is used to list the
names and types of objects expected. The Deployer configures the JNDI
namespace to make appropriate components available. The JNDI names used to
lookup such objects must be in the JNDIjava: namespace. See Chapter J2EE.5,
“Naming” for details.

Two particular names are defined by this specification. For all application
components that have access to the JTAUserTransaction interface, the
appropriateUserTransaction object can be found using the namejava:comp/

UserTransaction. In all containers except the applet container, application
components may lookup a CORBAORB instance using the namejava:comp/ORB.

The name used to lookup a particular J2EE object may be different in
different application components. In general, JNDI names can not be
meaningfully passed as arguments in remote calls from one application
component to another remote component (for example, in a call to an enterprise
bean).

The JNDIjava: namespace is commonly implemented assymbolic links to
other naming systems. Different underlying naming services may be used to store
different kinds of objects, or even different instances of objects. It is up to a J2EE
product to provide the necessary JNDI service providers for accessing the various
objects defined in this specification.

This specification requires that the J2EE platform provide the ability to
perform lookup operations as described above. Different JNDI service providers
may provide different capabilities, for instance, some service providers may
provide only read-only access to the data in the name service.

All J2EE products must provide a COSNaming name service to meet the EJB
interoperability requirements. In addition, a COSNaming JNDI service provider
must be available through the web, EJB, and application client containers. It will
also typically be available in the applet container, but this is not required.

A COSNaming JNDI service provider is a part of the J2SE 1.4 SDK and JRE
from Sun, but is not a required component of the J2SE specification. The
COSNaming JNDI service provider specification is available athttp://

java.sun.com/j2se/1.4/docs/guide/jndi/jndi-cos.html.
See Chapter J2EE.5, “Naming” for the complete naming requirements for the

J2EE platform. The JNDI specification is available athttp://java.sun.com/

products/jndi/docs.html.

APPLICATION PROGRAMMING INTERFACE100

J2EE.6.2.4.8 Context Class Loader

This specification requires that J2EE containers provide a per thread context class
loader for the use of system or library classes in dynamicly loading classes provided
by the application. The EJB specification requires that all EJB client containers
provide a per thread context class loader for dynamicly loading system value
classes. The per thread context class loader is accessed using theThread method
getContextClassLoader.

The classes used by an application will typically be loaded by a hierarchy of
class loaders. There may be a top level application class loader, an extension class
loader, and so on, down to a system class loader. The top level application class
loader delegates to the lower class loaders as needed. Classes loaded by lower
class loaders, such as portable EJB system value classes, need to be able to
discover the top level application class loader used to dynamicly load application
classes.

We require that containers provide a per thread context class loader that can
be used to load top level application classes as described above.

J2EE.6.2.4.9 JAXP API

J2SE 1.4 includes the JAXP 1.1 API. The JAXP 1.2 API does not add any new Java
APIs, but defines new properties that must be supported by the XML parsers to
enable support for validation against XML Schemas. J2EE 1.4 requires support for
JAXP 1.2.

J2EE.6.2.4.10 Java™ Authentication and Authorization Service (JAAS)
Requirements

All EJB containers and all web containers must support the use of the JAAS APIs as
specified in the Connector specification. All application client containers must
support use of the JAAS APIs as specified in Chapter J2EE.9, “Application Clients.”

The JAAS specification is available athttp://java.sun.com/products/jaas.

J2EE.6.2.4.11 Logging API Requirements

The Logging API provides classes and interfaces in thejava.util.logging

package that are the Java™ 2 platform’s core logging facilities. This specification
does not require any additional support for logging. A J2EE application typically
will not have theLoggingPermission necessary to control the logging
configuration, but may use the logging API to produce log records. A future version
of this specification may require that the J2EE containers use the logging API to log
certain events.

Enterprise JavaBeans™ (EJB) 2.1 Requirements 101

J2EE.6.2.4.12 Preferences API Requirements

The Preferences API in thejava.util.prefs package allows applications to store
and retrieve user and system preference and configuration data. A J2EE application
typically will not have theRuntimePermission("preferences") necessary to use
the Preferences API. This specification does not define any relationship between the
principal used by a J2EE application and the user preferences tree defined by the
Preferences API. A future version of this specification may define the use of the
Preferences API by J2EE applications.

J2EE.6.3 Enterprise JavaBeans™ (EJB) 2.1 Requirements

This specification requires that a J2EE product provide support for enterprise beans
as specified in the EJB 2.1 specification. The EJB specification is available at
http://java.sun.com/products/ejb/docs.html.

This specification does not impose any additional requirements at this time.
Note that the EJB specification includes the specification of the EJB
interoperability protocol based on RMI-IIOP. All containers that support EJB
clients must be capable of using the EJB interoperability protocol to invoke
enterprise beans. All EJB containers must support the invocation of enterprise
beans using the EJB interoperability protocol. A J2EE product may also support
other protocols for the invocation of enterprise beans.

A J2EE product may support multiple object systems (for example, RMI-
IIOP and RMI-JRMP). It may not always be possible to pass object references
from one object system to objects in another object system. However, when an
enterprise bean is using the RMI-IIOP protocol, it must be possible to pass object
references for RMI-IIOP or Java IDL objects as arguments to methods on such an
enterprise bean, and to return such object references as return values of a method
on such an enterprise bean. In addition, it must be possible to pass a reference to
an RMI-IIOP-based enterprise bean’s Home or Remote interface to a method on
an RMI-IIOP or Java IDL object, or to return such an enterprise bean object
reference as a return value from such an RMI-IIOP or Java IDL object.

The EJB container and the web container are both required to support access
to local enterprise beans. No support is provided for access to local enterprise
beans from the application client container or the applet container.

APPLICATION PROGRAMMING INTERFACE102

J2EE.6.4 Servlet 2.4 Requirements

The servlet specification defines the packaging and deployment of web applications,
whether standalone or as part of a J2EE application. The servlet specification also
addresses security, both standalone and within the J2EE platform. These optional
components of the servlet specification are requirements of the J2EE platform.

The servlet specification includes additional requirements for web containers
that are part of a J2EE product and a J2EE product must meet these requirements
as well.

The servlet specification definesdistributable web applications. To support
J2EE applications that are distributable, this specification adds the following
requirements.

Web containers must support J2EE distributable web applications placing
objects of any of the following types into ajavax.servlet.http.HttpSession
object using thesetAttribute or putValue methods:

• java.io.Serializable

• javax.ejb.EJBObject

• javax.ejb.EJBHome

• javax.ejb.EJBLocalObject

• javax.ejb.EJBLocalHome

• javax.transaction.UserTransaction

• ajavax.naming.Context object for thejava:comp/env context

Web containers may support objects of other types as well. Web containers
must throw ajava.lang.IllegalArgumentException if an object that is not one of
the above types, or another type supported by the container, is passed to the
setAttribute or putValue methods of anHttpSession object corresponding to a
J2EE distributable session. This exception indicates to the programmer that the
web container does not support moving the object between VMs. A web container
that supports multi-VM operation must ensure that, when a session is moved from
one VM to another, all objects of supported types are accurately recreated on the
target VM.

The servlet specification defines access to local enterprise beans as an
optional feature. This specification requires that all J2EE products provide support
for access to local enterprise beans from the web container.

The servlet specification is available athttp://java.sun.com/products/

servlet.

JavaServer Pages™ (JSP) 2.0 Requirements 103

J2EE.6.5 JavaServer Pages™ (JSP) 2.0 Requirements

The JSP specification depends on and builds on the servlet framework. A J2EE
product must support the entire JSP specification.

The JSP specification is available athttp://java.sun.com/products/jsp.

J2EE.6.6 Java™ Message Service (JMS) 1.1 Requirements

A Java Message Service provider must be included in a J2EE product. The JMS
implementation must provide support for both JMS point-to-point and publish/
subscribe messaging, and thus must make those facilities available using the
ConnectionFactory andDestination APIs.

The JMS specification defines several interfaces intended for integration with
an application server. A J2EE product need not provide objects that implement
these interfaces, and portable J2EE applications must not use the following
interfaces:

• javax.jms.ServerSession

• javax.jms.ServerSessionPool

• javax.jms.ConnectionConsumer

• all javax.jms XA interfaces

The following methods may only be used by application components
executing in the application client container:

• javax.jms.Session methodsetMessageListener

• javax.jms.Session methodgetMessageListener

• javax.jms.Session methodrun

• javax.jms.QueueConnection methodcreateConnectionConsumer

• javax.jms.TopicConnection methodcreateConnectionConsumer

• javax.jms.TopicConnection methodcreateDurableConnectionConsumer

• javax.jms.MessageConsumer methodgetMessageListener

• javax.jms.MessageConsumer methodsetMessageListener

• javax.jms.Connection methodsetExceptionListener

• javax.jms.Connection methodstop

• javax.jms.Connection methodsetClientID

APPLICATION PROGRAMMING INTERFACE104

A J2EE container may throw aJMSException (if allowed by the method) if the
application component violates these restrictions.

Application components in the web and EJB containers must not attempt to
create more than one active (not closed)Session object per connection. An
attempt to use theConnection object’screateSession method when an active
Session object exists for that connection should be prohibited by the container.
The container may throw aJMSException if the application component violates
this restriction. Application client containers must support the creation of multiple
sessions for each connection.

The JMS specification is available athttp://java.sun.com/products/jms.

J2EE.6.7 Java™ Transaction API (JTA) 1.0 Requirements

JTA defines theUserTransaction interface that is used by applications to start, and
commit or abort transactions. Enterprise beans are expected to getUserTransaction

objects through theEJBContext’s getUserTransaction method. Other application
components get aUserTransaction object through a JNDI lookup using the name
java:comp/UserTransaction.

JTA also defines a number of interfaces that are used by an application server
to communicate with a transaction manager, and for a transaction manager to
interact with a resource manager. These interfaces must be supported as described
in the Connector specification. In addition, support for other transaction facilities
may be provided transparently to the application by a J2EE product.

The latest JTA 1.0 specification is version 1.0.1B and is available athttp://

java.sun.com/products/jta.

J2EE.6.8 JavaMail™ 1.3 Requirements

The JavaMail API allows for access to email messages contained in message stores,
and for the creation and sending of email messages using a message transport.
Specific support is included for Internet standard MIME messages. Access to
message stores and transports is through protocol providers supporting specific store
and transport protocols. The JavaMail API specification does not require any
specific protocol providers, but the JavaMail reference implementation includes an
IMAP message store provider and an SMTP message transport provider.

Configuration of the JavaMail API is typically done by setting properties in a
Properties object that is used to create ajavax.mail.Session object using a
static factory method. To allow the J2EE platform to configure and manage

JavaMail™ 1.3 Requirements 105

JavaMail API sessions, an application component that uses the JavaMail API
should request aSession object using JNDI, and should list its need for aSession

object in its deployment descriptor using aresource-ref element. A JavaMail
API Session object should be considered a resource factory, as described in
Section J2EE.5.4, “Resource Manager Connection Factory References.” This
specification requires that the J2EE platform supportjavax.mail.Session objects
as resource factories, as described in that section.

The J2EE platform requires that a message transport be provided that is
capable of handling addresses of typejavax.mail.internet.InternetAddress

and messages of typejavax.mail.internet.MimeMessage. The default message
transport must be properly configured to send such messages using thesend

method of thejavax.mail.Transport class. Any authentication needed by the
default transport must be handled without need for the application to provide a
javax.mail.Authenticator or to explicitly connect to the transport and supply
authentication information.

This specification does not require that a J2EE product support any message
store protocols.

Note that the JavaMail API creates threads to deliver notifications ofStore,
Folder, andTransport events. The use of these notification facilities may be
limited by the restrictions on the use of threads in various containers. In EJB
containers, for instance, it is typically not possible to create threads.

The JavaMail API uses the JavaBeans Activation Framework API to support
various MIME data types. The JavaMail API must include
javax.activation.DataContentHandlers for the following MIME data types,
corresponding to the Java programming language type indicated inTable J2EE.6-
4.

The JavaMail API specification is available athttp://java.sun.com/

products/javamail.

Table J2EE.6-4 JavaMail API MIME Data Type to Java Type
Mappings

Mime Type Java Type

text/plain java.lang.String

multipart/* javax.mail.internet.MimeMultipart

message/rfc822 javax.mail.internet.MimeMessage

APPLICATION PROGRAMMING INTERFACE106

J2EE.6.9 JavaBeans™ Activation Framework 1.0
Requirements

The JavaBeans Activation Framework integrates support for MIME data types into
the Java platform. MIME byte streams can be converted to and from Java
programming language objects, usingjavax.activation.DataContentHandler

objects. JavaBeans components can be specified for operating on MIME data, such
as viewing or editing the data. The JavaBeans Activation Framework also provides a
mechanism to map filename extensions to MIME types.

The JavaBeans Activation Framework is used by the JavaMail API to handle
the data included in email message. Typical J2EE applications will not need to use
the JavaBeans Activation Framework directly, although applications making
sophisticated use of email may need it.

This specification requires that a J2EE product provide only the
DataContentHandlers specified above for the JavaMail API. This includes
requirement of ajavax.activation.MimetypesFileTypeMap that supports the
mappings listed inTable J2EE.6-5.

The JavaBeans Activation Framework 1.0 specification is available athttp://

java.sun.com/beans/glasgow/jaf.html.

J2EE.6.10 Java™ API for XML Processing (JAXP) 1.2
Requirements

JAXP includes the industry standard SAX and DOM APIs, as well as a pluggability
API that allows SAX and DOM parsers and XSLT transform engines to be plugged
into the framework, and allows applications to find parsers that support the features
needed by the application.

All J2EE products must meet the JAXP conformance requirements and must
provide at least one SAX 2 parser, at least one DOM 2 parser, and at least one

Table J2EE.6-5 Filename Extension to MIME Type Mappings

MIME Type Filename Extensions

text/html html htm

text/plain txt text

image/gif gif GIF

image/jpeg jpeg jpg jpe JPG

J2EE™ Connector Architecture 1.5 Requirements 107

XSLT transform engine. There must be a SAX parser or parsers that support all
combinations of validation modes and namespace support. There must be a DOM
parser or parsers that support all combinations of validation modes and namespace
support. All SAX and DOM parsers must support validation using either DTDs or
XML Schemas, as described in the JAXP 1.2 specification.

The JAXP specification is available athttp://java.sun.com/xml/jaxp.

J2EE.6.11 J2EE™ Connector Architecture 1.5 Requirements

All EJB containers and all web containers must support the full set of Connector
APIs. All such containers must support Resource Adapters that use any of the
specified transaction capabilities. The J2EE deployment tools must support
deployment of Resource Adapters, as defined in the Connector specification, and
must support the deployment of applications that use Resource Adapters.

The Connector specification is available athttp://java.sun.com/j2ee/

connector/.

J2EE.6.12 Web Services for J2EE 1.1 Requirements

The Web Services for J2EE specification defines the capabilities a J2EE application
server must support for deployment of web service endpoints. A complete
deployment model is defined, including several new deployment descriptors. All
J2EE products must support the deployment and execution of web services as
specified by the Web Services for J2EE 1.1 specification (JSR-109).

The Web Services for J2EE specification is available athttp://jcp.org/en/

jsr/detail?id=109 andhttp://jcp.org/en/jsr/detail?id=921.

J2EE.6.13 Java™ API for XML-based RPC (JAX-RPC) 1.1
Requirements

The JAX-RPC specification defines client APIs for accessing web services as well
as techniques for implementing web service endpoints. The Web Services for J2EE
specification describes the deployment of JAX-RPC-based services and clients. The
EJB and servlet specifications also describe aspects of such deployment. It must be
possible to deploy JAX-RPC-based applications using any of these deployment
models.

APPLICATION PROGRAMMING INTERFACE108

The JAX-RPC specification describes the support for message handlers that
can process message requests and responses. In general, these message handlers
execute in the same container and with the same privileges and execution context
as the JAX-RPC client or endpoint component with which they are associated.
These message handlers have access to the same JNDIjava:comp/env namespace
as their associated component. Custom serializers and deserializers, if supported,
are treated in the same way as message handlers.

The JAX-RPC specification is available athttp://java.sun.com/xml/

jaxrpc.

J2EE.6.14 SOAP with Attachments API for Java™ (SAAJ) 1.2

The SAAJ API is used to manipulate SOAP messages. The SAAJ API is used by the
JAX-RPC API to represent XML fragments and to access the entire SOAP message
in a JAX-RPC message handler. As described in the SAAJ specification,
implementations of theSOAPConnectionFactory methodnewInstance may, and
typically will, throw an exception indicating that this functionality is not
implemented.

The SAAJ specification is available athttp://java.sun.com/xml/saaj.

J2EE.6.15 Java™ API for XML Registries (JAXR) 1.0
Requirements

The JAXR specification defines APIs for client access to XML-based registries such
as ebXML registries and UDDI registries. J2EE products must include a JAXR
registry provider that meets at least the JAXR level 0 requirements, as well as a
registry implementation that can be accessed using that provider.

The JAXR specification is available athttp://java.sun.com/xml/jaxr.

J2EE.6.16 Java™ 2 Platform, Enterprise Edition Management
API 1.0 Requirements

The J2EE Management API provides APIs for management tools to query a J2EE
application server to determine its current status, applications deployed, and so on.
All J2EE products must support this API as described in its specification.

The J2EE Management API specification is available athttp://jcp.org/

jsr/detail/77.jsp.

Java™ Management Extensions (JMX) 1.2 Requirements 109

J2EE.6.17 Java™ Management Extensions (JMX) 1.2
Requirements

The JMX API is used by the J2EE Management API to provide some of the
required support for management of a J2EE product. The only JMX support
required is specified in the J2EE Management specification. In particular,
applications will not typically have the security permissions required to access or
create MBean servers. Future versions of this specification may require more
complete support for JMX.

The JMX specification is available athttp://java.sun.com/products/

JavaManagement/.

J2EE.6.18 Java™ 2 Platform, Enterprise Edition Deployment
API 1.1 Requirements

The J2EE Deployment API defines the interfaces between the runtime environment
of a deployment tool and plug-in components provided by a J2EE application
server. These plug-in components execute in the deployment tool and implement the
J2EE product-specific deployment mechanisms. All J2EE products are required to
supply these plug-in components for use in tools from other vendors.

Note that the J2EE Deployment specification does not define new APIs for
direct use by J2EE applications. However, it would be possible to create a J2EE
application that acts as a deployment tool and provides the runtime environment
required by the J2EE Deployment specification.

The J2EE Deployment API specification is available athttp://

java.sun.com/j2ee/tools/deployment.

J2EE.6.19 Java™ Authorization Service Provider Contract for
Containers (JACC) 1.0 Requirements

The JACC specification defines a contract between a J2EE application server and an
authorization policy provider. All J2EE application containers, web containers, and
enterprise bean containers are required to support this contract.

The JACC specification can be found athttp://jcp.org/jsr/detail/

115.jsp.

APPLICATION PROGRAMMING INTERFACE110

111

C H A P T E RJ2EE.7
Interoperability

This chapter describes the interoperability requirements for the Java™ 2 Platform,
Enterprise Edition (J2EE).

J2EE.7.1 Introduction to Interoperability

The J2EE platform will be used by enterprise environments that support clients of
many different types. The enterprise environments will add new services to existing
Enterprise Information Systems (EISs). They will be using various hardware
platforms and applications written in various languages.

In particular, the J2EE platform in enterprise environments may be used in
enterprise environments to bring together any of the following kinds of
applications:

• applications written in such languages as C++ and Visual Basic.

• applications running on a personal computer platform, or Unix® workstation.

• standalone Java technology-based applications that are not directly supported
by the J2EE platform.

It is the interoperability requirements of the J2EE platform, set out in this
chapter, that make it possible for it to provide indirect support for various types of
clients, different hardware platforms, and a multitude of software applications.
The interoperability features of the J2EE platform permit the underlying disparate
systems to work together seamlessly, while hiding much of the complexity
required to join these pieces together.

The interoperability requirements for the current J2EE platform release allow:

INTEROPERABILITY112

• J2EE applications to connect to legacy systems using CORBA or low-level
socket interfaces.

• J2EE applications to connect to other J2EE applications across multiple J2EE
products, whether from different Product Providers or from the same Provider,
and multiple J2EE platforms.

In this version of the specification, interoperability between J2EE applications
running in different platforms is accomplished through the HTTP protocol,
possibly using SSL, or the EJB interoperability protocol based on IIOP.

J2EE.7.2 Interoperability Protocols

This specification requires that a J2EE product support a standard set of protocols
and formats to ensure interoperability between J2EE applications and with other
applications that also implement these protocols and formats. The specification
requires support for the following groups of protocols and formats:

• Internet and web protocols

• OMG protocols

• Java technology protocols

• Data formats

Most of these protocols and formats are supported by J2SE and by the
underlying operating system.

J2EE.7.2.1 Internet and Web Protocols

Standards based Internet protocols are the means by which different pieces of the
platform communicate. The J2EE platform requires support for the following
Internet protocols:

• TCP/IP protocol family—This is the core component of Internet communica-
tion. TCP/IP and UDP/IP are the standard transport protocols for the Internet.
TCP/IP is supported by J2SE and the underlying operating system.

• HTTP 1.1—This is the core protocol of web communication. As with TCP/IP,
HTTP 1.1 is supported by J2SE and the underlying operating system. A J2EE
web container must be capable of advertising its HTTP services on the stan-
dard HTTP port, port 80.

Interoperability Protocols 113

• SSL 3.0, TLS 1.0—SSL 3.0 (Secure Socket Layer) represents the security
layer for Web communication. It is available indirectly when using thehttps

URL as opposed to thehttp URL. A J2EE web container must be capable of
advertising its HTTPS service on the standard HTTPS port, port 443. SSL 3.0
and TLS 1.0 are also required as part of the EJB interoperability protocol in
the EJB specification.

• SOAP 1.1—SOAP is a presentation layer protocol for the exchange of XML
messages. Support for SOAP layered on HTTP is required, as described in the
JAX-RPC specification.

• WS-I Basic Profile 1.0—The WS-I Basic Profile describes interoperability re-
quirements for the use of SOAP 1.1 and is required by the JAX-RPC specifica-
tion.

J2EE.7.2.2 OMG Protocols

This specification requires the J2EE platform to support the following Object
Management Group (OMG) based protocols:

• IIOP (Internet Inter-ORB Protocol)—Supported by Java IDL and RMI-IIOP in
J2SE. Java IDL provides standards-based interoperability and connectivity
through the Common Object Request Broker Architecture (CORBA). CORBA
specifies the Object Request Broker (ORB) which allows applications to com-
municate with each other regardless of location. This interoperability is deliv-
ered through IIOP, and is typically found in an intranet setting. IIOP can be
used as an RMI protocol using the RMI-IIOP technology. IIOP is defined in
Chapters 13 and 15 of the CORBA 2.3.1 specification, available athttp://

cgi.omg.org/cgi-bin/doc?formal/99-10-07.

• EJB interoperability protocol—The EJB interoperability protocol is based on
IIOP (GIOP 1.2) and the CSIv2 CORBA Secure Interoperability specifica-
tion. The EJB interoperability protocol is defined in the EJB specification.

• CORBA Interoperable Naming Service protocol—The COSNaming-based
INS protocol is an IIOP-based protocol for accessing a name service. The EJB
interoperability protocol requires the use of the INS protocol for lookup of EJB
objects using the JNDI API. In addition, it must be possible to use the Java IDL
COSNaming API to access the INS name service. All J2EE products must pro-
vide a name service that meets the requirements of the Interoperable Naming
Service specification, available athttp://cgi.omg.org/cgi-bin/

doc?formal/2000-06-19. This name service may be provided as a separate
name server or as a protocol bridge or gateway to another name service. Either

INTEROPERABILITY114

approach is consistent with this specification.

J2EE.7.2.3 Java Technology Protocols

This specification requires the J2EE platform to support the JRMP protocol, which
is the Java technology-specific Remote Method Invocation (RMI) protocol. JRMP is
a required component of J2SE and is one of two required RMI protocols. (IIOP is
the other required RMI protocol, see above.)

JRMP is a distributed object model for the Java programming language.
Distributed systems, running in different address spaces and often on different
hosts, must be able to communicate with each other. JRMP permits program-level
objects in different address spaces to invoke remote objects using the semantics of
the Java programming language object model.

Complete information on the JRMP specification can be found athttp://

java.sun.com/j2se/1.4/docs/guide/rmi.

J2EE.7.2.4 Data Formats

In addition to the protocols that allow communication between components, this
specification requires J2EE platform support for a number of data formats. These
formats provide the definition for data exchanged between components.

The following data formats must be supported:

• XML 1.0—The XML format can be used to construct documents, RPC mes-
sages, etc. The JAXP API provides support for processing XML format data.
The JAX-RPC API provides support for XML RPC messages, as well as a
mapping between Java classes and XML.

• HTML 3.2—This represents the minimum web browser standard document
format. While not directly supported by J2EE APIs, J2EE web clients must be
able to display HTML 3.2 documents.

• Image file formats—The J2EE platform must support both GIF and JPEG im-
ages. Support for these formats is provided by thejava.awt.image APIs (see
the URL:http://java.sun.com/j2se/1.4/docs/api/java/awt/image/
package-summary.html) and by J2EE web clients.

• JAR files—JAR (Java Archive) files are the standard packaging format for
Java technology-based application components, including the ejb-jar special-
ized format, the Web application archive (WAR) format, the Resource Adapt-
er archive (RAR), and the J2EE enterprise application archive (EAR) format.
JAR is a platform-independent file format that permits many files to be aggre-

Interoperability Protocols 115

gated into one file. This allows multiple Java components to be bundled into
one JAR file and downloaded to a browser in a single HTTP transaction. JAR
file formats are supported by thejava.util.jar andjava.util.zip packag-
es. For complete information on the JAR specification, seehttp://

java.sun.com/j2se/1.4/docs/guide/jar.

• Class file format—The class file format is specified in the Java Virtual Ma-
chine specification. Each class file contains one Java programming language
type—either a class or an interface—and consists of a stream of 8-bit bytes.
For complete information on the class file format, seehttp://java.sun.com/

docs/books/vmspec.

INTEROPERABILITY116

117

C H A P T E RJ2EE.8
Application Assembly and

Deployment

This chapter specifies Java™ 2 Platform, Enterprise Edition (J2EE) requirements
for assembling, packaging, and deploying a J2EE application. The main goal of
these requirements is to provide scalable and modular application assembly, and
portable deployment of J2EE applications into any J2EE product.

J2EE applications are composed of one or more J2EE components and one
J2EE application deployment descriptor. The deployment descriptor lists the
application’s components asmodules. A J2EE module represents the basic unit of
composition of a J2EE application. J2EE modules consist of one or more J2EE
components and one module level deployment descriptor. The flexibility and
extensibility of the J2EE component model facilitates the packaging and
deployment of J2EE components as individual components, component libraries,
or J2EE applications.

Figure J2EE.8-1 shows the composition model for J2EE deployment units
and includes the optional use of alternate deployment descriptors by the
application package to preserve any digital signatures of the original J2EE
modules.

APPLICATION ASSEMBLY AND DEPLOYMENT118

Figure J2EE.8-1 J2EE Deployment

J2EE.8.1 Application Development Life Cycle

The development life cycle of a J2EE application begins with the creation of
discrete J2EE components. These components are then packaged with a module
level deployment descriptor to create a J2EE module. J2EE modules can be
deployed as stand-alone units or can be assembled with a J2EE application
deployment descriptor and deployed as a J2EE application.

Figure J2EE.8-2 shows the life cycle of a J2EE application.

EJB

EJB

EJB

DD

2

WEB

WEB

DD

3

3

DD

2

DD

APP
DD

1

DD

DD
1

DD
2

DD
3

Deployment
Tool

Components J2EE ApplicationJ2EE
Modules

DD

1

application
client

module

Web app
module

EJB
module

DD

Resource
Adapter
module

deploy standalone modules

add/delete ingredients

DD
4

4

DD4

Application Development Life Cycle 119

Figure J2EE.8-2 J2EE Application Life Cycle

J2EE.8.1.1 Component Creation

The EJB, servlet, application client, and Connector specifications include the XML
Schema definition of the associated module level deployment descriptors and
component packaging architecture required to produce J2EE modules. (The
application client specification is found in Chapter J2EE.9 of this document.)

A J2EE module is a collection of one or more J2EE components of the same
component type (web, EJB, application client, or Connector) with one module
deployment descriptor of that type. Any number of components of the same
container type can be packaged together with a single J2EE deployment
descriptor appropriate to that container type to produce a J2EE module.

• A J2EE module represents the basic unit of composition of a J2EE application.
In some cases a single J2EE module (not necessarily packaged into a J2EE ap-
plication package) will contain an entire application. In other cases an applica-
tion will be composed of multiple J2EE modules.

• The deployment descriptor for a J2EE module contains declarative data re-
quired to deploy the components in the module. The deployment descriptor
for a J2EE module also contains assembly instructions that describe how the
components are composed into an application.

deploy

Deployment

Processed by
Deployer

Assembly
Assembled and
Augmented by

Application
Assembler

Created by
Component
Provider

Creation

Enterprise
Components

J2EE Container/Server

J2EE Module J2EE APP

APPLICATION ASSEMBLY AND DEPLOYMENT120

• An individual J2EE module can be deployed as a stand-alone J2EE module
without an application level deployment descriptor and represents a valid
J2EE application.

• J2EE modules may express dependencies on libraries as described below in
Section J2EE.8.2, “Optional Package Support.”

J2EE.8.1.2 Application Assembly

A J2EE application may consist of one or more J2EE modules and one J2EE
application deployment descriptor. A J2EE application is packaged using the Java
Archive (JAR) file format into a file with a.ear (Enterprise ARchive) filename
extension. A minimal J2EE application package will only contain J2EE modules
and the application deployment descriptor. A J2EE application package may also
include libraries referenced by J2EE modules (using theClass-Path mechanism
described below in Section J2EE.8.2, “Optional Package Support”), help files, and
documentation to aid the deployer.

The deployment of a portable J2EE application should not depend on any
entities that may be contained in the package other than those defined by this
specification. Deployment of a portable J2EE application must be possible using
only the application deployment descriptor and the J2EE modules (and their
dependent libraries) and descriptors listed in it.

The J2EE application deployment descriptor represents the top level view of a
J2EE application’s contents. The J2EE application deployment descriptor is
specified by an XML schema or document type definition (see Section J2EE.8.5,
“J2EE Application XML Schema”).

In certain cases, a J2EE application will need customization before it can be
deployed into the enterprise. New J2EE modules may be added to the application.
Existing modules may be removed from the application. Some J2EE modules may
need custom content created, changed, or replaced. For example, an application
consumer may need to use an HTML editor to add company graphics to a
template login page that was provided with a J2EE web application.

J2EE.8.1.3 Deployment

During the deployment phase of an application’s life cycle, the application is
installed on the J2EE platform and then is configured and integrated into the existing
infrastructure. Each J2EE module listed in the application deployment descriptor
must be deployed according to the requirements of the specification for the
respective J2EE module type. Each module listed must be installed in the

Optional Package Support 121

appropriate container type and the environment properties of each module must be
set appropriately in the target container to reflect the values declared by the
deployment descriptor element for each component.

J2EE.8.2 Optional Package Support

J2EE products are required to support the use of bundled and installed optional
packages as specified in theExtension Mechanism Architecture andOptional
Package Versioning specifications (available athttp://java.sun.com/j2se/1.4/
docs/guide/extensions) and theJAR File Specification (available athttp://
java.sun.com/j2se/1.4/docs/guide/jar/jar.html). Using this mechanism a
J2EE JAR file can reference utility classes or other shared classes or resources
packaged in a separate.jar file that is included in the same J2EE application
package, or that has been previously installed in the J2EE containers.

A JAR format file (such as a.jar file, .war file, or.rar file) can reference a
.jar file by naming the referenced.jar file in aClass-Path header in the
referencing JAR file’s Manifest file. The referenced.jar file is named using a
URL relative to the URL of the referencing JAR file. The Manifest file is named
META-INF/MANIFEST.MF in the JAR file. TheClass-Path entry in the Manifest file
is of the form

Class-Path: list-of-jar-files-separated-by-spaces

The J2EE deployment tools must process all such referenced files when
processing a J2EE module. Any deployment descriptors in referenced.jar files
are ignored when processing the referencing.jar file. The deployment tool must
install the.jar files in a way that preserves the relative references between the
files. Typically this is done by installing the.jar files into a directory hierarchy
that matches the original application directory hierarchy. All referenced.jar files
must appear in the logical class path of the referencing JAR files at runtime.

Only JAR format files containing class files or resources to be loaded directly
by a standardClassLoader should be the target of aClass-Path reference; such
files are always named with a.jar extension. Top level JAR files that are
processed by a deployment tool should not containClass-Path entries; such
entries would, by definition, reference other files external to the deployment unit.
A deployment tool is not required to process such external references.

JAR format files of all types may contain anExtension-List attribute in their
Manifest file, indicating a dependency on an installed optional package. TheJAR
File Specification defines the semantics of such attributes for use by applets; this

APPLICATION ASSEMBLY AND DEPLOYMENT122

specification requires support for such attributes for all component types and
corresponding JAR format files. The deployment tool is required to check such
dependency information and reject the deployment of any component for which the
dependency can not be met. Portable applications should not assume that any
installed optional packages will be available to a component unless the component’s
JAR format file, or one of the containing JAR format files, expresses a dependency
on the optional package using theExtension-List and related attributes. The
referenced optional packages must be made available to all components contained
within the referencing file, including any components contained within other JAR
format files within the referencing file. For example, if a.ear file references an
installed optional package, the optional package must be made available to all
components in all.war files, EJB.jar files, application.jar files, and resource
adapter.rar files within the.ear file.

A J2EE product is not required to support downloading of optional packages
(using the<extension>-Implementation-URL header) at deployment time or
runtime. A J2EE product is also not required to support more than a single version
of an installed optional package at once. A J2EE product is not required to limit
access to installed optional packages to only those for which the application has
expressed a dependency; the application may be given access to more installed
optional packages than it has requested. In all of these cases, such support is
highly recommended and may be required in a future version of this specification.
In particular, we recommend that a J2EE product support multiple versions of an
installed optional pacakge, and only allow applications to access the installed
optional packages for which they have expressed a dependency.

If an application includes a bundled version of an optional package, and the
same optional package exists as an installed optional package, the instance of the
optional package bundled with the application should be used in preference to any
installed version of the optional package. This allows an application to bundle
exactly the version of an optional package it requires without being influenced by
any installed optional packages. Note that if the optional package is also a
required component of the J2EE platform version on which the application is
being deployed, the platform version may take precedence.

In addition to allowing access to referenced classes, as described above, any
resources contained in the referenced JAR files must also be accessible using the
Class andClassLoader getResource methods, as allowed by the security
permissions of the application. An application will typically have the security
permissions required to access resources in any of the JAR files packaged with the
application.

Optional Package Support 123

The following example illustrates a simple use of the bundled optional
package mechanism to reference a library of utility classes that are shared
between enterprise beans in two separate ejb-jar files.

app1.ear:

META-INF/application.xml

ejb1.jar Class-Path: util.jar

ejb2.jar Class-Path: util.jar

util.jar

The next example illustrates a more complex use of theClass-Path

mechanism. In this example the Developer has chosen to package the enterprise
bean client view classes in a separate JAR file and reference that JAR file from the
other JAR files that need those classes. Those classes are needed both by
ejb2.jar, packaged in the same application asejb1.jar, and byejb3.jar and
servlet1.jar, packaged in a different application. Those classes are also needed
by ejb1.jar itself because they define the remote interface of the enterprise beans
in ejb1.jar, and the developer has chosen theby referencemodel of making these
classes available, as described in the EJB spec. The deployment descriptor for
ejb1.jar names the client view JAR file in theejb-client-jar element.

TheClass-Path mechanism must be used by components inapp3.ear to
reference the client view JAR file that corresponds to the enterprise beans
packaged inejb1.jar of app2.ear. These enterprise beans are referenced by
enterprise beans inejb3.jar and by the servlets packaged inwebapp.war.

app2.ear:

META-INF/application.xml

ejb1.jar Class-Path: ejb1_client.jar

deployment descriptor contains:

<ejb-client-jar>ejb1_client.jar</ejb-client-jar>

ejb1_client.jar

ejb2.jar Class-Path: ejb1_client.jar

app3.ear:

META-INF/application.xml

ejb1_client.jar

ejb3.jar Class-Path: ejb1_client.jar

webapp.war Class-Path: ejb1_client.jar

WEB-INF/web.xml

WEB-INF/lib/servlet1.jar

APPLICATION ASSEMBLY AND DEPLOYMENT124

The following example illustrates a simple use of the installed optional
package mechanism to reference a library of utility classes that is installed
separately.

app1.ear:

META-INF/application.xml

ejb1.jar:

META-INF/MANIFEST.MF:

Extension-List: util

util-Extension-Name: com/example/util

util-Extension-Specification-Version: 1.4

META-INF/ejb-jar.xml

util.jar:

META-INF/MANIFEST.MF:

Extension-Name: com/example/util

Specification-Title: example.com’s util package

Specification-Version: 1.4

Specification-Vendor: example.com

Implementation-Version: build96

J2EE.8.3 Application Assembly

This section specifies the sequence of steps that are typically followed when
composing a J2EE application.

J2EE.8.3.1 Assembling a J2EE Application

1. Select the J2EE modules that will be used by the application.

2. Create an application directory structure.

The directory structure of an application is arbitrary. The structure should be
designed around the requirements of the contained components.

3. Reconcile J2EE module deployment descriptors.

The deployment descriptors for the J2EE modules must be edited to link inter-
nally satisfied dependencies and eliminate any redundant security role names.
An optional elementalt-dd (described in Section J2EE.8.5, “J2EE Applica-
tion XML Schema”) may be used when it is desirable to preserve the original
deployment descriptor. The elementalt-dd specifies an alternate deployment

Application Assembly 125

descriptor to use at deployment time. The edited copy of the deployment
descriptor file may be saved in the application directory tree in a location
determined by the Application Assembler. If thealt-dd element is not
present, the Deployer must read the deployment descriptor directly from the
JAR.

a. Link the internally satisfied dependencies of all components in every
module contained in the application. For each component dependency,
there must only be one corresponding component that fulfills that
dependency in the scope of the application.

i. For eachejb-link, there must be only one matchingejb-name in the
scope of the entire application (see Section J2EE.5.3, “Enterprise
JavaBeans™ (EJB) References”).

ii. Dependencies that are not linked to internal components must be
handled by the Deployer as external dependencies that must be met by
resources previously installed on the platform. External dependencies
must be linked to the resources on the platform during deployment.

b. Synchronize security role-names across the application. Rename unique
role-names with redundant meaning to a common name. Rename role-
names with common names but different meanings to unique names.
Descriptions of role-names that are used by many components of the
application can be included in the application-level deployment descriptor.

c. Assign a context root for each web module included in the J2EE
application. The context root is a relative name in the web namespace for
the application. Each web module must be given a distinct and non-
overlapping name for its context root. The web modules will be assigned a
complete name in the namespace of the web server at deployment time. If
there is only one web module in the J2EE application, the context root may
be the empty string. See the servlet specification for detailed requirements
of context root naming.

d. Make sure that each component in the application properly describes any
dependencies it may have on other components in the application. A J2EE
application should not assume that all components in the application will
be available on the class path of the application at run time. Each
component might be loaded into a separate class loader with a separate
namespace. If the classes in a JAR file depend on classes in another JAR
file, the first JAR file should reference the second JAR file using the

APPLICATION ASSEMBLY AND DEPLOYMENT126

Class-Path mechanism. A notable exception to this rule is JAR files
located in theWEB-INF/lib directory of a web application. All such JAR
files are included in the class path of the web application at runtime;
explicit references to them using theClass-Path mechanism are not
needed.

e. There must be only one version of each class in an application. If one
component depends on one version of an optional package, and another
component depends on another version, it may not be possible to deploy an
application containing both components. A J2EE application should not
assume that each component is loaded in a separate class loader and has a
separate namespace. All components in a single application may be loaded
in a single class loader and share a single namespace. Note, however, that
it must be possible to deploy an application such that all components of the
application are in a namespace (or namespaces) separate from that of other
applications. Typically, this will be the normal method of deployment.

4. Create an XML deployment descriptor for the application.

The deployment descriptor must be namedapplication.xml and must reside
in the top level of theMETA-INF directory of the application.ear file. The
deployment descriptor must be a valid XML document according to the XML
schema for aJ2EE:application XML document. (Alternatively, the deploy-
ment descriptor may meet the requirements of previous versions of J2EE. Or,
a deployment descriptor as defined by the Enterprise Web Services specifica-
tion may be used.)

5. Package the application.

a. Place the J2EE modules and the deployment descriptor in the appropriate
directories.

b. Package the application directory hierarchy in a file using the JAR file
format. The file should be named with a.ear filename extension.

J2EE.8.3.2 Adding and Removing Modules

After the application is created, J2EE modules may be added or removed before
deployment. When adding or removing a module the following steps must be
performed:

1. Decide on a location in the application package for the new module. Optionally
create new directories in the application package hierarchy to contain any

Deployment 127

J2EE modules that are being added to the application.

2. Copy the new J2EE modules to the desired location in the application package.
The packaged modules are inserted directly in the desired location; the mod-
ules are not unpackaged.

3. Edit the deployment descriptors for the J2EE modules to link the dependencies
which are internally satisfied by the J2EE modules included in the application.

4. Edit the J2EE application deployment descriptor to meet the content require-
ments of the J2EE platform and the validity requirements of the
J2EE:application XML DTD or schema.

J2EE.8.4 Deployment

The J2EE platform supports three types of deployment units:

• Stand-alone J2EE modules.

• J2EE applications, consisting of one or more J2EE modules. A J2EE applica-
tion must include one J2EE application deployment descriptor.

• Class libraries packaged as.jar files according to theExtension Mechanism
Architecture. These class libraries then become installed optional packages.

Any J2EE product must be able to accept a J2EE application delivered as a
.ear file or a stand-alone J2EE module delivered as a.jar,.war, or.rar file (as
appropriate to its type). If the application is delivered as a.ear, an enterprise bean
module devliered as a.jar file, or a web application delivered as a.war file, the
deployment tool must be able to deploy the application such that the Java classes
in the application are in a separate namespace from classes in other Java
applications. Typically this will require the use of a separate class loader for each
application. Standalone resource adapters delivered in.rar files and standalone
class libraries delivered in.jar files that become installed optional packages will
of necessity appear in the class namespaces of applications that use them, and may
appear in the class namespace of any application depending on the level of
isolation supported by the J2EE product.

In all cases, the deployment of a J2EE application must be complete before
the container delivers requests to any of the application’s components. When an
application is started, the container must deliver requests to enterprise bean
components immediately. Containers must deliver requests to web components
and resource adapters only after initialization of the component has completed.

APPLICATION ASSEMBLY AND DEPLOYMENT128

The J2EE Deployment API describes how a product-independent deployment
tool accepts plugins for a specific J2EE product, and how the tool and those
plugins cooperate to deploy J2EE applications. The requirements in this
specification that refer to a deployment tool are meant to refer to the combination
of any vendor-provided product-independent deployment tool and the vendor-
specific deployment plugin for this tool, as well as any other vendor-specific
deployment tools provided with the J2EE product.

Typically a deployment tool will copy the deployed application or module to a
product-specific location, along with the configuration settings and
customizations specified by the Deployer. In some cases a deployment tool might
include Application Assembly functionality as well, allowing the Deployer to
construct, modify, or customize the application before deployment. Still, it must
be possible to deploy a J2EE application, module, or optional package without
modifying the original files or artifacts that the Deployer specified to the
deployment tool.

The deployment tools for J2EE containers must validate the deployment
descriptors against the J2EE deployment descriptor schemas or DTDs that
correspond to the deployment descriptors being processed. The appropriate
schema or DTD is chosen by analyzing the deployment descriptor to determine
which version it claims to conform to. Validation errors must cause an error to be
reported to the Deployer. The deployment tool may allow the Deployer to correct
the error and continue deployment.

J2EE.8.4.1 Deploying a Stand-Alone J2EE Module

This section specifies the requirements for deploying a stand-alone J2EE module.

1. The deployment tool must first read the J2EE module deployment descriptor
from the package. See the component specifications for the required location
and name of the deployment descriptor for each component type.

2. The deployment tool must deploy all of the components listed in the J2EE
module deployment descriptor according to the deployment requirements of
the respective J2EE component specification. If the module is a type that con-
tains JAR format files (for example, web and Connector modules), all classes
in .jar files within the module referenced from other JAR files within the
module using theClass-Path manifest header must be included in the deploy-
ment. If the module, or any JAR format files within the module, declares a de-
pendency on an installed optional package, that dependency must be satisfied.

Deployment 129

3. The deployment tool must allow the Deployer to configure the container to re-
flect the values of all the properties declared by the deployment descriptor el-
ement for each component.

4. The deployment tool must allow the Deployer to deploy the same module mul-
tiple times, as multiple independent applications, possibly with different con-
figurations. For example, the enterprise beans in an ejb-jar file might be
deployed multiple times under different JNDI names and with different con-
figurations of their resources.

J2EE.8.4.2 Deploying a J2EE Application

This section specifies the requirements for deploying a J2EE application.

1. The deployment tool must first read the J2EE application deployment descrip-
tor from the application.ear file (META-INF/application.xml).

2. The deployment tool must open each of the J2EE modules listed in the J2EE
application deployment descriptor and read the J2EE module deployment de-
scriptor from the package. See the Enterprise JavaBeans, servlet, J2EE Con-
nector and application client specifications for the required location and name
of the deployment descriptor for each component type. (The application client
specification is Chapter J2EE.9, “Application Clients”.)

3. The deployment tool must install all of the components described by each
module deployment descriptor into the appropriate container according to the
deployment requirements of the respective J2EE component specification. All
classes in.jar files referenced from other JAR files using theClass-Path

manifest header must be included in the deployment. If the.ear file, or any
JAR format files within the.ear file, declares a dependency on an installed op-
tional package, that dependency must be satisfied.

4. The deployment tool must allow the Deployer to configure the container to re-
flect the values of all the properties declared by the deployment descriptor el-
ement for each component.

5. The deployment tool must allow the Deployer to deploy the same J2EE appli-
cation multiple times, as multiple independent applications, possibly with dif-
ferent configurations. For example, the enterprise beans in an ejb-jar file might
be deployed multiple times under different JNDI names and with different con-
figurations of their resources.

6. When presenting security role descriptions to the Deployer, the deployment
tool must use the descriptions in the J2EE application deployment descriptor

APPLICATION ASSEMBLY AND DEPLOYMENT130

rather than the descriptions in any module deployment descriptors for security
roles with the same name. However, for security roles that appear in a module
deployment descriptor but do not appear in the application deployment de-
scriptor, the deployment tool must use the description provided in the module
deployment descriptor.

J2EE.8.4.3 Deploying an Optional Package

This section specifies the requirements for deploying an optional package.

1. The deployment tool must record the extension name and version information
from the manifest file of the optional package JAR file. The deployment tool
must make the optional package available to other J2EE deployment units that
request it according to the version matching rules described in theOptional
Package Versioning specification. Note that the optional package itself may
include dependencies on other optional packages and these dependencies must
also be satisfied.

2. The deployment tool must make the optional package available with at least
the same security permissions as any application or module that uses it. The
optional package may be installed with the full security permissions of the con-
tainer.

3. Not all optional packages will be deployable on all J2EE products at all times.
Optional packages that conflict with the operation of the J2EE product may not
be deployable. For example, an attempt to deploy an older version of an op-
tional package that has subsequently been included in the J2EE platform spec-
ification may be rejected. Similarly, deployment of an optional package that is
also used in the implementation of the J2EE product may be rejected. Deploy-
ment of an optional package that is in active use by an application may be re-
jected.

J2EE.8.5 J2EE Application XML Schema

This section provides the XML Schema for the J2EE application deployment
descriptor. The XML grammar for a J2EE application deployment descriptor is
defined by theJ2EE:application schema. The granularity of composition for J2EE
application assembly is the J2EE module. AJ2EE:application deployment
descriptor contains a name and description for the application and the URI of a UI
icon for the application, as well a list of the J2EE modules that comprise the

J2EE Application XML Schema 131

application. The content of the XML elements is in general case sensitive. This
means, for example, that<role-name>Manager</role-name> is a different role than
<role-name>manager</role-name>.

All valid J2EE application deployment descriptors must conform to the XML
Schema definition below, or the DTD definition from a previous version of this
specification. (See Appendix J2EE.A, “Previous Version DTDs.”) The
deployment descriptor must be namedMETA-INF/application.xml in the.ear
file. Note that this name is case-sensitive.

Figure J2EE.8-3 shows a graphic representation of the structure of the J2EE
application XML Schema.

Figure J2EE.8-3 J2EE Application XML Schema Structure

The XML Schema that follows defines the XML grammar for a J2EE
application deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.4">

 <xsd:annotation>

 <xsd:documentation>

application

display-name+

description*

security-role*

icon*

large-icon?

small-icon?

description*

role-name

module+

alt-dd?

web-uri

context-root?

 connector | ejb* | java | web

APPLICATION ASSEMBLY AND DEPLOYMENT132

 @(#)application_1_4.xsds 1.13 02/11/03

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the application 1.4 deployment

 descriptor. The deployment descriptor must be named

 "META-INF/application.xml" in the application’s ear file.

 All application deployment descriptors must indicate

 the application schema by using the J2EE namespace:

 http://java.sun.com/xml/ns/j2ee

 and indicate the version of the schema by

 using the version element as shown below:

 <application xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"

 version="1.4">

 ...

 </application>

 The instance documents may indicate the published version of

 the schema using the xsi:schemaLocation attribute for J2EE

 namespace with the following location:

 http://java.sun.com/xml/ns/j2ee/application_1_4.xsd

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 The following conventions apply to all J2EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the

 same JAR file, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

J2EE Application XML Schema 133

 the JAR file’s namespace. Absolute filenames (i.e., those

 starting with "/") also specify names in the root of the

 JAR file’s namespace. In general, relative names are

 preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_1_4.xsd"/>

<!-- ** -->

 <xsd:element name="application" type="j2ee:applicationType">

 <xsd:annotation>

 <xsd:documentation>

 The application element is the root element of a J2EE

 application deployment descriptor.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:unique name="context-root-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The context-root element content must be unique

 in the ear.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:module/j2ee:web"/>

 <xsd:field xpath="j2ee:context-root"/>

 </xsd:unique>

 <xsd:unique name="security-role-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The security-role-name element content

 must be unique in the ear.

APPLICATION ASSEMBLY AND DEPLOYMENT134

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:security-role"/>

 <xsd:field xpath="j2ee:role-name"/>

 </xsd:unique>

 </xsd:element>

<!-- ** -->

 <xsd:complexType name="applicationType">

 <xsd:annotation>

 <xsd:documentation>

 The applicationType defines the structure of the

 application.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="module"

 type="j2ee:moduleType"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The application deployment descriptor must have one

 module element for each J2EE module in the

 application package. A module element is defined

 by moduleType definition.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="security-role"

 type="j2ee:security-roleType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="version"

 type="j2ee:dewey-versionType"

J2EE Application XML Schema 135

 fixed="1.4"

 use="required">

 <xsd:annotation>

 <xsd:documentation>

 The required value for the version is 1.4.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="moduleType">

 <xsd:annotation>

 <xsd:documentation>

 The moduleType defines a single J2EE module and contains a

 connector, ejb, java, or web element, which indicates the

 module type and contains a path to the module file, and an

 optional alt-dd element, which specifies an optional URI to

 the post-assembly version of the deployment descriptor.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:choice>

 <xsd:element name="connector"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The connector element specifies the URI of a

 resource adapter archive file, relative to the

 top level of the application package.

 </xsd:documentation>

 </xsd:annotation>

APPLICATION ASSEMBLY AND DEPLOYMENT136

 </xsd:element>

 <xsd:element name="ejb"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb element specifies the URI of an ejb-jar,

 relative to the top level of the application

 package.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="java"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The java element specifies the URI of a java

 application client module, relative to the top

 level of the application package.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="web"

 type="j2ee:webType"/>

 </xsd:choice>

 <xsd:element name="alt-dd"

 type="j2ee:pathType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The alt-dd element specifies an optional URI to the

 post-assembly version of the deployment descriptor

 file for a particular J2EE module. The URI must

 specify the full pathname of the deployment

 descriptor file relative to the application’s root

 directory. If alt-dd is not specified, the deployer

J2EE Application XML Schema 137

 must read the deployment descriptor from the default

 location and file name required by the respective

 component specification.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="webType">

 <xsd:annotation>

 <xsd:documentation>

 The webType defines the web-uri and context-root of

 a web application module.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="web-uri"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 The web-uri element specifies the URI of a web

 application file, relative to the top level of the

 application package.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="context-root"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

APPLICATION ASSEMBLY AND DEPLOYMENT138

 The context-root element specifies the context root

 of a web application.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

J2EE.8.6 Common J2EE XML Schema Definitions

The following XML Schema defines types that are used by many other J2EE
deployment descriptor schemas, both in this specification and in other
specifications.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.4">

 <xsd:annotation>

 <xsd:documentation>

 @(#)j2ee_1_4.xsds 1.43 03/09/16

 </xsd:documentation>

 </xsd:annotation>

<xsd:annotation>

<xsd:documentation>

The following definitions that appear in the common

shareable schema(s) of J2EE deployment descriptors should be

interpreted with respect to the context they are included:

Common J2EE XML Schema Definitions 139

Deployment Component may indicate one of the following:

 j2ee application;

 application client;

 web application;

 enterprise bean;

 resource adapter;

Deployment File may indicate one of the following:

 ear file;

 war file;

 jar file;

 rar file;

</xsd:documentation>

</xsd:annotation>

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"

 schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xsd:include schemaLocation=

 "http://www.ibm.com/webservices/xsd/

j2ee_web_services_client_1_1.xsd"/>

<!-- ** -->

 <xsd:group name="descriptionGroup">

 <xsd:annotation>

 <xsd:documentation>

This group keeps the usage of the contained description related

 elements consistent across J2EE deployment descriptors.

All elements may occur multiple times with different languages,

 to support localization of the content.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="display-name"

 type="j2ee:display-nameType"

APPLICATION ASSEMBLY AND DEPLOYMENT140

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="icon"

 type="j2ee:iconType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:group>

<!-- ** -->

 <xsd:complexType name="descriptionType">

 <xsd:annotation>

 <xsd:documentation>

 The description type is used by a description element to

 provide text describing the parent element. The elements

 that use this type should include any information that the

 Deployment Component’s Deployment File file producer wants

 to provide to the consumer of the Deployment Component’s

 Deployment File (i.e., to the Deployer). Typically, the

 tools used by such a Deployment File consumer will display

 the description when processing the parent element that

 contains the description.

 The lang attribute defines the language that the

description is provided in. The default value is "en" (English).

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="j2ee:xsdStringType">

 <xsd:attribute ref="xml:lang"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:simpleType name="dewey-versionType">

 <xsd:annotation>

 <xsd:documentation>

 This type defines a dewey decimal which is used

Common J2EE XML Schema Definitions 141

 to describe versions of documents.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:decimal">

 <xsd:whiteSpace value="collapse"/>

 </xsd:restriction>

 </xsd:simpleType>

<!-- ** -->

 <xsd:complexType name="display-nameType">

 <xsd:annotation>

 <xsd:documentation>

The display-name type contains a short name that is intended

 to be displayed by tools. It is used by display-name

 elements. The display name need not be unique.

 Example:

 ...

<display-name xml:lang="en">Employee Self Service</display-

name>

The value of the xml:lang attribute is "en" (English) by default.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="j2ee:string">

 <xsd:attribute ref="xml:lang"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-linkType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-linkType is used by ejb-link

APPLICATION ASSEMBLY AND DEPLOYMENT142

elements in the ejb-ref or ejb-local-ref elements to specify

 that an EJB reference is linked to enterprise bean.

The value of the ejb-link element must be the ejb-name of an

enterprise bean in the same ejb-jar file or in another ejb-jar

 file in the same J2EE application unit.

 Alternatively, the name in the ejb-link element may be

composed of a path name specifying the ejb-jar containing the

 referenced enterprise bean with the ejb-name of the target

 bean appended and separated from the path name by "#". The

 path name is relative to the Deployment File containing

 Deployment Component that is referencing the enterprise

 bean. This allows multiple enterprise beans with the same

 ejb-name to be uniquely identified.

 Examples:

 <ejb-link>EmployeeRecord</ejb-link>

 <ejb-link>../products/product.jar#ProductEJB</ejb-link>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-local-refType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-local-refType is used by ejb-local-ref elements for

 the declaration of a reference to an enterprise bean’s local

 home. The declaration consists of:

 - an optional description

- the EJB reference name used in the code of the Deployment

 Component that’s referencing the enterprise bean

 - the expected type of the referenced enterprise bean

 - the expected local home and local interfaces of the

Common J2EE XML Schema Definitions 143

 referenced enterprise bean

 - optional ejb-link information, used to specify the

 referenced enterprise bean

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref-name"

 type="j2ee:ejb-ref-nameType"/>

 <xsd:element name="ejb-ref-type"

 type="j2ee:ejb-ref-typeType"/>

 <xsd:element name="local-home"

 type="j2ee:local-homeType"/>

 <xsd:element name="local"

 type="j2ee:localType"/>

 <xsd:element name="ejb-link"

 type="j2ee:ejb-linkType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-ref-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB

 reference. The EJB reference is an entry in the

 Deployment Component’s environment and is relative to the

 java:comp/env context. The name must be unique within the

 Deployment Component.

 It is recommended that name is prefixed with "ejb/".

 Example:

 <ejb-ref-name>ejb/Payroll</ejb-ref-name>

APPLICATION ASSEMBLY AND DEPLOYMENT144

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:jndi-nameType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-ref-typeType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-ref-typeType contains the expected type of the

 referenced enterprise bean.

 The ejb-ref-type designates a value

 that must be one of the following:

 Entity

 Session

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Entity"/>

 <xsd:enumeration value="Session"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="ejb-refType">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-refType is used by ejb-ref elements for the

 declaration of a reference to an enterprise bean’s home. The

 declaration consists of:

 - an optional description

Common J2EE XML Schema Definitions 145

 - the EJB reference name used in the code of

the Deployment Component that’s referencing the enterprise

 bean

 - the expected type of the referenced enterprise bean

- the expected home and remote interfaces of the referenced

 enterprise bean

 - optional ejb-link information, used to specify the

 referenced enterprise bean

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref-name"

 type="j2ee:ejb-ref-nameType"/>

 <xsd:element name="ejb-ref-type"

 type="j2ee:ejb-ref-typeType"/>

 <xsd:element name="home"

 type="j2ee:homeType"/>

 <xsd:element name="remote"

 type="j2ee:remoteType"/>

 <xsd:element name="ejb-link"

 type="j2ee:ejb-linkType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="emptyType">

 <xsd:annotation>

 <xsd:documentation>

 This type is used to designate an empty

 element when used.

 </xsd:documentation>

 </xsd:annotation>

APPLICATION ASSEMBLY AND DEPLOYMENT146

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="env-entry-type-valuesType">

 <xsd:annotation>

 <xsd:documentation>

 This type contains the fully-qualified Java type of the

 environment entry value that is expected by the

 application’s code.

The following are the legal values of env-entry-type-valuesType:

 java.lang.Boolean

 java.lang.Byte

 java.lang.Character

 java.lang.String

 java.lang.Short

 java.lang.Integer

 java.lang.Long

 java.lang.Float

 java.lang.Double

 Example:

 <env-entry-type>java.lang.Boolean</env-entry-type>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="java.lang.Boolean"/>

 <xsd:enumeration value="java.lang.Byte"/>

 <xsd:enumeration value="java.lang.Character"/>

 <xsd:enumeration value="java.lang.String"/>

 <xsd:enumeration value="java.lang.Short"/>

 <xsd:enumeration value="java.lang.Integer"/>

 <xsd:enumeration value="java.lang.Long"/>

 <xsd:enumeration value="java.lang.Float"/>

 <xsd:enumeration value="java.lang.Double"/>

 </xsd:restriction>

Common J2EE XML Schema Definitions 147

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="env-entryType">

 <xsd:annotation>

 <xsd:documentation>

 The env-entryType is used to declare an application’s

 environment entry. The declaration consists of an optional

 description, the name of the environment entry, and an

 optional value. If a value is not specified, one must be

 supplied during deployment.

 It is used by env-entry elements.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="env-entry-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The env-entry-name element contains the name of a

 Deployment Component’s environment entry. The name

 is a JNDI name relative to the java:comp/env

 context. The name must be unique within a

 Deployment Component. The uniqueness

 constraints must be defined within the declared

 context.

 Example:

 <env-entry-name>minAmount</env-entry-name>

 </xsd:documentation>

 </xsd:annotation>

APPLICATION ASSEMBLY AND DEPLOYMENT148

 </xsd:element>

 <xsd:element name="env-entry-type"

 type="j2ee:env-entry-type-valuesType"/>

 <xsd:element name="env-entry-value"

 type="j2ee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The env-entry-value designates the value of a

 Deployment Component’s environment entry. The value

 must be a String that is valid for the

 constructor of the specified type that takes a

 single String parameter, or for java.lang.Character,

 a single character.

 Example:

 <env-entry-value>100.00</env-entry-value>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The elements that use this type designate the name of a

 Java class or interface. The name is in the form of a

 "binary name", as defined in the JLS. This is the form

 of name used in Class.forName(). Tools that need the

 canonical name (the name used in source code) will need

 to convert this binary name to the canonical name.

 </xsd:documentation>

 </xsd:annotation>

Common J2EE XML Schema Definitions 149

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="generic-booleanType">

 <xsd:annotation>

 <xsd:documentation>

 This type defines four different values which can designate

 boolean values. This includes values yes and no which are

 not designated by xsd:boolean

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="true"/>

 <xsd:enumeration value="false"/>

 <xsd:enumeration value="yes"/>

 <xsd:enumeration value="no"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="homeType">

 <xsd:annotation>

 <xsd:documentation>

 The homeType defines the fully-qualified name of

 an enterprise bean’s home interface.

 Example:

 <home>com.aardvark.payroll.PayrollHome</home>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

APPLICATION ASSEMBLY AND DEPLOYMENT150

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="iconType">

 <xsd:annotation>

 <xsd:documentation>

 The icon type contains small-icon and large-icon elements

 that specify the file names for small and large GIF or

 JPEG icon images used to represent the parent element in a

 GUI tool.

 The xml:lang attribute defines the language that the

 icon file names are provided in. Its value is "en" (English)

 by default.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="small-icon" type="j2ee:pathType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The small-icon element contains the name of a file

 containing a small (16 x 16) icon image. The file

 name is a relative path within the Deployment

 Component’s Deployment File.

 The image may be either in the JPEG or GIF format.

 The icon can be used by tools.

 Example:

 <small-icon>employee-service-icon16x16.jpg</small-icon>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

Common J2EE XML Schema Definitions 151

 <xsd:element name="large-icon" type="j2ee:pathType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The large-icon element contains the name of a file

 containing a large

 (32 x 32) icon image. The file name is a relative

 path within the Deployment Component’s Deployment

 File.

 The image may be either in the JPEG or GIF format.

 The icon can be used by tools.

 Example:

 <large-icon>employee-service-icon32x32.jpg</large-icon>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute ref="xml:lang"/>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="java-identifierType">

 <xsd:annotation>

 <xsd:documentation>

 The java-identifierType defines a Java identifier.

 The users of this type should further verify that

 the content does not contain Java reserved keywords.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:pattern value="($|_|p{L})(p{L}|p{Nd}|_|$)*"/>

 </xsd:restriction>

APPLICATION ASSEMBLY AND DEPLOYMENT152

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="java-typeType">

 <xsd:annotation>

 <xsd:documentation>

 This is a generic type that designates a Java primitive

 type or a fully qualified name of a Java interface/type,

 or an array of such types.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:pattern value="[^p{Z}]*"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The jndi-nameType type designates a JNDI name in the

 Deployment Component’s environment and is relative to the

 java:comp/env context. A JNDI name must be unique within the

 Deployment Component.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:group name="jndiEnvironmentRefsGroup">

Common J2EE XML Schema Definitions 153

 <xsd:annotation>

 <xsd:documentation>

 This group keeps the usage of the contained JNDI environment

reference elements consistent across J2EE deployment descriptors.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="env-entry"

 type="j2ee:env-entryType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref"

 type="j2ee:ejb-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ejb-local-ref"

 type="j2ee:ejb-local-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:group ref="j2ee:service-refGroup"/>

 <xsd:element name="resource-ref"

 type="j2ee:resource-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="resource-env-ref"

 type="j2ee:resource-env-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="message-destination-ref"

 type="j2ee:message-destination-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:group>

<!-- ** -->

 <xsd:complexType name="listenerType">

 <xsd:annotation>

 <xsd:documentation>

The listenerType indicates the deployment properties for a web

 application listener bean.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

APPLICATION ASSEMBLY AND DEPLOYMENT154

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="listener-class"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The listener-class element declares a class in the

 application must be registered as a web

 application listener bean. The value is the fully

 qualified classname of the listener class.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="local-homeType">

 <xsd:annotation>

 <xsd:documentation>

 The local-homeType defines the fully-qualified

 name of an enterprise bean’s local home interface.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="localType">

 <xsd:annotation>

 <xsd:documentation>

 The localType defines the fully-qualified name of an

 enterprise bean’s local interface.

Common J2EE XML Schema Definitions 155

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destination-linkType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-linkType is used to link a message

 destination reference or message-driven bean to a message

 destination.

 The Assembler sets the value to reflect the flow of messages

 between producers and consumers in the application.

 The value must be the message-destination-name of a message

 destination in the same Deployment File or in another

 Deployment File in the same J2EE application unit.

 Alternatively, the value may be composed of a path name

 specifying a Deployment File containing the referenced

 message destination with the message-destination-name of the

 destination appended and separated from the path name by

 "#". The path name is relative to the Deployment File

 containing Deployment Component that is referencing the

 message destination. This allows multiple message

 destinations with the same name to be uniquely identified.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destination-refType">

APPLICATION ASSEMBLY AND DEPLOYMENT156

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-ref element contains a declaration

of Deployment Component’s reference to a message destination

 associated with a resource in Deployment Component’s

 environment. It consists of:

 - an optional description

 - the message destination reference name

 - the message destination type

 - a specification as to whether the

 destination is used for

 consuming or producing messages, or both

 - a link to the message destination

 Examples:

 <message-destination-ref>

 <message-destination-ref-name>jms/StockQueue

 </message-destination-ref-name>

 <message-destination-type>javax.jms.Queue

 </message-destination-type>

 <message-destination-usage>Consumes

 </message-destination-usage>

 <message-destination-link>CorporateStocks

 </message-destination-link>

 </message-destination-ref>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="message-destination-ref-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-ref-name element specifies

 the name of a message destination reference; its

Common J2EE XML Schema Definitions 157

 value is the environment entry name used in

 Deployment Component code. The name is a JNDI name

 relative to the java:comp/env context and must be

 unique within an ejb-jar (for enterprise beans) or a

 Deployment File (for others).

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="message-destination-type"

 type="j2ee:message-destination-typeType"/>

 <xsd:element name="message-destination-usage"

 type="j2ee:message-destination-usageType"/>

 <xsd:element name="message-destination-link"

 type="j2ee:message-destination-linkType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destination-typeType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-typeType specifies the type of

the destination. The type is specified by the Java interface

 expected to be implemented by the destination.

 Example:

 <message-destination-type>javax.jms.Queue

 </message-destination-type>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

APPLICATION ASSEMBLY AND DEPLOYMENT158

<!-- ** -->

 <xsd:complexType name="message-destination-usageType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-usageType specifies the use of the

 message destination indicated by the reference. The value

 indicates whether messages are consumed from the message

 destination, produced for the destination, or both. The

 Assembler makes use of this information in linking producers

 of a destination with its consumers.

 The value of the message-destination-usage element must be

 one of the following:

 Consumes

 Produces

 ConsumesProduces

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Consumes"/>

 <xsd:enumeration value="Produces"/>

 <xsd:enumeration value="ConsumesProduces"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="message-destinationType">

 <xsd:annotation>

 <xsd:documentation>

 The message-destinationType specifies a message

 destination. The logical destination described by this

element is mapped to a physical destination by the Deployer.

 The message destination element contains:

 - an optional description

 - an optional display-name

Common J2EE XML Schema Definitions 159

 - an optional icon

 - a message destination name which must be unique

 among message destination names within the same

 Deployment File.

 Example:

 <message-destination>

 <message-destination-name>CorporateStocks

 </message-destination-name>

 </message-destination>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="message-destination-name"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-name element specifies a

 name for a message destination. This name must be

 unique among the names of message destinations

 within the Deployment File.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="param-valueType">

 <xsd:annotation>

 <xsd:documentation>

 This type is a general type that can be used to declare

 parameter/value lists.

APPLICATION ASSEMBLY AND DEPLOYMENT160

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="param-name"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 The param-name element contains the name of a

 parameter.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="param-value"

 type="j2ee:xsdStringType">

 <xsd:annotation>

 <xsd:documentation>

 The param-value element contains the value of a

 parameter.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="pathType">

 <xsd:annotation>

 <xsd:documentation>

 The elements that use this type designate either a relative

Common J2EE XML Schema Definitions 161

 path or an absolute path starting with a "/".

 In elements that specify a pathname to a file within the

 same Deployment File, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the Deployment File’s namespace. Absolute filenames (i.e.,

 those starting with "/") also specify names in the root of

 the Deployment File’s namespace. In general, relative names

 are preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="remoteType">

 <xsd:annotation>

 <xsd:documentation>

 The remote element contains the fully-qualified name

 of the enterprise bean’s remote interface.

 Example:

 <remote>com.wombat.empl.EmployeeService</remote>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:fully-qualified-classType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="res-authType">

 <xsd:annotation>

 <xsd:documentation>

APPLICATION ASSEMBLY AND DEPLOYMENT162

 The res-authType specifies whether the Deployment Component

 code signs on programmatically to the resource manager, or

 whether the Container will sign on to the resource manager

 on behalf of the Deployment Component. In the latter case,

 the Container uses information that is supplied by the

 Deployer.

 The value must be one of the two following:

 Application

 Container

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Application"/>

 <xsd:enumeration value="Container"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="res-sharing-scopeType">

 <xsd:annotation>

 <xsd:documentation>

 The res-sharing-scope type specifies whether connections

 obtained through the given resource manager connection

 factory reference can be shared. The value, if specified,

 must be one of the two following:

 Shareable

 Unshareable

 The default value is Shareable.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="Shareable"/>

Common J2EE XML Schema Definitions 163

 <xsd:enumeration value="Unshareable"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="resource-env-refType">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-refType is used to define

 resource-env-type elements. It contains a declaration of a

 Deployment Component’s reference to an administered object

 associated with a resource in the Deployment Component’s

 environment. It consists of an optional description, the

 resource environment reference name, and an indication of

 the resource environment reference type expected by the

 Deployment Component code.

 Example:

 <resource-env-ref>

 <resource-env-ref-name>jms/StockQueue

 </resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue

 </resource-env-ref-type>

 </resource-env-ref>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="resource-env-ref-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-ref-name element specifies the name

 of a resource environment reference; its value is

APPLICATION ASSEMBLY AND DEPLOYMENT164

 the environment entry name used in

 the Deployment Component code. The name is a JNDI

 name relative to the java:comp/env context and must

 be unique within a Deployment Component.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="resource-env-ref-type"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-ref-type element specifies the type

 of a resource environment reference. It is the

 fully qualified name of a Java language class or

 interface.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="resource-refType">

 <xsd:annotation>

 <xsd:documentation>

 The resource-refType contains a declaration of a

Deployment Component’s reference to an external resource. It

 consists of an optional description, the resource manager

 connection factory reference name, the indication of the

 resource manager connection factory type expected by the

 Deployment Component code, the type of authentication

(Application or Container), and an optional specification of

 the shareability of connections obtained from the resource

 (Shareable or Unshareable).

 Example:

Common J2EE XML Schema Definitions 165

 <resource-ref>

 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

 </resource-ref>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="res-ref-name"

 type="j2ee:jndi-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The res-ref-name element specifies the name of a

 resource manager connection factory reference.

 The name is a JNDI name relative to the

 java:comp/env context.

 The name must be unique within a Deployment File.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="res-type"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 The res-type element specifies the type of the data

 source. The type is specified by the fully qualified

 Java language class or interface

 expected to be implemented by the data source.

 </xsd:documentation>

 </xsd:annotation>

APPLICATION ASSEMBLY AND DEPLOYMENT166

 </xsd:element>

 <xsd:element name="res-auth"

 type="j2ee:res-authType"/>

 <xsd:element name="res-sharing-scope"

 type="j2ee:res-sharing-scopeType"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="role-nameType">

 <xsd:annotation>

 <xsd:documentation>

 The role-nameType designates the name of a security role.

 The name must conform to the lexical rules for a token.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="run-asType">

 <xsd:annotation>

 <xsd:documentation>

 The run-asType specifies the run-as identity to be

 used for the execution of a component. It contains an

 optional description, and the name of a security role.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

Common J2EE XML Schema Definitions 167

 maxOccurs="unbounded"/>

 <xsd:element name="role-name"

 type="j2ee:role-nameType"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-role-refType">

 <xsd:annotation>

 <xsd:documentation>

 The security-role-refType contains the declaration of a

 security role reference in a component’s or a

 Deployment Component’s code. The declaration consists of an

 optional description, the security role name used in the

 code, and an optional link to a security role. If the

 security role is not specified, the Deployer must choose an

 appropriate security role.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="role-name"

 type="j2ee:role-nameType">

 <xsd:annotation>

 <xsd:documentation>

The value of the role-name element must be the String used

 as the parameter to the

 EJBContext.isCallerInRole(String roleName) method or the

 HttpServletRequest.isUserInRole(String role) method.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="role-link"

APPLICATION ASSEMBLY AND DEPLOYMENT168

 type="j2ee:role-nameType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The role-link element is a reference to a defined

 security role. The role-link element must contain

 the name of one of the security roles defined in the

 security-role elements.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-roleType">

 <xsd:annotation>

 <xsd:documentation>

 The security-roleType contains the definition of a security

role. The definition consists of an optional description of the

 security role, and the security role name.

 Example:

 <security-role>

 <description>

 This role includes all employees who are authorized

 to access the employee service application.

 </description>

 <role-name>employee</role-name>

 </security-role>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

Common J2EE XML Schema Definitions 169

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="role-name"

 type="j2ee:role-nameType"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="string">

 <xsd:annotation>

 <xsd:documentation>

 This is a special string datatype that is defined by J2EE as

 a base type for defining collapsed strings. When schemas

 require trailing/leading space elimination as well as

 collapsing the existing whitespace, this base type may be

 used.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:token">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="true-falseType">

 <xsd:annotation>

 <xsd:documentation>

 This simple type designates a boolean with only two

 permissible values

 - true

 - false

 </xsd:documentation>

 </xsd:annotation>

APPLICATION ASSEMBLY AND DEPLOYMENT170

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:xsdBooleanType">

 <xsd:pattern value="(true|false)"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="url-patternType">

 <xsd:annotation>

 <xsd:documentation>

 The url-patternType contains the url pattern of the mapping.

 It must follow the rules specified in Section 11.2 of the

 Servlet API Specification. This pattern is assumed to be in

 URL-decoded form and must not contain CR(#xD) or LF(#xA).

 If it contains those characters, the container must inform

 the developer with a descriptive error message.

The container must preserve all characters including whitespaces.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdAnyURIType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:anyURI.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

Common J2EE XML Schema Definitions 171

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdBooleanType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:boolean.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:boolean">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdIntegerType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:integer.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:integer">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdNMTOKENType">

 <xsd:annotation>

 <xsd:documentation>

APPLICATION ASSEMBLY AND DEPLOYMENT172

 This type adds an "id" attribute to xsd:NMTOKEN.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:NMTOKEN">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdNonNegativeIntegerType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:nonNegativeInteger.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:nonNegativeInteger">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdPositiveIntegerType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:positiveInteger.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:positiveInteger">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

Common J2EE XML Schema Definitions 173

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdQNameType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:QName.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:QName">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="xsdStringType">

 <xsd:annotation>

 <xsd:documentation>

 This type adds an "id" attribute to xsd:string.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

APPLICATION ASSEMBLY AND DEPLOYMENT174

175

C H A P T E RJ2EE.9
Application Clients

This chapter describes application clients in the Java™ 2 Platform, Enterprise
Edition (J2EE).

J2EE.9.1 Overview

Application clients are first tier client programs that execute in their own Java™
virtual machines. Application clients follow the model for Java technology-based
applications: they are invoked at theirmain method and run until the virtual machine
is terminated. However, like other J2EE application components, application clients
depend on a container to provide system services. The application client container
may be very light-weight compared to other J2EE containers, providing only the
security and deployment services described below

J2EE.9.2 Security

The J2EE authentication requirements for application clients are the same as for
other J2EE components, and the same authentication techniques may be used as for
other J2EE application components.

No authentication is necessary when accessing unprotected web resources.
When accessing protected web resources, the usual varieties of authentication
may be used, namely HTTP Basic authentication, SSL client authentication, or
HTTP Login Form authentication. Lazy authentication may be used.

Authentication is required when accessing protected enterprise beans. The
authentication mechanisms for enterprise beans include those required in the EJB
specification for enterprise bean interoperability. Lazy authentication may be
used.

APPLICATION CLIENTS176

An application client makes use of an authentication service provided by the
application client container for authenticating its users. The container’s service
may be integrated with the native platform’s authentication system, so that a
single signon capability is employed. The container may authenticate the user
when the application is started, or it may use lazy authentication, authenticating
the user when a protected resource is accessed. This specification does not
describe the technique used to authenticate the user, although a later version may
do so.

If the container interacts with the user to gather authentication data, the
container must provide an appropriate user interface. In addition, an application
client may provide a class that implements the
javax.security.auth.callback.CallbackHandler interface and specify the class
name in its deployment descriptor (see Section J2EE.9.7, “J2EE Application
Client XML Schema” for details). The Deployer may override the callback
handler specified by the application and use of the container’s default
authentication user interface instead.

If a callback handler is configured by the Deployer, the application client
container must instantiate an object of this class and use it for all authentication
interactions with the user. The application’s callback handler must fully support
Callback objects specified in thejavax.security.auth.callback package.

Note that when HTTP Login Form authentication is used, the authentication
user interface provided by the server (in the form of an HTML page delivered in
response to an HTTP request) must be displayed by the application client.

Application clients execute in an environment with a SecurityManager
installed, and have similar security permission requirements as servlets. The
security permission requirements are described fully in Section J2EE.6.2, “Java 2
Platform, Standard Edition (J2SE) Requirements.”

J2EE.9.3 Transactions

Application clients are not required to have direct access to the transaction facilities
of the J2EE platform. A J2EE product is not required to provide a JTA
UserTransaction object for use by application clients. Application clients can
invoke enterprise beans that start transactions, and they can use the transaction
facilities of the JDBC API. If a JDBC API transaction is open when an application
client invokes an enterprise bean, the transaction context is not required to be
propagated to the EJB server.

Naming 177

J2EE.9.4 Naming

As with all J2EE components, application clients use JNDI to look up enterprise
beans, get access to resource managers, reference configurable parameters set at
deployment time, and so on. Application clients use thejava: JNDI namespace to
access these items (see Chapter J2EE.5, “Naming” for details).

J2EE.9.5 Application Programming Interfaces

Application clients have all the facilities of the JavaTM 2 Platform, Standard Edition
(subject to security restrictions), as well as various standard extensions, as described
in Chapter J2EE.6 “Application Programming Interface.” Each application client
executes in its own Java virtual machine. Application clients start execution at the
main method of the class specified in theMain-Class attribute in the manifest file of
the application client’s JAR file (although note that application client container code
will typically execute before the application client itself, in order to prepare the
environment of the container, install aSecurityManager, initialize the name service
client library, and so on).

J2EE.9.6 Packaging and Deployment

Application clients are packaged in JAR format files with a.jar extension and
include a deployment descriptor similar to other J2EE application components. The
deployment descriptor describes the enterprise beans and external resources
referenced by the application. As with other J2EE application components, access to
resources must be configured at deployment time, names assigned for enterprise
beans and resources, and so on.

The tool used to deploy an application client, and the mechanism used to
install the application client, is not specified. Very sophisticated J2EE products
may allow the application client to be deployed on a J2EE server and
automatically made available to some set of (usually intranet) clients. Other J2EE
products may require the J2EE application bundle containing the application
client to be manually deployed and installed on each client machine. And yet
another approach would be for the deployment tool on the J2EE server to produce
an installation package that could be used by each client to install the application
client. There are many possibilities here and this specification doesn’t prescribe
any one. It only defines the package format for the application client and the
things that must be possible during the deployment process.

APPLICATION CLIENTS178

How an application client is invoked by an end user is unspecified. Typically a
J2EE Product Provider will provide an application launcher that integrates with
the application client machine’s native operating system, but the level of such
integration is unspecified.

J2EE.9.7 J2EE Application Client XML Schema

The XML grammar for a J2EE application client deployment descriptor is defined
by the J2EE application-client schema. The root element of the deployment
descriptor for an application client isapplication-client. The content of the XML
elements is in general case sensitive. This means, for example, that<res-

auth>Container</res-auth> must be used, rather than<res-auth>container</
res-auth>.

All valid application-client deployment descriptors must conform to the
following XML Schema definition, or to a DTD definition from a previous version
of this specification. (See Appendix J2EE.A, “Previous Version DTDs.”) The
deployment descriptor must be namedMETA-INF/application-client.xml in the
application client’s.jar file. Note that this name is case-sensitive.

J2EE Application Client XML Schema 179

Figure J2EE.9-1 shows the structure of the J2EE application-client XML
Schema.

Figure J2EE.9-1 J2EE Application Client XML Schema Structure

application-client

display-name+

description*

 small-icon?

 large-icon?
 icon*

 ejb-ref*

description*

ejb-ref-name

ejb-ref-type

home

remote

ejb-link?

 resource-ref*

description*

res-ref-name

res-type

res-auth

res-sharing-scope?

 resource-env-ref*

resource-env-ref-type

resource-env-ref-name

description*

 message-destination*

 message-destination-name

description*

display-name+

 icon*

 callback-handler?

 env-entry*
env-entry-name

description*

env-entry-type

env-entry-value?

 message-destination-ref*

description*

 message-destination-ref-name

 message-destination-type

 message-destination-usage

 message-destination-link?

APPLICATION CLIENTS180

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.4">

 <xsd:annotation>

 <xsd:documentation>

 @(#)application-client_1_4.xsds 1.17 02/11/03

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the application client 1.4

 deployment descriptor. The deployment descriptor must

 be named "META-INF/application-client.xml" in the

 application client’s jar file. All application client

 deployment descriptors must indicate the application

 client schema by using the J2EE namespace:

 http://java.sun.com/xml/ns/j2ee

 and indicate the version of the schema by

 using the version element as shown below:

<application-client xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/application-

client_1_4.xsd"

 version="1.4">

 ...

 </application-client>

 The instance documents may indicate the published version of

 the schema using the xsi:schemaLocation attribute for J2EE

 namespace with the following location:

J2EE Application Client XML Schema 181

 http://java.sun.com/xml/ns/j2ee/application-client_1_4.xsd

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 The following conventions apply to all J2EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the

 same JAR file, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the JAR file’s namespace. Absolute filenames (i.e., those

 starting with "/") also specify names in the root of the

 JAR file’s namespace. In general, relative names are

 preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_1_4.xsd"/>

<!-- ** -->

 <xsd:element name="application-client" type="j2ee:application-

clientType">

 <xsd:annotation>

 <xsd:documentation>

 The application-client element is the root element of an

 application client deployment descriptor. The application

 client deployment descriptor describes the EJB components

 and external resources referenced by the application

 client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:unique name="env-entry-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

APPLICATION CLIENTS182

 The env-entry-name element contains the name of an

 application client’s environment entry. The name is a JNDI

 name relative to the java:comp/env context. The name must

 be unique within an application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:env-entry"/>

 <xsd:field xpath="j2ee:env-entry-name"/>

 </xsd:unique>

 <xsd:unique name="ejb-ref-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The ejb-ref-name element contains the name of an EJB

 reference. The EJB reference is an entry in the application

 client’s environment and is relative to the

 java:comp/env context. The name must be unique within the

 application client.

 It is recommended that name is prefixed with "ejb/".

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:ejb-ref"/>

 <xsd:field xpath="j2ee:ejb-ref-name"/>

 </xsd:unique>

 <xsd:unique name="res-ref-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The res-ref-name element specifies the name of a

 resource manager connection factory reference.The name

 is a JNDI name relative to the java:comp/env context.

 The name must be unique within an application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:resource-ref"/>

 <xsd:field xpath="j2ee:res-ref-name"/>

J2EE Application Client XML Schema 183

 </xsd:unique>

 <xsd:unique name="resource-env-ref-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The resource-env-ref-name element specifies the name of

 a resource environment reference; its value is the

 environment entry name used in the application client

 code. The name is a JNDI name relative to the

 java:comp/env context and must be unique within an

 application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:resource-env-ref"/>

 <xsd:field xpath="j2ee:resource-env-ref-name"/>

 </xsd:unique>

 <xsd:unique name="message-destination-ref-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The message-destination-ref-name element specifies the

 name of a message destination reference; its value is

 the message destination reference name used in the

 application client code. The name is a JNDI name

 relative to the java:comp/env context and must be unique

 within an application client.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:message-destination-ref"/>

 <xsd:field xpath="j2ee:message-destination-ref-name"/>

 </xsd:unique>

 </xsd:element>

<!-- ** -->

 <xsd:complexType name="application-clientType">

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="env-entry"

 type="j2ee:env-entryType"

APPLICATION CLIENTS184

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ejb-ref"

 type="j2ee:ejb-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:group ref="j2ee:service-refGroup"/>

 <xsd:element name="resource-ref"

 type="j2ee:resource-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="resource-env-ref"

 type="j2ee:resource-env-refType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="message-destination-ref"

 type="j2ee:message-destination-refType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="callback-handler"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The callback-handler element names a class provided by

 the application. The class must have a no args

 constructor and must implement the

 javax.security.auth.callback.CallbackHandler

 interface. The class will be instantiated by the

 application client container and used by the container

 to collect authentication information from the user.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="message-destination"

 type="j2ee:message-destinationType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="version"

 type="j2ee:dewey-versionType"

 fixed="1.4"

 use="required">

J2EE Application Client XML Schema 185

 <xsd:annotation>

 <xsd:documentation>

 The required value for the version is 1.4.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

APPLICATION CLIENTS186

187

C H A P T E RJ2EE.10
Service Provider Interface

The Java™ 2 Platform, Enterprise Edition (J2EE) includes the J2EE Connector
Architecture and the Java Authorization Service Provider Contract for Containers as
its service provider interfaces. The Connector API defines how resource adapters are
packaged and integrated with any J2EE product. All J2EE products must support
the Connector APIs, as specified in the Connector specification. The JACC
specification defines the contract between a J2EE container and an authorization
policy provider.

The Connector specification is available athttp://java.sun.com/j2ee/

connector. The JACC specification is available athttp://jcp.org/jsr/detail/

115.jsp.

SERVICE PROVIDER INTERFACE188

189

C H A P T E RJ2EE.11
Future Directions

This version of the Java™ 2 Platform, Enterprise Edition (J2EE) specification
includes most of the facilities needed by enterprise applications. Still, there is
always more to be done. This chapter briefly describes our plans for future versions
of this specification. Please keep in mind that all of this is subject to change. Your
feedback is encouraged.

The following sections describe additional facilities we would like to include
in future versions of this specification. Many of the APIs included in the J2EE
platform will continue to evolve on their own and we will include the latest
version of each API.

J2EE.11.1 XML Data Binding API

As XML becomes more important in the industry, more and more enterprise
applications will need to make use of XML. This specification requires basic XML
SAX and DOM support through the JAXP API, but many applications will benefit
from the easier to use XML Data Binding technology. The XML Data Binding API
is being defined through the Java Community Process as JSR-031.

XML Data Binding depends on schema languages to define the XML data.
The current widely used schema language is the DTD language. W3C has
standardized a new XML Schema language. In addition, there are several other
schema languages in use and proposed in the industry.

In order to support emerging schema language standards quickly, the XML
Data Binding API will need to evolve more quickly than the J2EE platform.
Inclusion of the XML Data Binding API as a required component of J2EE at this
time would constrain its evolution. We expect that the next version of the J2EE
platform will require support for XML Data Binding. In the mean time, we
strongly encourage the use of this new technology by enterprise applications as it

FUTURE DIRECTIONS190

becomes available. We expect the XML Data Binding technology to be portable to
any J2EE product.

The XML Data Binding JSR is available athttp://java.sun.com/

aboutJava/communityprocess/jsr/jsr_031_xmld.html.

J2EE.11.2 JNLP (Java™ Web Start)

The Java Network Launch Protocol defines a mechanism for deploying Java
applications on a server and launching them from a client. A future version of this
specification may require that J2EE products be able to deploy application clients in
a way that allows them to be launched by a JNLP client, and that application client
containers be able to launch application clients deployed using the JNLP
technology. Java™ Web Start is the reference implementation of a JNLP client.

More information on JNLP is available athttp://java.sun.com/aboutJava/

communityprocess/jsr/jsr_056_jnlp.html; more information on Java Web Start
is available athttp://java.sun.com/products/javawebstart.

J2EE.11.3 J2EE SPI

Many of the APIs that make up the J2EE platform include an SPI layer that allows
service providers or other system level components to be plugged in. This
specification does not describe the execution environment for all such service
providers, nor the packaging and deployment requirements for all service providers.
However, the J2EE Connector Architecture does define the requirements for certain
types of service providers called resource adapters. Future versions of this
specification will more fully define the J2EE SPI.

J2EE.11.4 JDBC RowSets

RowSets provide a standard way to send tabular data between the remote
components of a distributed enterprise application. The JDBC API defines the
RowSet APIs, and in the future will contain RowSet implementations. Future
versions of this specification will require that the JDBC RowSet implementations be
supported. More information is available athttp://java.sun.com/products/jdbc.

Security APIs 191

J2EE.11.5 Security APIs

It is a goal of the J2EE platform to separate security from business logic, providing
declarative security controls for application components. However, some
applications need more control over security than can be provided by this approach.
A future version of this specification may expand the set of APIs available to control
authentication and authorization, and to allow the integration of new security
technologies.

J2EE.11.6 SQLJ Part 0

SQLJ Part 0 supports embedding SQL statements in programs written in the Java
programming language. A compiler translates the program into a program that uses
the SQLJ Part 0 runtime. The runtime supports access to a database using the JDBC
API while also allowing platform-dependent and database-specific optimizations of
such access. The SQLJ Part 0 runtime classes can be packaged with a J2EE
application that uses SQLJ Part 0, allowing that application to run on any J2EE
platform. At the current time, customer demand for SQLJ Part 0 is not sufficient to
include it as a part of the J2EE platform. If customer demand increases, a future
version of this specification may require the platform to provide the SQLJ Part 0
runtime classes so that they do not need to be packaged with the application. For
information on SQLJ, seehttp://www.sqlj.org.

FUTURE DIRECTIONS192

193

A P P E N D I XJ2EE.A
Previous Version DTDs

This appendix contains Document Type Definitions for Deployment Descriptors
from previous versions of the J2EE specification. All J2EE products are required to
support these DTDs as well as the DTDs specified in this version of the
specification. This ensures that applications written to previous versions of this
specification can be deployed on products supporting the current version of this
specification. In addition, there are no restrictions on mixing versions of deployment
descriptors in a single application; any combination of valid deployment descriptor
versions must be supported.

J2EE.A.1 J2EE:application 1.3 XML DTD

This section provides the XML DTD for the J2EE 1.3 application deployment
descriptor. The XML grammar for a J2EE application deployment descriptor is
defined by theJ2EE:application document type definition. The granularity of
composition for J2EE application assembly is the J2EE module. A
J2EE:application deployment descriptor contains a name and description for the
application and the URI of a UI icon for the application, as well as a list of the J2EE
modules that comprise the application. The content of the XML elements is in
general case sensitive. This means, for example, that<role-name>Manager</role-

name> is a different role than<role-name>manager</role-name>.
A valid J2EE application deployment descriptor may contain the following

DOCTYPE declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE

Application 1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">

194

The deployment descriptor must be namedMETA-INF/application.xml in the.ear
file.

Figure J2EE.A-1 shows a graphic representation of the structure of the
J2EE:application XML DTD.

Figure J2EE.A-1 J2EE:application XML DTD Structure

The DTD that follows defines the XML grammar for a J2EE application
deployment descriptor.

<!--

This is the XML DTD for the J2EE 1.3 application deployment

descriptor. All J2EE 1.3 application deployment descriptors must

include a DOCTYPE of the following form:

 <!DOCTYPE application PUBLIC

"-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"

"http://java.sun.com/dtd/application_1_3.dtd">

-->

<!--

The following conventions apply to all J2EE deployment descriptor

elements unless indicated otherwise.

- In elements that contain PCDATA, leading and trailing whitespace

 in the data may be ignored.

- In elements whose value is an "enumerated type", the value is

 case sensitive.

- In elements that specify a pathname to a file within the same

JAR file, relative filenames (i.e., those not starting with "/")

are considered relative to the root of the JAR file’s namespace.

 Absolute filenames (i.e., those starting with "/") also specify

names in the root of the JAR file’s namespace. In general, relative

application

icon display-name description? module+

connector | ejb | java | web alt-dd?large-iconsmall-icon

web-uri context-root?

security-role*

description? role-name

195

names are preferred. The exception is .war files where absolute

 names are preferred for consistency with the servlet API.

-->

<!--

The application element is the root element of a J2EE application

deployment descriptor.

-->

<!ELEMENT application (icon?, display-name, description?, module+,

security-role*)>

<!--

The alt-dd element specifies an optional URI to the post-assembly

version of the deployment descriptor file for a particular J2EE

module. The URI must specify the full pathname of the deployment

descriptor file relative to the application’s root directory. If alt-

dd is not specified, the deployer must read the deployment descriptor

from the default location and file name required by the respective

component specification.

Used in: module

-->

<!ELEMENT alt-dd (#PCDATA)>

<!--

The connector element specifies the URI of a resource adapter archive

file, relative to the top level of the application package.

Used in: module

-->

<!ELEMENT connector (#PCDATA)>

<!--

The context-root element specifies the context root of a web

application.

Used in: web

-->

<!ELEMENT context-root (#PCDATA)>

196

<!--

The description element is used to provide text describing the parent

element. The description element should include any information that

the application ear file producer wants to provide to the consumer

of the application ear file (i.e., to the Deployer). Typically, the

tools used by the application ear file consumer will display the

description when processing the parent element that contains the

description.

Used in: application, security-role

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element contains a short name that is intended to

be displayed by tools. The display name need not be unique.

Used in: application

Example:

<display-name>Employee Self Service</display-name>

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb element specifies the URI of an ejb-jar, relative to the top

level of the application package.

Used in: module

-->

<!ELEMENT ejb (#PCDATA)>

<!--

The icon element contains small-icon and large-icon elements that

specify the file names for small and a large GIF or JPEG icon images

used to represent the parent element in a GUI tool.

Used in: application

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

The java element specifies the URI of a java application client

module, relative to the top level of the application package.

Used in: module

-->

197

<!ELEMENT java (#PCDATA)>

<!--

The large-icon element contains the name of a file containing a large

(32 x 32) icon image. The file name is a relative path within the

application’s ear file.

The image may be either in the JPEG or GIF format. The icon can be

used by tools.

Used in: icon

Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The module element represents a single J2EE module and contains a

connector, ejb, java, or web element, which indicates the module type

and contains a path to the module file, and an optional alt-dd

element, which specifies an optional URI to the post-assembly version

of the deployment descriptor.

The application deployment descriptor must have one module element

for each J2EE module in the application package.

Used in: application

-->

<!ELEMENT module ((connector | ejb | java | web), alt-dd?)>

<!--

The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

Used in: security-role

-->

<!ELEMENT role-name (#PCDATA)>

<!--

The security-role element contains the definition of a security role.

The definition consists of an optional description of the security

role, and the security role name.

Used in: application

Example:

 <security-role>

<description>

 This role includes all employees who are authorized

198

 to access the employee service application.

</description>

<role-name>employee</role-name>

 </security-role>

-->

<!ELEMENT security-role (description?, role-name)>

<!--

The small-icon element contains the name of a file containing a small

(16 x 16) icon image. The file name is a relative path within the

application’s ear file.

The image may be either in the JPEG or GIF format. The icon can be

used by tools.

Used in: icon

Example:

<small-icon>employee-service-icon16x16.jpg</small-icon>

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The web element contains the web-uri and context-root of a web

application module.

Used in: module

-->

<!ELEMENT web (web-uri, context-root)>

<!--

The web-uri element specifies the URI of a web application file,

relative to the top level of the application package.

Used in: web

-->

<!ELEMENT web-uri (#PCDATA)>

<!--

The ID mechanism is to allow tools that produce additional deployment

information (i.e., information beyond the standard deployment

descriptor information) to store the non-standard information in a

separate file, and easily refer from these tool-specific files to

the information in the standard deployment descriptor.

199

Tools are not allowed to add the non-standard information into the

standard deployment descriptor.

-->

<!ATTLIST alt-dd id ID #IMPLIED>

<!ATTLIST application id ID #IMPLIED>

<!ATTLIST connector id ID #IMPLIED>

<!ATTLIST context-root id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST java id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST module id ID #IMPLIED>

<!ATTLIST role-name id ID #IMPLIED>

<!ATTLIST security-role id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

<!ATTLIST web id ID #IMPLIED>

<!ATTLIST web-uri id ID #IMPLIED>

J2EE.A.2 J2EE:application 1.2 XML DTD

This section provides the XML DTD for the J2EE 1.2 version of the application
deployment descriptor. A valid J2EE application deployment descriptor may
contain the following DOCTYPE declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE

Application 1.2//EN" "http://java.sun.com/j2ee/dtds/

application_1_2.dtd">

200

Figure J2EE.A-2 shows a graphic representation of the structure of the
J2EE:application XML DTD.

Figure J2EE.A-2 J2EE:application XML DTD Structure

The DTD that follows defines the XML grammar for a J2EE application
deployment descriptor.

<!--

The alt-dd element specifies an optional URI to the post-assembly

version of the deployment descriptor file for a particular J2EE

module.

The URI must specify the full pathname of the deployment descriptor

file relative to the application’s root directory. If alt-dd is not

specified, the deployer must read the deployment descriptor from the

default location and file name required by the respective component

specification.

-->

<!ELEMENT alt-dd (#PCDATA)>

<!--

The application element is the root element of a J2EE application

deployment descriptor.

-->

<!ELEMENT application (icon?, display-name, description?, module+,

security-role*)>

application

icon? display-name description? module+

ejb | java | web alt-dd?large-icon?small-icon?

web-uri context-root

security-role*

 description? role-name

201

<!--

The context-root element specifies the context root of a web

application

-->

<!ELEMENT context-root (#PCDATA)>

<!--

The description element provides a human readable description of the

application.

The description element should include any information that the

application assembler wants to provide the deployer.

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element specifies an application name.

The application name is assigned to the application by the

application assembler and is used to identify the application to the

deployer at deployment time.

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb element specifies the URI of a ejb-jar, relative to the top

level of the application package.

-->

<!ELEMENT ejb (#PCDATA)>

<!--

The icon element contains a small-icon and large-icon element which

specify the URIs for a small and a large GIF or JPEG icon image to

represent the application in a GUI.

-->

<!ELEMENT icon (small-icon?, large-icon?)>

202

<!--

The java element specifies the URI of a java application client

module, relative to the top level of the application package.

-->

<!ELEMENT java (#PCDATA)>

<!--

The large-icon element specifies the URI for a large GIF or JPEG icon

image to represent the application in a GUI.

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The module element represents a single J2EE module and contains an

ejb, java, or web element, which indicates the module type and

contains a path to the module file, and an optional alt-dd element,

which specifies an optional URI to the post-assembly version of the

deployment descriptor.

The application deployment descriptor must have one module element

for each J2EE module in the application package.

-->

<!ELEMENT module ((ejb | java | web), alt-dd?)>

<!--

The role-name element contains the name of a security role.

-->

<!ELEMENT role-name (#PCDATA)>

<!--

The security-role element contains the definition of a security role

which is global to the application.

The definition consists of a description of the security role, and

the security role name.

The descriptions at this level override those in the component level

security-role definitions and must be the descriptions tool display

to the deployer.

-->

<!ELEMENT security-role (description?, role-name)>

203

<!--

The small-icon element specifies the URI for a small GIF or JPEG icon

image to represent the application in a GUI.

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The web element contains the web-uri and context-root of a web

application module.

-->

<!ELEMENT web (web-uri, context-root)>

<!--

The web-uri element specifies the URI of a web application file,

relative to the top level of the application package.

-->

<!ELEMENT web-uri (#PCDATA)>

<!--

The ID mechanism is to allow tools to easily make tool-specific

references to the elements of the deployment descriptor.

 -->

<!ATTLIST alt-dd id ID #IMPLIED>

<!ATTLIST application id ID #IMPLIED>

<!ATTLIST context-root id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST java id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST module id ID #IMPLIED>

<!ATTLIST role-name id ID #IMPLIED>

<!ATTLIST security-role id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

<!ATTLIST web id ID #IMPLIED>

<!ATTLIST web-uri id ID #IMPLIED>

204

J2EE.A.3 J2EE:application-client 1.3 XML DTD

This section contains the XML DTD for the J2EE 1.3 version of the application
client deployment descriptor. The XML grammar for a J2EE application client
deployment descriptor is defined by theJ2EE:application-client document type
definition. The root element of the deployment descriptor for an application client is
application-client. The content of the XML elements is in general case sensitive.
This means, for example, that<res-auth>Container</res-auth> must be used,
rather than<res-auth>container</res-auth>.

A valid application-client deployment descriptor may contain the
following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD

J2EE Application Client 1.3//EN" "http://java.sun.com/dtd/

application-client_1_3.dtd">

The deployment descriptor must be namedMETA-INF/application-client.xml in
the application client’s.jar file.

Figure J2EE.A-3shows the structure of theJ2EE:application-client XML
DTD.

Figure J2EE.A-3 J2EE:application-client XML DTD Structure

<!--

This is the XML DTD for the J2EE 1.3 application client deployment

descriptor. All J2EE 1.3 application client deployment descriptors

must include a DOCTYPE of the following form:

 <!DOCTYPE application-client PUBLIC

application-client
t

icon display-nam
e

description
?

env-entry* ejb-ref* resource-ref*

small-icon large-ico
n

resource-env-ref* callback-handler
?

resource-env-ref-typeresource-env-ref-name

env-entry-namedescription
?

env-entry-type env-entry-value?

description
?

ejb-ref-nam
e

ejb-ref-type hom
e

remote ejb-link
?

description
?

res-ref-name res-type res-aut
h

description
?

res-sharing-scope
?

205

"-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.3//EN"

"http://java.sun.com/dtd/application-client_1_3.dtd">

-->

<!--

The following conventions apply to all J2EE deployment descriptor

elements unless indicated otherwise.

- In elements that contain PCDATA, leading and trailing whitespace

 in the data may be ignored.

- In elements whose value is an "enumerated type", the value is

 case sensitive.

- In elements that specify a pathname to a file within the same

JAR file, relative filenames (i.e., those not starting with "/")

are considered relative to the root of the JAR file’s namespace.

 Absolute filenames (i.e., those starting with "/") also specify

names in the root of the JAR file’s namespace. In general, relative

names are preferred. The exception is .war files where absolute

 names are preferred for consistency with the servlet API.

-->

<!--

The application-client element is the root element of an application

client deployment descriptor. The application client deployment

descriptor describes the EJB components and external resources

referenced by the application client.

-->

<!ELEMENT application-client (icon?, display-name, description?,

env-entry*, ejb-ref*, resource-ref*, resource-env-ref*,

callback-handler?)>

<!--

The callback-handler element names a class provided by the

application. The class must have a no args constructor and must

implement the javax.security.auth.callback.CallbackHandler

interface. The class will be instantiated by the application client

container and used by the container to collect authentication

information from the user.

Used in: application-client

-->

<!ELEMENT callback-handler (#PCDATA)>

206

<!--

The description element is used to provide text describing the parent

element. The description element should include any information that

the application client jar file producer wants to provide to the

consumer of the application client jar file (i.e., to the Deployer).

Typically, the tools used by the application client jar file consumer

will display the description when processing the parent element that

contains the description.

Used in: application-client, ejb-ref, env-entry, resource-env-ref,

resource-ref

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element contains a short name that is intended to

be displayed by tools. The display name need not be unique.

Used in: application-client

Example:

<display-name>Employee Self Service</display-name>

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb-link element is used in the ejb-ref or ejb-local-ref elements

to specify that an EJB reference is linked to another enterprise

bean.

The name in the ejb-link element is composed of a

path name specifying the ejb-jar containing the referenced

enterprise bean with the ejb-name of the target bean appended and

separated from the path name by "#". The path name is relative to

the jar file containing the application client that is referencing

the enterprise bean. This allows multiple enterprise beans with the

same ejb-name to be uniquely identified.

Used in: ejb-ref

Examples:

<ejb-link>EmployeeRecord</ejb-link>

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

-->

<!ELEMENT ejb-link (#PCDATA)>

207

<!--

The ejb-ref element is used for the declaration of a reference to an

enterprise bean’s home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of

the application client that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected home and remote interfaces of the referenced

 enterprise bean

- optional ejb-link information, used to specify the referenced

 enterprise bean

Used in: application-client

-->

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--

The ejb-ref-name element contains the name of an EJB reference. The

EJB reference is an entry in the application client’s environment

and is relative to the java:comp/env context. The name must be

unique within the application client.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-ref

Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected type of the referenced

enterprise bean.

The ejb-ref-type element must be one of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref

-->

<!ELEMENT ejb-ref-type (#PCDATA)>

208

<!--

The env-entry element contains the declaration of an application

client’s environment entry. The declaration consists of an optional

description, the name of the environment entry, and an optional

value. If a value is not specified, one must be supplied during

deployment.

Used in: application-client

-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-type,

env-entry-value?)>

<!--

The env-entry-name element contains the name of an application

client’s environment entry. The name is a JNDI name relative to the

java:comp/env context. The name must be unique within an application

client.

Used in: env-entry

Example:

<env-entry-name>minAmount</env-entry-name>

-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--

The env-entry-type element contains the fully-qualified Java type of

the environment entry value that is expected by the application

client’s code.

The following are the legal values of env-entry-type:

java.lang.Boolean

java.lang.Byte

java.lang.Character

java.lang.String

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

Used in: env-entry

Example:

<env-entry-type>java.lang.Boolean</env-entry-type>

-->

<!ELEMENT env-entry-type (#PCDATA)>

209

<!--

The env-entry-value element contains the value of an application

client’s environment entry. The value must be a String that is valid

for the constructor of the specified type that takes a single String

parameter, or for java.lang.Character, a single character.

Used in: env-entry

Example:

<env-entry-value>100.00</env-entry-value>

-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The home element contains the fully-qualified name of the enterprise

bean’s home interface.

Used in: ejb-ref

Example:

<home>com.aardvark.payroll.PayrollHome</home>

-->

<!ELEMENT home (#PCDATA)>

<!--

The icon element contains small-icon and large-icon elements that

specify the file names for small and a large GIF or JPEG icon images

used to represent the parent element in a GUI tool.

Used in: application-client

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

The large-icon element contains the name of a file containing a large

(32 x 32) icon image. The file name is a relative path within the

application client’s jar file.

The image may be either in the JPEG or GIF format. The icon can be

used by tools.

Used in: icon

Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>

-->

<!ELEMENT large-icon (#PCDATA)>

210

<!--

The remote element contains the fully-qualified name of the

enterprise bean’s remote interface.

Used in: ejb-ref

Example:

<remote>com.wombat.empl.EmployeeService</remote>

-->

<!ELEMENT remote (#PCDATA)>

<!--

The res-auth element specifies whether the application client code

signs on programmatically to the resource manager, or whether the

Container will sign on to the resource manager on behalf of the

application client. In the latter case, the Container uses

information that is supplied by the Deployer.

The value of this element must be one of the two following:

<res-auth>Application</res-auth>

<res-auth>Container</res-auth>

Used in: resource-ref

-->

<!ELEMENT res-auth (#PCDATA)>

<!--

The res-ref-name element specifies the name of a resource manager

connection factory reference. The name is a JNDI name relative to

the java:comp/env context. The name must be unique within an

application client.

Used in: resource-ref

-->

<!ELEMENT res-ref-name (#PCDATA)>

<!--

The res-sharing-scope element specifies whether connections obtained

through the given resource manager connection factory reference can

be shared. The value of this element, if specified, must be one of

the two following:

<res-sharing-scope>Shareable</res-sharing-scope>

<res-sharing-scope>Unshareable</res-sharing-scope>

The default value is Shareable.

Used in: resource-ref

-->

211

<!ELEMENT res-sharing-scope (#PCDATA)>

<!--

The res-type element specifies the type of the data source. The type

is specified by the fully qualified Java language class or interface

expected to be implemented by the data source.

Used in: resource-ref

-->

<!ELEMENT res-type (#PCDATA)>

<!--

The resource-env-ref element contains a declaration of an

application client’s reference to an administered object associated

with a resource in the application client’s environment. It consists

of an optional description, the resource environment reference name,

and an indication of the resource environment reference type expected

by the application client code.

Used in: application-client

Example:

<resource-env-ref>

 <resource-env-ref-name>jms/StockQueue</resource-env-ref-name>

<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

-->

<!ELEMENT resource-env-ref (description?, resource-env-ref-name,

resource-env-ref-type)>

<!--

The resource-env-ref-name element specifies the name of a resource

environment reference; its value is the environment entry name used

in the application client code. The name is a JNDI name relative to

the java:comp/env context and must be unique within an application

client.

Used in: resource-env-ref

-->

<!ELEMENT resource-env-ref-name (#PCDATA)>

<!--

The resource-env-ref-type element specifies the type of a resource

environment reference. It is the fully qualified name of a Java

language class or interface.

212

Used in: resource-env-ref

-->

<!ELEMENT resource-env-ref-type (#PCDATA)>

<!--

The resource-ref element contains a declaration of an application

client’s reference to an external resource. It consists of an

optional description, the resource manager connection factory

reference name, the indication of the resource manager connection

factory type expected by the application client code, the type of

authentication (Application or Container), and an optional

specification of the shareability of connections obtained from the

resource (Shareable or Unshareable).

Used in: application-client

Example:

<resource-ref>

 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope> </resource-ref>

-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-

auth, res-sharing-scope?)>

<!--

The small-icon element contains the name of a file containing a small

(16 x 16) icon image. The file name is a relative path within the

application client’s jar file.

The image may be either in the JPEG or GIF format. The icon can be

used by tools.

Used in: icon

Example:

<small-icon>employee-service-icon16x16.jpg</small-icon>

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The ID mechanism is to allow tools that produce additional deployment

information (i.e., information beyond the standard deployment

descriptor information) to store the non-standard information in a

separate file, and easily refer from these tool-specific files to

the information in the standard deployment descriptor.

213

Tools are not allowed to add the non-standard information into the

standard deployment descriptor.

-->

<!ATTLIST application-client id ID #IMPLIED>

<!ATTLIST callback-handler id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb-link id ID #IMPLIED>

<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>

<!ATTLIST ejb-ref-type id ID #IMPLIED>

<!ATTLIST env-entry id ID #IMPLIED>

<!ATTLIST env-entry-name id ID #IMPLIED>

<!ATTLIST env-entry-type id ID #IMPLIED>

<!ATTLIST env-entry-value id ID #IMPLIED>

<!ATTLIST home id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST remote id ID #IMPLIED>

<!ATTLIST res-auth id ID #IMPLIED>

<!ATTLIST res-ref-name id ID #IMPLIED>

<!ATTLIST res-sharing-scope id ID #IMPLIED>

<!ATTLIST res-type id ID #IMPLIED>

<!ATTLIST resource-env-ref id ID #IMPLIED>

<!ATTLIST resource-env-ref-name id ID #IMPLIED>

<!ATTLIST resource-env-ref-type id ID #IMPLIED>

<!ATTLIST resource-ref id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

J2EE.A.4 J2EE:application-client 1.2 XML DTD

This section contains the XML DTD for the J2EE 1.2 version of the application
client deployment descriptor. A valid application client deployment descriptor may
contain the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD

J2EE Application Client 1.2//EN" "http://java.sun.com/j2ee/dtds/ap-

plication-client_1_2.dtd">

214

Figure J2EE.A-4shows the structure of theJ2EE:application-client XML
DTD.

Figure J2EE.A-4 J2EE:application-client XML DTD Structure

<!--

The application-client element is the root element of an application

client deployment descriptor.

The application client deployment descriptor describes the EJB

components and external resources referenced by the application

client.

-->

<!ELEMENT application-client (icon?, display-name, description?,

env-entry*, ejb-ref*, resource-ref*)>

<!--

The description element is used to provide text describing the parent

element.

The description element should include any information that the

application-client file producer wants to provide to the consumer of

the application-client file (i.e., to the Deployer).

application-client

icon? display-name description? env-entry* ejb-ref* resource-ref*

small-icon? large-icon?

description? res-ref-name res-type

description? ejb-ref-name ejb-ref-type home remote ejb-link?

env-entry-namedescription? env-entry-type

res-auth

env-entry-value?

215

Typically, the tools used by the application-client file consumer

will display the description when processing the parent element that

contains the description.

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element contains a short name that is intended to

be displayed by tools.

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The ejb-link element is used in the ejb-ref element to specify that

an EJB reference is linked to an enterprise bean in the encompassing

J2EE Application package.

The value of the ejb-link element must be the ejb-name of an

enterprise bean in the same J2EE Application package.

Used in: ejb-ref

Example: <ejb-link>EmployeeRecord</ejb-link>

-->

<!ELEMENT ejb-link (#PCDATA)>

<!--

The ejb-ref element is used for the declaration of a reference to an

enterprise bean’s home.

The declaration consists of an optional description; the EJB

reference name used in the code of the referencing application

client; the expected type of the referenced enterprise bean; the

expected home and remote interfaces of the referenced enterprise

bean; and an optional ejb-link information.

The optional ejb-link element is used to specify the referenced

enterprise bean.

-->

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--

The ejb-ref-name element contains the name of an EJB reference.

The EJB reference is an entry in the application client’s

environment.

216

It is recommended that name is prefixed with "ejb/".

Used in: ejb-ref

Example: <ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected type of the referenced

enterprise bean.

The ejb-ref-type element must be one of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref

-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The env-entry element contains the declaration of an application

client’s environment entries.

The declaration consists of an optional description, the name of the

environment entry, and an optional value.

-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-type,

env-entry-value?)>

<!--

The env-entry-name element contains the name of an application

client’s environment entry.

Used in: env-entry

Example: <env-entry-name>EmployeeAppDB</env-entry-name>

-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--

The env-entry-type element contains the fully-qualified Java type of

the environment entry value that is expected by the application

client’s code.

217

The following are the legal values of env-entry-type:

java.lang.Boolean, java.lang.String, java.lang.Integer,

java.lang.Double, java.lang.Byte, java.lang.Short,java.lang.Long,

and java.lang.Float.

Used in: env-entry

Example:

<env-entry-type>java.lang.Boolean</env-entry-type>

-->

<!ELEMENT env-entry-type (#PCDATA)>

<!--

The env-entry-value element contains the value of an application

client’s environment entry. The value must be a String that is valid

for the constructor of the specified type that takes a single String

parameter.

Used in: env-entry

Example:

<env-entry-value>/datasources/MyDatabase</env-entry-value>

-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The home element contains the fully-qualified name of the enterprise

bean’s home interface.

Used in: ejb-ref Example: <home>com.aardvark.payroll.PayrollHome</

home>

-->

<!ELEMENT home (#PCDATA)>

<!--

The icon element contains a small-icon and large-icon element which

specify the URIs for a small and a large GIF or JPEG icon image used

to represent the application client in a GUI tool.

-->

<!ELEMENT icon (small-icon?, large-icon?)>

218

<!--

The large-icon element contains the name of a file containing a large

(32 x 32) icon image. The file name is a relative path within the

application-client jar file. The image must be either in the JPEG or

GIF format, and the file name must end with the suffix ".jpg" or

".gif" respectively. The icon can be used by tools.

Example:

<large-icon>lib/images/employee-service-icon32x32.jpg</large-icon>

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The remote element contains the fully-qualified name of the

enterprise bean’s remote interface.

Used in: ejb-ref

Example:

<remote>com.wombat.empl.EmployeeService</remote>

-->

<!ELEMENT remote (#PCDATA)>

<!--

The res-auth element specifies whether the enterprise bean code signs

on programmatically to the resource manager, or whether the Container

will sign on to the resource manager on behalf of the bean. In the

latter case, the Container uses information that is supplied by the

Deployer.

The value of this element must be one of the two following:

<res-auth>Application</res-auth>

<res-auth>Container</res-auth>

-->

<!ELEMENT res-auth (#PCDATA)>

<!--

The res-ref-name element specifies the name of the resource factory

reference name. The resource factory reference name is the name of

the application client’s environment entry whose value contains the

JNDI name of the data source.

Used in: resource-ref

-->

<!ELEMENT res-ref-name (#PCDATA)>

219

<!--

The res-type element specifies the type of the data source. The type

is specified by the Java interface (or class) expected to be

implemented by the data source.

Used in: resource-ref

-->

<!ELEMENT res-type (#PCDATA)>

<!--

The resource-ref element contains a declaration of application

clients’s reference to an external resource. It consists of an

optional description, the resource factory reference name, the

indication of the resource factory type expected by the application

client’s code, and the type of authentication (bean or container).

Example:

<resource-ref>

<res-ref-name>EmployeeAppDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-

auth)>

<!--

The small-icon element contains the name of a file containing a small

(16 x 16) icon image.

The file name is a relative path within the application-client jar

file.

The image must be either in the JPEG or GIF format, and the file name

must end with the suffix ".jpg" or ".gif" respectively.

The icon can be used by tools.

Example:

<small-icon>lib/images/employee-service-icon16x16.jpg</small-icon>

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The ID mechanism is to allow tools to easily make tool-specific

references to the elements of the deployment descriptor.

 -->

220

<!ATTLIST application-client id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST ejb-link id ID #IMPLIED>

<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>

<!ATTLIST ejb-ref-type id ID #IMPLIED>

<!ATTLIST env-entry id ID #IMPLIED>

<!ATTLIST env-entry-name id ID #IMPLIED>

<!ATTLIST env-entry-type id ID #IMPLIED>

<!ATTLIST env-entry-value id ID #IMPLIED>

<!ATTLIST home id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST remote id ID #IMPLIED>

<!ATTLIST res-auth id ID #IMPLIED>

<!ATTLIST res-ref-name id ID #IMPLIED>

<!ATTLIST res-type id ID #IMPLIED>

<!ATTLIST resource-ref id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

221

 A P P E N D I XJ2EE.B
Revision History

J2EE.B.1 Changes in Expert Draft 1

J2EE.B.1.1 Additional Requirements

• Updated entire specification to require J2SE 1.4, and to reflect that several op-
tional packages are now part of J2SE

• Added requirements for many new APIs, see Chapter J2EE.6, “Application
Programming Interface” for details.

• Moved J2EE 1.3 DTDs to Appendix J2EE.A, “Previous Version DTDs.”

• J2EE 1.4 deployment descriptors will be described using XML Schema, left
TBD for now.

• Added support for non-bundled extensions and expanded support for bundled
extensions. See Chapter J2EE.8, “Application Assembly and Deployment.”

• Added support for the same set of cypher suites required by the EJB spec. See
Section J2EE.3.4.2.2, “SSL Mutual Authentication.”

• Requiredjava:/comp/ORB to be available in application client container. See
Section J2EE.6.2.4.4, “Java IDL.”

• Required support for access to local enterprise beans from web container. See
Section J2EE.6.4, “Servlet 2.4 Requirements.”

222

J2EE.B.1.2 Removed Requirements

• None.

J2EE.B.1.3 Editorial Changes

• Expanded warning in Section J2EE.3.3.4.2, “Programmatic Security” about
non-portability of principal names.

• Clarified that only the two argument version of the JDBCLOCATE command
need be supported. See Section J2EE.6.2.4.3, “JDBC™ API.”

J2EE.B.2 Changes in Expert Draft 2

J2EE.B.2.1 Additional Requirements

• Made explicit the assumed requirement that all J2EE containers must install a
security manager. See Section J2EE.6.2.1, “Programming Restrictions.”

• Required web containers to support access to local enterprise beans. See
Section J2EE.6.3, “Enterprise JavaBeans™ (EJB) 2.1 Requirements.”

• Restricted use of JMS message listeners to application clients. See
Section J2EE.6.6, “Java™ Message Service (JMS) 1.1 Requirements.”

• Required JNDI lookups in thejava: namespace to return a new instance of
the object in most cases. See Section J2EE.5.2, “Java Naming and Directory
Interface™ (JNDI) Naming Context.”

• AddedMOD as a required JDBC function in Section J2EE.6.2.4.3, “JDBC™
API.”

• Application components in the web and EJB containers may only create a sin-
gle JMS session per connection. See Section J2EE.6.6, “Java™ Message Ser-
vice (JMS) 1.1 Requirements” for details.

• The application client container must support a limited subset of the Connec-
tor APIs, in order to enable JMS providers to be plugged into the application
client container. See Section J2EE.6.11, “J2EE™ Connector Architecture 1.5
Requirements.”

• Updated J2EE Deployment to version 1.1 to reflect anticipated maintenance
update of API needed to synchronize with J2EE 1.4.

223

• Expanded JAX-RPC requirements in Section J2EE.6.13, “Java™ API for
XML-based RPC (JAX-RPC) 1.1 Requirements.”

• Further clarified restrictions on application usage of transactional resource ob-
jects in class instance fields in Section J2EE.4.2.3, “Transactions and
Threads.”

• Described new deployment descriptor extensibility architecture in
Section J2EE.8.5, “Deployment Descriptor Extensibility.”

• Upgraded HTTP requirement to version 1.1 in Section J2EE.7.2.1, “Internet
and Web Protocols.”

• Described use of the Logging API in Section J2EE.6.2.4.11, “Logging API
Requirements.”

• Described use of the Preferences API in Section J2EE.6.2.4.12, “Preferences
API Requirements.”

• Updated JavaMail requirement to version 1.3.

J2EE.B.2.2 Removed Requirements

• None.

J2EE.B.2.3 Editorial Changes

• Updated terminology from “resource manager driver” to “resource adapter” in
Section J2EE.2.4, “Resource Adapters.”

• Clarified two-phase commit requirements in new Section J2EE.4.7, “Two-
Phase Commit Support” and throughout Chapter J2EE.4, “Transaction Man-
agement.”

• Moved section on dependencies to a higher level, now Section J2EE.8.2, “Op-
tional Package Support,” to make it more prominent and visible. Also clarified
requirements in this section.

224

J2EE.B.3 Changes in Community Draft

J2EE.B.3.1 Additional Requirements

• EJB local objects and homes can be stored in anHttpSession in a distributable
web application, see Section J2EE.6.4, “Servlet 2.4 Requirements.”

• Simplified and corrected JDBC requirements to synchronize with JDBC 3.0,
in Section J2EE.6.2.4.3, “JDBC™ API.”

• Clarified deployment ordering requirements in Section J2EE.8.4, “Deploy-
ment.”

J2EE.B.3.2 Removed Requirements

• None.

J2EE.B.3.3 Editorial Changes

• None.

J2EE.B.4 Changes in Public Draft

J2EE.B.4.1 Additional Requirements

• Added SAAJ 1.1 API, used by JAX-RPC. See Section J2EE.6.14, “SOAP with
Attachments API for Java™ (SAAJ) 1.2.”

• Updated Section J2EE.4.5, “Connection Sharing,” to indicate that connection
sharing is required in certain situations, as defined in the Connector specifica-
tion.

225

J2EE.B.4.2 Removed Requirements

• Removed requirement to support access to ebXML registries through JAXR,
in Section J2EE.6.15, “Java™ API for XML Registries (JAXR) 1.0 Require-
ments.

J2EE.B.4.3 Editorial Changes

• Changed JSP version number to 2.0 to synchronize with JSP specification
change.

• Clarified that resources in referenced JAR files must also be accessible. See
Section J2EE.8.2, “Optional Package Support.”

• Clarified the required support for objects in distributableHttpSession objects.
See Section J2EE.6.4, “Servlet 2.4 Requirements.”

• Updated all deployment descriptors.

J2EE.B.5 Changes in Proposed Final Draft

J2EE.B.5.1 Additional Requirements

• Clarified relationship of J2EE deployment tool requirements with JSR-88 re-
quirements. See Section J2EE.8.4, “Deployment.”

• Required Web Services for J2EE version 1.1, the version that synchronizes
with J2EE 1.4. See Section J2EE.6.12, “Web Services for J2EE 1.1 Require-
ments.”

• Clarified JACC requirements on J2SE access control context. See
Section J2EE.3.5.4, “Run As Identities.”

• Added requirement that a J2EE product must include a registry implementa-
tion, as well as a JAXR level 0 provider that can access that registry. See
Section J2EE.6.15, “Java™ API for XML Registries (JAXR) 1.0 Require-
ments.”

226

J2EE.B.5.2 Removed Requirements

• Removed requirement to support Connector API in the application client con-
tainer. See Section J2EE.6.11, “J2EE™ Connector Architecture 1.5 Require-
ments.”

J2EE.B.5.3 Editorial Changes

• Updated all deployment descriptors..

J2EE.B.6 Changes in Proposed Final Draft 2

J2EE.B.6.1 Additional Requirements

• Updated JMX requirement to version 1.2. See Section J2EE.6.17, “Java™
Management Extensions (JMX) 1.2 Requirements.”

• JavaMail and JAF are required by JAX-RPC, and so must be present in the ap-
plication client container. See Table J2EE.6-1.

J2EE.B.6.2 Removed Requirements

• None.

J2EE.B.6.3 Editorial Changes

• Updated all deployment descriptors.

• Added sections to Chapter J2EE.2, “Platform Overview” summarizing the
changes in J2EE 1.3 and J2EE 1.4.

• Minor editorial changes throughout the document.

227

J2EE.B.7 Changes in Proposed Final Draft 3

J2EE.B.7.1 Additional Requirements

• Allowed use ofjavax.jms.ConnectionFactory in Section J2EE.5.4.1.3,
“Standard Resource Manager Connection Factory Types.”.

• Added requirement for WS-I Basic Profile 1.0 support, resulting in updates to
the JAX-RPC and SAAJ specifications. See Section J2EE.6.13, “Java™ API
for XML-based RPC (JAX-RPC) 1.1 Requirements,” Section J2EE.6.14,
“SOAP with Attachments API for Java™ (SAAJ) 1.2,” and
Section J2EE.7.2.1, “Internet and Web Protocols.”

J2EE.B.7.2 Removed Requirements

• Removed all support for deployment descriptor extensibility.

• Removed requirement for J2EE products to include a JSR-88 deployment tool.
See Section J2EE.6.18, “Java™ 2 Platform, Enterprise Edition Deployment
API 1.1 Requirements” and Section J2EE.8.4, “Deployment.”

J2EE.B.7.3 Editorial Changes

• Updated all deployment descriptors.

J2EE.B.8 Changes in Final Release

J2EE.B.8.1 Additional Requirements

• None.

J2EE.B.8.2 Removed Requirements

• None.

J2EE.B.8.3 Editorial Changes

• Updated all deployment descriptors.

• Clarified namespace isolation requirements in Section J2EE.8.4, “Deploy-

228

ment.”

229

A P P E N D I XJ2EE.C
Related Documents

This specification refers to the following documents. The terms used to refer to the
documents in this specification are included in parentheses.

Java™ 2 Platform, Enterprise Edition Specification Version 1.4(this
specification). Available athttp://java.sun.com/j2ee/docs.html.

Java™ 2 Platform, Enterprise Edition Technical Overview(J2EE
Overview). Available athttp://java.sun.com/j2ee/white.html.

Java™ 2 Platform, Standard Edition, v1.4 API Specification(J2SE
specification). Available athttp://java.sun.com/j2se/1.4/docs/api/
index.html.

Enterprise JavaBeans™ Specification, Version 2.1(EJB specification).
Available athttp://java.sun.com/products/ejb.

JavaServer Pages™ Specification, Version 2.0(JSP specification).
Available athttp://java.sun.com/products/jsp.

Java™ Servlet Specification, Version 2.4(servlet specification). Available
at http://java.sun.com/products/servlet.

JDBC™ 3.0 API(JDBC specification). Available athttp://java.sun.com/
products/jdbc.

Java™ Naming and Directory Interface 1.2 Specification(JNDI
specification). Available athttp://java.sun.com/products/jndi.

Java™ Message Service, Version 1.1(JMS specification). Available at
http://java.sun.com/products/jms.

Java™ Transaction API, Version 1.0.1B(JTA specification). Available at
http://java.sun.com/products/jta.

230

Java™ Transaction Service, Version 1.0(JTS specification). Available at
http://java.sun.com/products/jts.

JavaMail™ API Specification Version 1.2(JavaMail specification).
Available athttp://java.sun.com/products/javamail.

JavaBeans™ Activation Framework Specification Version 1.0(JAF
specification). Available athttp://java.sun.com/beans/glasgow/
jaf.html.

J2EE™ Connector Architecture 1.5(Connector specification). Available at
http://java.sun.com/j2ee/connector.

Java™ API for XML Processing, Version 1.2(JAXP specification).
Available athttp://java.sun.com/xml.

Web Services for J2EE 1.1(Web Services specification). Available at
http://jcp.org/en/jsr/detail?id=921.

Java™ API for XML-based RPC 1.1(JAX-RPC specification). Available at
http://java.sun.com/xml/jaxrpc.

SOAP with Attachments API for Java™ 1.2(SAAJ specification). Available
at http://java.sun.com/xml/saaj.

Java™ API for XML Registries 1.0(JAXR specification). Available at
http://java.sun.com/xml/jaxr.

Java™ 2 Platform, Enterprise Edition Management Specification 1.0
(J2EE Management specification). Available athttp://jcp.org/jsr/

detail/77.jsp.

Java™ 2 Platform, Enterprise Edition Deployment Specification 1.0(J2EE
Deployment specification). Available athttp://jcp.org/jsr/detail/
78.jsp.

Java™ Management Extensions 1.2(JMX specification). Available at
http://java.sun.com/products/JavaManagement/.

Java™ Authorization Service Provider Contract for Containers 1.0(JACC
specification). Available athttp://jcp.org/jsr/detail/115.jsp.

Java™ Authentication and Authorization Service(JAAS) 1.0 (JAAS
specification). Available athttp://java.sun.com/products/jaas.

Extension Mechanism Architecture, Available athttp://java.sun.com/
j2se/1.4/docs/guide/extensions.

231

Optional Package Versioning, Available athttp://java.sun.com/j2se/
1.4/docs/guide/extensions.

JAR File Specification, Available athttp://java.sun.com/j2se/1.4/docs/
guide/jar/jar.html.

The Common Object Request Broker: Architecture and Specification
(CORBA 2.3.1 specification), Available athttp://www.omg.org/cgi-
bin/doc?formal/99-10-07.

CORBA 2.6 - Chapter 26 - Secure Interoperability, Available athttp://
www.omg.org/cgi-bin/doc?formal/01-12-30.

IDL To Java™ Language Mapping Specification, Available athttp://
www.omg.org/cgi-bin/doc?ptc/2000-01-08.

Java™ Language To IDL Mapping Specification, Available athttp://
www.omg.org/cgi-bin/doc?ptc/2000-01-06.

Interoperable Naming Service,Available athttp://www.omg.org/cgi-bin/
doc?ptc/00-08-07.

Transaction Service Specification(OTS specification), Available athttp://
www.omg.org/cgi-bin/doc?formal/2001-11-03.

Designing Enterprise Applications with the Java™ 2 Platform, Enterprise
Edition, Available athttp://java.sun.com/j2ee/blueprints.

The SSL Protocol, Version 3.0.Available athttp://home.netscape.com/
eng/ssl3.

232

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, California 95054, U.S.A.
650 960-1300

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551
Japan: (03) 5717-5000
Korea: 822-563-8700
Latin America: 650 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388
Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567
UK: 0276 20444

Elsewhere in the world,
call Corporate Headquarters:
650 960-1300
Intercontinental Sales: 650 688-9000

	Introduction
	J2EE.1.1 Acknowledgements
	J2EE.1.2 Acknowledgements for Version 1.3
	J2EE.1.3 Acknowledgements for Version 1.4

	Platform Overview
	J2EE.2.1 Architecture
	J2EE.2.2 Application Components
	J2EE.2.2.1 J2EE Server Support for Application Components

	J2EE.2.3 Containers
	J2EE.2.3.1 Container Requirements
	J2EE.2.3.2 J2EE Servers

	J2EE.2.4 Resource Adapters
	J2EE.2.5 Database
	J2EE.2.6 J2EE Standard Services
	J2EE.2.6.1 HTTP
	J2EE.2.6.2 HTTPS
	J2EE.2.6.3 Java™ Transaction API (JTA)
	J2EE.2.6.4 RMI-IIOP
	J2EE.2.6.5 Java IDL
	J2EE.2.6.6 JDBC™ API
	J2EE.2.6.7 Java™ Message Service (JMS)
	J2EE.2.6.8 Java Naming and Directory Interface™ (JNDI)
	J2EE.2.6.9 JavaMail™
	J2EE.2.6.10 JavaBeans™ Activation Framework (JAF)
	J2EE.2.6.11 Java™ API for XML Parsing (JAXP)
	J2EE.2.6.12 J2EE™ Connector Architecture
	J2EE.2.6.13 Security Services
	J2EE.2.6.14 Web Services
	J2EE.2.6.15 Management
	J2EE.2.6.16 Deployment

	J2EE.2.7 Interoperability
	J2EE.2.8 Flexibility of Product Requirements
	J2EE.2.9 J2EE Product Extensions
	J2EE.2.10 Platform Roles
	J2EE.2.10.1 J2EE Product Provider
	J2EE.2.10.2 Application Component Provider
	J2EE.2.10.3 Application Assembler
	J2EE.2.10.4 Deployer
	J2EE.2.10.5 System Administrator
	J2EE.2.10.6 Tool Provider
	J2EE.2.10.7 System Component Provider

	J2EE.2.11 Platform Contracts
	J2EE.2.11.1 J2EE APIs
	J2EE.2.11.2 J2EE Service Provider Interfaces (SPIs)
	J2EE.2.11.3 Network Protocols
	J2EE.2.11.4 Deployment Descriptors

	J2EE.2.12 Changes in J2EE 1.3
	J2EE.2.13 Changes in J2EE 1.4

	Security
	J2EE.3.1 Introduction
	J2EE.3.2 A Simple Example
	J2EE.3.3 Security Architecture
	J2EE.3.3.1 Goals
	J2EE.3.3.2 Non Goals
	J2EE.3.3.3 Terminology
	J2EE.3.3.4 Container Based Security
	J2EE.3.3.4.1 Declarative Security
	J2EE.3.3.4.2 Programmatic Security

	J2EE.3.3.5 Distributed Security
	J2EE.3.3.6 Authorization Model
	J2EE.3.3.6.1 Role Mapping

	J2EE.3.3.7 HTTP Login Gateways
	J2EE.3.3.8 User Authentication
	J2EE.3.3.8.1 Authentication by Web Clients
	J2EE.3.3.8.2 Web Single Signon
	J2EE.3.3.8.3 Login Session
	J2EE.3.3.8.4 Authentication by Application Clients

	J2EE.3.3.9 Lazy Authentication

	J2EE.3.4 User Authentication Requirements
	J2EE.3.4.1 Login Sessions
	J2EE.3.4.2 Required Login Mechanisms
	J2EE.3.4.2.1 HTTP Basic Authentication
	J2EE.3.4.2.2 SSL Mutual Authentication
	J2EE.3.4.2.3 Form Based Login

	J2EE.3.4.3 Unauthenticated Users
	J2EE.3.4.4 Application Client User Authentication
	J2EE.3.4.5 Resource Authentication Requirements

	J2EE.3.5 Authorization Requirements
	J2EE.3.5.1 Code Authorization
	J2EE.3.5.2 Caller Authorization
	J2EE.3.5.3 Propagated Caller Identities.
	J2EE.3.5.4 Run As Identities

	J2EE.3.6 Deployment Requirements
	J2EE.3.7 Future Directions
	J2EE.3.7.1 Auditing
	J2EE.3.7.2 Instance-based Access Control
	J2EE.3.7.3 User Registration

	Transaction Management
	J2EE.4.1 Overview
	J2EE.4.2 Requirements
	J2EE.4.2.1 Web Components
	J2EE.4.2.1.1 Transaction Requirements
	J2EE.4.2.1.2 Transaction Non-Requirements

	J2EE.4.2.2 Transactions in Web Component Life Cycles
	J2EE.4.2.3 Transactions and Threads
	J2EE.4.2.4 Enterprise JavaBeans™ Components
	J2EE.4.2.5 Application Clients
	J2EE.4.2.6 Applet Clients
	J2EE.4.2.7 Transactional JDBC™ Technology Support
	J2EE.4.2.8 Transactional JMS Support
	J2EE.4.2.9 Transactional Resource Adapter (Connector) Support

	J2EE.4.3 Transaction Interoperability
	J2EE.4.3.1 Multiple J2EE Platform Interoperability
	J2EE.4.3.2 Support for Transactional Resource Managers

	J2EE.4.4 Local Transaction Optimization
	J2EE.4.4.1 Requirements
	J2EE.4.4.2 A Possible Design

	J2EE.4.5 Connection Sharing
	J2EE.4.6 JDBC and JMS Deployment Issues
	J2EE.4.7 Two-Phase Commit Support
	J2EE.4.8 System Administration Tools

	Naming
	J2EE.5.1 Overview
	J2EE.5.1.1 Chapter Organization
	J2EE.5.1.2 Required Access to the JNDI Naming Environment

	J2EE.5.2 Java Naming and Directory Interface™ (JNDI) Naming Context
	J2EE.5.2.1 Application Component Provider’s Responsibilities
	J2EE.5.2.1.1 Access to Application Component’s Environment
	J2EE.5.2.1.2 Declaration of Environment Entries

	J2EE.5.2.2 Application Assembler’s Responsibilities
	J2EE.5.2.3 Deployer’s Responsibilities
	J2EE.5.2.4 J2EE Product Provider’s Responsibilities

	J2EE.5.3 Enterprise JavaBeans™ (EJB) References
	J2EE.5.3.1 Application Component Provider’s Responsibilities
	J2EE.5.3.1.1 Programming Interfaces for EJB References
	J2EE.5.3.1.2 Declaration of EJB References

	J2EE.5.3.2 Application Assembler’s Responsibilities
	J2EE.5.3.3 Deployer’s Responsibilities
	J2EE.5.3.4 J2EE Product Provider’s Responsibilities

	J2EE.5.4 Resource Manager Connection Factory References
	J2EE.5.4.1 Application Component Provider’s Responsibilities
	J2EE.5.4.1.1 Programming Interfaces for Resource Manager Connection Factory References
	J2EE.5.4.1.2 Declaration of Resource Manager Connection Factory References in Deployment Descriptor
	J2EE.5.4.1.3 Standard Resource Manager Connection Factory Types

	J2EE.5.4.2 Deployer’s Responsibilities
	J2EE.5.4.3 J2EE Product Provider’s Responsibilities
	J2EE.5.4.4 System Administrator’s Responsibilities

	J2EE.5.5 Resource Environment References
	J2EE.5.5.1 Application Component Provider’s Responsibilities
	J2EE.5.5.1.1 Resource Environment Reference Programming Interfaces
	J2EE.5.5.1.2 Declaration of Resource Environment References in Deployment Descriptor

	J2EE.5.5.2 Deployer’s Responsibilities
	J2EE.5.5.3 J2EE Product Provider’s Responsibilities

	J2EE.5.6 Message Destination References
	J2EE.5.6.1 Application Component Provider’s Responsibilities
	J2EE.5.6.1.1 Message Destination Reference Programming Interfaces
	J2EE.5.6.1.2 Declaration of Message Destination References in Deployment Descriptor

	J2EE.5.6.2 Application Assembler’s Responsibilities
	J2EE.5.6.3 Deployer’s Responsibilities
	J2EE.5.6.4 J2EE Product Provider’s Responsibilities

	J2EE.5.7 UserTransaction References
	J2EE.5.7.1 Application Component Provider’s Responsibilities
	J2EE.5.7.2 Deployer’s Responsibilities
	J2EE.5.7.3 J2EE Product Provider’s Responsibilities
	J2EE.5.7.4 System Administrator’s Responsibilities

	J2EE.5.8 ORB References
	J2EE.5.8.1 Application Component Provider’s Responsibilities
	J2EE.5.8.2 Deployer’s Responsibilities
	J2EE.5.8.3 J2EE Product Provider’s Responsibilities
	J2EE.5.8.4 System Administrator’s Responsibilities

	Application Programming Interface
	J2EE.6.1 Required APIs
	J2EE.6.1.1 Java Compatible APIs
	J2EE.6.1.2 Java Optional Packages

	J2EE.6.2 Java 2 Platform, Standard Edition (J2SE) Requirements
	J2EE.6.2.1 Programming Restrictions
	J2EE.6.2.2 The J2EE Security Permissions Set
	J2EE.6.2.3 Listing of the J2EE Security Permissions Set
	J2EE.6.2.4 Additional Requirements
	J2EE.6.2.4.1 Networking
	J2EE.6.2.4.2 AWT
	J2EE.6.2.4.3 JDBC™ API
	J2EE.6.2.4.4 Java IDL
	J2EE.6.2.4.5 RMI-JRMP
	J2EE.6.2.4.6 RMI-IIOP
	J2EE.6.2.4.7 JNDI
	J2EE.6.2.4.8 Context Class Loader
	J2EE.6.2.4.9 JAXP API
	J2EE.6.2.4.10 Java™ Authentication and Authorization Service (JAAS) Requirements
	J2EE.6.2.4.11 Logging API Requirements
	J2EE.6.2.4.12 Preferences API Requirements

	J2EE.6.3 Enterprise JavaBeans™ (EJB) 2.1 Requirements
	J2EE.6.4 Servlet 2.4 Requirements
	J2EE.6.5 JavaServer Pages™ (JSP) 2.0 Requirements
	J2EE.6.6 Java™ Message Service (JMS) 1.1 Requirements
	J2EE.6.7 Java™ Transaction API (JTA) 1.0 Requirements
	J2EE.6.8 JavaMail™ 1.3 Requirements
	J2EE.6.9 JavaBeans™ Activation Framework 1.0 Requirements
	J2EE.6.10 Java™ API for XML Processing (JAXP) 1.2 Requirements
	J2EE.6.11 J2EE™ Connector Architecture 1.5 Requirements
	J2EE.6.12 Web Services for J2EE 1.1 Requirements
	J2EE.6.13 Java™ API for XML-based RPC (JAX-RPC) 1.1 Requirements
	J2EE.6.14 SOAP with Attachments API for Java™ (SAAJ) 1.2
	J2EE.6.15 Java™ API for XML Registries (JAXR) 1.0 Requirements
	J2EE.6.16 Java™ 2 Platform, Enterprise Edition Management API 1.0 Requirements
	J2EE.6.17 Java™ Management Extensions (JMX) 1.2 Requirements
	J2EE.6.18 Java™ 2 Platform, Enterprise Edition Deployment API 1.1 Requirements
	J2EE.6.19 Java™ Authorization Service Provider Contract for Containers (JACC) 1.0 Requirements

	Interoperability
	J2EE.7.1 Introduction to Interoperability
	J2EE.7.2 Interoperability Protocols
	J2EE.7.2.1 Internet and Web Protocols
	J2EE.7.2.2 OMG Protocols
	J2EE.7.2.3 Java Technology Protocols
	J2EE.7.2.4 Data Formats

	Application Assembly and Deployment
	J2EE.8.1 Application Development Life Cycle
	J2EE.8.1.1 Component Creation
	J2EE.8.1.2 Application Assembly
	J2EE.8.1.3 Deployment

	J2EE.8.2 Optional Package Support
	J2EE.8.3 Application Assembly
	J2EE.8.3.1 Assembling a J2EE Application
	J2EE.8.3.2 Adding and Removing Modules

	J2EE.8.4 Deployment
	J2EE.8.4.1 Deploying a Stand-Alone J2EE Module
	J2EE.8.4.2 Deploying a J2EE Application
	J2EE.8.4.3 Deploying an Optional Package

	J2EE.8.5 J2EE Application XML Schema
	J2EE.8.6 Common J2EE XML Schema Definitions

	Application Clients
	J2EE.9.1 Overview
	J2EE.9.2 Security
	J2EE.9.3 Transactions
	J2EE.9.4 Naming
	J2EE.9.5 Application Programming Interfaces
	J2EE.9.6 Packaging and Deployment
	J2EE.9.7 J2EE Application Client XML Schema

	Service Provider Interface
	Future Directions
	J2EE.11.1 XML Data Binding API
	J2EE.11.2 JNLP (Java™ Web Start)
	J2EE.11.3 J2EE SPI
	J2EE.11.4 JDBC RowSets
	J2EE.11.5 Security APIs
	J2EE.11.6 SQLJ Part 0

	Previous Version DTDs
	J2EE.A.1 J2EE:application 1.3 XML DTD
	J2EE.A.2 J2EE:application 1.2 XML DTD
	J2EE.A.3 J2EE:application-client 1.3 XML DTD
	J2EE.A.4 J2EE:application-client 1.2 XML DTD

	Revision History
	J2EE.B.1 Changes in Expert Draft 1
	J2EE.B.1.1 Additional Requirements
	J2EE.B.1.2 Removed Requirements
	J2EE.B.1.3 Editorial Changes

	J2EE.B.2 Changes in Expert Draft 2
	J2EE.B.2.1 Additional Requirements
	J2EE.B.2.2 Removed Requirements
	J2EE.B.2.3 Editorial Changes

	J2EE.B.3 Changes in Community Draft
	J2EE.B.3.1 Additional Requirements
	J2EE.B.3.2 Removed Requirements
	J2EE.B.3.3 Editorial Changes

	J2EE.B.4 Changes in Public Draft
	J2EE.B.4.1 Additional Requirements
	J2EE.B.4.2 Removed Requirements
	J2EE.B.4.3 Editorial Changes

	J2EE.B.5 Changes in Proposed Final Draft
	J2EE.B.5.1 Additional Requirements
	J2EE.B.5.2 Removed Requirements
	J2EE.B.5.3 Editorial Changes

	J2EE.B.6 Changes in Proposed Final Draft 2
	J2EE.B.6.1 Additional Requirements
	J2EE.B.6.2 Removed Requirements
	J2EE.B.6.3 Editorial Changes

	J2EE.B.7 Changes in Proposed Final Draft 3
	J2EE.B.7.1 Additional Requirements
	J2EE.B.7.2 Removed Requirements
	J2EE.B.7.3 Editorial Changes

	J2EE.B.8 Changes in Final Release
	J2EE.B.8.1 Additional Requirements
	J2EE.B.8.2 Removed Requirements
	J2EE.B.8.3 Editorial Changes

	Related Documents

