
Chapter 2

An Introduction to the Java 2 Platform,
Enterprise Edition

This chapter provides an introduction to the Java 2 Platform,Enterprise Edition
(J2EE platform). When describing a new technology, it is always useful to pro-
vide a familiar context within which that technology is explained. To provide
such a context, we start by discussing the concerns that commonly arise when
building enterprise systems, and then describe the architectural solutions that
have been proven to address these concerns. It is these general architectural
solutions that are implemented by the J2EE platform. Following an overview of
the J2EE platform, we discuss each of the J2EE technologies in detail.

Enterprise Concerns

Some development concerns are common to every project. For example, sys-
tem attributes such as performance, scalability, reliability, maintainability, secu-
rity, ease of incorporating new functionality, and the ability to integrate the
system with existing systems are always on the list. There are also other con-
cerns that are not directly related to the solution’s properties, but have every-
thing to do with the project’s overall success. Examples include product
quality, time to market, cost of development, team productivity, dependence on
unique or hard-to-find skills, and dependence on a single technology or vendor.

Although we could discuss the J2EE platform in terms of satisfying such
general concerns, we have chosen to concentrate on the concerns that are
built on this platform. In particular, the J2EE platform has been designed to sup-
port the development and execution of a specific type of software system that

5

ch02_5-34.qxd 7/18/02 11:19 AM Page 5

we call enterprise systems. Enterprise systems exhibit a number of common
concerns, which are described in this section.

Business Concerns

Enterprise systems implement business processes. Thus, they must contain
some representation of the “business reality” that they work within. In fact,
enterprise systems are an essential element of many businesses (and in some
cases, the software is the business) and therefore contain a rich representation
of domain concepts. For example, even a simple order-processing system must
keep track of products, customers, orders, inventory, and so on.

Enterprise systems, therefore, collect and process large amounts of struc-
tured information. They may manage thousands of business data types and
structures, and millions of instances of these types (and associations between
them). Consider an order-processing system that has thousands of customers,
tens of thousands of products, and hundreds of thousands of orders (both in
progress and fulfilled).

Although enterprise systems usually perform only a small number of com-
plex computations, they do perform complex data manipulation. For example,
an order-processing system doesn’t extrapolate trajectories of flying objects,
switch mobile phones from cell to cell, or analyze images. However, such a sys-
tem is very strict about the integrity of the data it maintains and imposes spe-
cific rules about how the data is changed.

On a similar note, an enterprise system does manage complex interactions
with its many concurrent users. For example, the process of placing an order
requires that a customer make him- or herself known to the system, select one
or more products, specify appropriate quantities, provide relevant shipping
details, and so on. This complexity is made manageable by ensuring that the
system imposes very specific interactions with its users.

Integration Concerns

A fundamental aspect of many enterprise systems is their integration with
other systems. Even the apparently simple task of placing an order can result in
electronic interactions with a warehouse system (to request delivery of the
purchased products) and a bank system (to ensure that payment is made). As a
result, enterprise systems often run on complex, distributed technical infra-
structures that reflect the physical distribution of the organizations participat-
ing in the business processes supported by them.

Moreover, even though an enterprise system may interact with similar sys-
tems, these systems may have been implemented at different times and may use

6 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

ch02_5-34.qxd 7/18/02 11:19 AM Page 6

different technologies. This is simply a consequence of the rapid pace at which
business systems change in today’s environment. This constant change must
therefore be acknowledged and planned for.

The Internet revolution has lead many organizations to make their valuable
information available to third parties through a variety of means, including the
electronic exchange of information between businesses. This information often
represents an organization’s most valuable asset. An emphasis must therefore
be placed on the security of the enterprise systems providing that information.

Development Concerns

We should also acknowledge that the development and maintenance of enter-
prise systems is logistically complex for all sorts of reasons. For example, the
development of enterprise systems must keep pace with changing business
conditions. Even gathering the requirements of the enterprise system can be a
complex task when there are a number of stakeholders involved (including end
users and business partners, as well as internal staff).

A related concern is that large enterprise systems are developed over long
periods of time (sometimes decades), even though an initial version of the sys-
tem may be made available quickly to address time-to-market concerns. We
must therefore take into account the longevity of the system. Large systems are
often implemented through a set of concurrent related projects, leading to sys-
tems whose elements are at different levels of articulation and maturity.

Multitier Architectures and the J2EE Platform

It has been known for some time that the best approach to developing systems
is to divide their responsibilities across a number of tiers1, resulting in common
architectural styles known as multitier architectures. An example of a multitier
architecture is the 3-tier structure shown in Figure 2.1. The presentation tier is

Multitier Architectures and the J2EE Platform | 7

1 A tier is an architectural layer that has a particular responsibility.

Presentation
Tier

Business
Tier

Integration
Tier

Figure 2.1 3-Tier Architecture

ch02_5-34.qxd 7/18/02 11:19 AM Page 7

responsible for handling interactions with the end user. The business tier is re-
sponsible for performing any business processing. The integration tier is
responsible for providing access to backend resources, including databases and
external systems. Such division allows the content of each tier to be developed
and changed independently.

From a historical perspective, the database technology of the integration
tier was the first to mature, resulting in powerful relational databases2. The
technologies in the presentation tier and business tier matured later, resulting
in user interface frameworks and transaction-processing monitors, respectively.

For many years, architects of enterprise systems took the concept of multi-
tier architectures and the available technologies, and produced custom-made
platforms for their solutions. This is,of course,a very costly and complex effort.
One of the key objectives of the J2EE platform is to provide a standard environ-
ment on which to develop enterprise systems.

The J2EE platform has been influenced by many earlier initiatives. One of
those was Microsoft’s successful integration of technologies for all three tiers:
Visual Basic,Microsoft Transaction Server (MTS), and SQL Server. Microsoft also
promoted and exemplified the concept of container-based computing with its
MTS, which itself was influenced by BEA’s Tuxedo and other transaction-
processing monitors. The concept of container-based computing is central to
the J2EE platform, and allows components to execute in an environment that
provides the services they require.

Another major influence on the J2EE platform has been the Internet,which
has created a high demand for a class of enterprise system known as online
enterprise systems and the technology needed to implement them. Internet
technology has changed and unified the way that user interactions are sup-
ported. For example, the stateless nature of the Hypertext Transfer Protocol
(HTTP), whereby a client does not have a permanent connection with the
server, has implications on how state is managed between invocations.

Finally, the advent of Java and its “write once, run anywhere” (WORA) phi-
losophy has provided a basis for tying together the many technologies required
to develop and deploy enterprise systems.

So, in summary, the J2EE platform is best considered as a set of technolo-
gies for developing and deploying multitier enterprise systems. As such, it con-
tains an expected set of services (so expected, in fact, that Microsoft’s .NET
initiative provides an almost identical set). We introduce these technologies in
the next section.

The J2EE platform also has the desirable characteristic of being an open
specification. There are many commercial and open-source implementations of

8 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

2 The foundation of relational database technology was created over two decades ago.

ch02_5-34.qxd 7/18/02 11:19 AM Page 8

the specification. A free reference implementation of the J2EE platform is also
available.

We now consider the specific technologies that the J2EE platform provides
in supporting a multitier architecture.

J2EE Platform Overview

Let us start from putting the J2EE technologies together to show the context
within which they operate, as well as the relationships between them. Fig-
ure 2.2 positions each of the technologies in terms of the tiers discussed ear-
lier. It also shows the physical location of each of the elements in terms of
client and server. The details contained in Figure 2.23 are discussed throughout

J2EE Platform Overview | 9

J2SE Services

JSP Servlet

Web Container

Web Server

EJB Container

EJB Server

EJB

HTML, XML, WML

J2SE Services

Application

Application Client
Container

Client Device

J2SE Services

Applet Container

Client Device

Client Device
HTTP
HTTPS

Presentation Tier Business Tier Integration Tier

Client Server

Relational
Database

JDBC

Mail
Server

Directory
Service

Message
Queue

Java
Application

CORBA
Server

JavaMail

JNDI

JMS

RMI

RMI-IIOP

HTTP
HTTPS

HTTP
HTTPS

J2EE Services

J2SE Services

J2EE Services

J2EE Services

Figure 2.2 The J2EE Platform and Technologies

3 Figure 2.2 shows a multitier deployment configuration that is discussed later in this chapter.

ch02_5-34.qxd 7/18/02 11:19 AM Page 9

this chapter. Although it is not shown in Figure 2.2, it is also worth mentioning
that all containers explicitly use a Java virtual machine (JVM) when executing
any compiled Java code.

J2EE Technology Overview

A summary of the various J2EE technologies is shown in Figure 2.3 and de-
scribed in the following sections.

J2EE Application Component Technologies
The application component technologies are those that we use to build the
components of the solution. Each of these technologies is discussed in detail later
in this chapter. The J2EE application component technologies are described in
the following list.

� Applets. An applet is primarily used to provide some form of rendering in
the user interface, where performance is key.

� Application clients. An application client is a standalone Java application
that provides an alternate means of accessing a J2EE application, other
than through the use of a markup language such as Hypertext Markup Lan-
guage (HTML).

� Java Servlets (“servlets”). A servlet defines how a request from the
client is processed and how a response is generated.

10 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

J2SE Services

JSPs

Servlets EJBsApplets

Application
Clients

J2EE Application
Component

Technologies

J2EE Services

Figure 2.3 J2EE Technology Summary

ch02_5-34.qxd 7/18/02 11:19 AM Page 10

� JavaServer Pages (JSPs). A JSP is a text document that, like a servlet, de-
scribes how a request is processed and a response generated. JSPs provide
an alternative to servlets when the generation of statements in a markup
language (such as HTML) is required.

� Enterprise JavaBeans (EJBs). An EJB is responsible for implementing an
aspect of the business logic of a J2EE application.

J2EE Services
J2EE services, as the name implies, are the services made available by the J2EE
platform. They are described in the following list.

� Java API for XML Parsing (JAXP). JAXP provides a standard service
that supports the parsing and manipulation of XML documents. JAXP pro-
vides a further abstraction when using an external standard such as the
Simple API for XML Parsing (SAX), the Document Object Model (DOM)
and eXtensible Stylesheet Language Transformations (XSLT).

� Java DataBase Connectivity (JDBC). JDBC provides programmatic
access to a relational database.

� Java Message Service (JMS). JMS provides a standard interface to reliable
asynchronous messaging implementations (such as IBM’s MQSeries or
Tibco’s Rendezvous).

� Java Authentication and Authorization Service (JAAS). JAAS allows
J2EE applications to authenticate users (to reliably and securely determine
who is currently executing Java code) and authorize users (to ensure that
they have the permissions required to perform the necessary actions).

� Java Transaction API (JTA). In circumstances where programmatic con-
trol of transactions is required, JTA provides a standard interface to the
transaction services.

� JavaMail API (JavaMail). The JavaMail API allows application compo-
nents to send mail using a standard interface. Typical implementations of
the JavaMail API interface to a number of protocols and specifications,
such as the Simple Mail Transfer Protocol (SMTP), Multipurpose Internet
Mail Extensions (MIME) and Post Office Protocol 3 (POP3).

� J2EE Connector Architecture (JCA). One of the common requirements
of an enterprise application is the ability to connect to enterprise informa-
tion system (EIS) resources. Some of these resources may be external ap-
plications that are accessed using a vendor-specific protocol. JCA provides
a standard means for providing resource adapters (more commonly
known as “connectors”).

J2EE Platform Overview | 11

ch02_5-34.qxd 7/18/02 11:19 AM Page 11

J2SE Services
The J2EE platform is dependent upon services provided by the Java 2 Platform,
Standard Edition (J2SE)4. The J2SE services include support for collections,
internationalization (support for multiple human languages), input/output, Java
Archive (JAR) files, user interfaces, math, networking, object serialization, Re-
mote Method Invocation (RMI), security, and sound. The J2SE technologies in
the following list are considered essential parts of the J2EE platform.

� Hypertext Transfer Protocol (HTTP) API. The HTTP API is a client-side
API that supports interaction with server-side presentation tier elements
using HTTP, the standard protocol for communication on the Web. In
many applications, this API is not used since the use of HTTP is handled
entirely by the client device and requires no programmatic involvement.
For example, the submission of an HTML form to a Web server is handled
entirely by the Web browser.

� HTTPS API. HTTPS is the use of HTTP over the Secure Socket Layer (SSL).
SSL is a security protocol used by Web servers and client devices (such as
a Web browser) to establish a secure communication channel over HTTP.
This API is the secure equivalent of the HTTP API.

� Remote Method Invocation over Internet Inter-Orb Protocol (RMI-
IIOP). RMI is a Java standard for providing distributed object communica-
tion between two Java objects. In order to provide maximum interoper-
ability between elements that may not be written in Java (such as an EJB
container), the J2EE platform stipulates that the language-independent
Internet Inter-Orb Protocol (IIOP) be used. IIOP is an element of the
CORBA (Common Object Request Broker Architecture) standard that is
defined by the Object Management Group (OMG).

� Java Naming and Directory Interface (JNDI). JNDI provides a uniform
interface to a number of directory and naming services, which support the
locating of resources on a network. For example, JNDI can be used to ob-
tain a reference to the home interface of a remote EJB.

Containers

The concept of a container is central to the J2EE platform. A container provides
runtime support for application components (such as JSPs, servlets, or EJBs)
that execute within it. For example, an EJB container provides component life
cycle management (the creation and removal of application components, as

12 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

4 A third Java edition, Java 2 Micro Edition (J2ME), is not a prerequisite of J2EE.

ch02_5-34.qxd 7/18/02 11:19 AM Page 12

required), transaction management, security, and persistence support to the
EJBs that execute within it.

The fact that a component executes inside a container is transparent to its
clients. For example, in Figure 2.4 there is a client interacting with an EJB. The
client request is handled by the EJB container housing the EJB,rather than directly
by the EJB itself. Based upon configuration information held in a deployment de-
scriptor associated with the EJB, the container can interject appropriate transac-
tion characteristics before passing the request on to the EJB for processing.

There is a two-way contract between a container and an application com-
ponent. From the perspective of the container, the application component
must conform to certain interfaces so that the container can manage the com-
ponent appropriately. For example, an EJB must provide operations to support
its removal from memory (known as “passivation”). From the perspective of
the application component, the container must make certain services available
to the component. For example, an EJB container must provide the Java Data-
Base Connectivity (JDBC) API.

As shown in Figure 2.2, there are four types of containers.

� An applet container, which provides services required by Java applets

� An application client container, which provides services required by Java
application clients

� A Web container, which provides services to JSPs and servlets

� An EJB container, which provides services to EJBs

J2EE Platform Overview | 13

EJB Container

EJB
Client

Deployment
Descriptor

Figure 2.4 An EJB Container

ch02_5-34.qxd 7/18/02 11:19 AM Page 13

Containers and Servers
In Figure 2.2, we see that a Web container executes inside a Web server, and an
EJB container executes inside an EJB server. Some J2EE platform implementa-
tions also include the concept of a J2EE application server (or simply “J2EE
server”), which includes both a Web container and an EJB container.

Containers and servers are considered to be logical concepts, and the J2EE
platform specification does not state how they should be implemented. As a re-
sult, a server can be interpreted as the pool of resources, such as operating sys-
tem processes and memory, which the container implementers can use as they
see fit. Therefore, different J2EE platform implementations have taken different
approaches to implementing containers, while trying to improve their scalabil-
ity and reliability properties. For example, load-balancing containers can run in
several processes potentially distributed across a number of machines.

Presentation Tier

The presentation tier contains elements that reside on both the client and the
server.

The client-side elements are responsible for rendering the user interface
and for handling user interactions. In Figure 2.2, we see three clients, each exe-
cuting in its own device. The first client is processing a markup language.
Examples of such a client include a Web browser that processes HTML, an
XML-aware device that processes XML, and a Wireless Access Protocol (WAP)
device, such as a mobile phone, that processes Wireless Markup Language
(WML). The second client houses an applet container that supports the execu-
tion of applets. An applet (discussed in detail later) is a Java program that typi-
cally provides some form of high-performance user interface rendering. The
third client houses an application client container that supports the execution
of a J2EE application client. A J2EE application client (discussed in detail later)
is a standalone Java application that typically provides access to elements in the
business tier and integration tier. For example, an application client may be
used to provide an administrative interface to the J2EE application.

The server-side elements are responsible for processing client-side requests
and providing appropriate responses. A response is typically delivered to the
client in the form of a markup language, such as HTML, XML or WML. The re-
sponse is often dependent on the data held by an EJB or an enterprise information
system (EIS), such as a mainframe transaction-processing system or a legacy data-
base. Therefore, the presentation tier application components on the server (the
JSPs and the servlets) interact with the components in the business tier or directly
with the integration tier. These elements may also be responsible for aspects of
user session management, data validation, and application control logic.

14 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

ch02_5-34.qxd 7/18/02 11:19 AM Page 14

Business Tier

The business tier is responsible for an application’s business logic. In the most
common case, business tier components (EJBs) provide business logic services
to the server-side presentation tier application components. However, they can
also provide services to standalone Java application clients. EJBs and EJB con-
tainers have been designed to simplify communication between the presenta-
tion tier and the integration tier.

Integration Tier

The integration tier is responsible for providing access to EIS resources. Fig-
ure 2.2 identifies specific types of EIS resources, including a relational database,
mail server, directory service, message queue, Java application, and CORBA
server. We have labeled each connection to an EIS resource with the technology
used to access that resource. For example, JDBC is used to access a relational
database.

J2EE Deployment Configurations

A deployment configuration is a mapping of application functionality to applica-
tion components and then to J2EE containers and services. In other words, it is a
way of structuring and distributing the application functionality between tiers,
containers, and components. Although there are a number of deployment con-
figurations, there are a few common structures. We briefly look at these com-
mon structures in the following sections and discuss the pros and cons of each.

Standalone Deployment Configuration
In the standalone deployment configuration, shown in Figure 2.5, there is not a
Web container or an EJB container. The client accesses EIS resources directly
and is responsible for handling all presentation logic, business logic, and inte-
gration logic.

This configuration may seem like an attractive proposition for applications
that provide simple manipulation of data held in the EIS resources. However,
this configuration has a number of drawbacks.

Changes to the EIS resource can have a major impact on the implementa-
tion of the client, because it is directly dependent on the internal structure of
that EIS resource (such as the structure of database tables). In addition, any
change to the application itself requires a rollout to every user.

Also, the configuration does not encourage a division of responsibility. For
example, often presentation logic and business logic are tightly coupled, mak-
ing it difficult to support application evolution and maintenance.

J2EE Platform Overview | 15

ch02_5-34.qxd 7/18/02 11:19 AM Page 15

However, the real issues with this deployment configuration start to surface
when we want to scale the application to support a large number of concur-
rent users. When we attempt to provide concurrent client access to an EIS re-
source, we may find that we are constrained by the EIS resource itself. For
example,a database may limit the number of concurrent database connections.
However, since there is no coordinated access to the EIS resource, it is not pos-
sible to provide an efficient access mechanism (such as a managed pool of data-
base connections).

EJB-Centric Deployment Configuration
In the EJB-centric deployment configuration, shown in Figure 2.6, there is no
Web container, and an EJB container sits between the client container and the
EIS resources. The presentation logic is in the client, with business logic resid-
ing in the EJBs on the server.

Rather than accessing EIS resources directly, all requests from the clients
are managed by the appropriate EJBs. Clients are therefore shielded from
changes in EIS resources (unless the extent of the change requires additional
information to be supplied by the client, for example).

The EJB-centric deployment configuration is designed to address a number
of the issues present in the standalone deployment configuration. From a scala-
bility perspective, an EJB container is responsible for ensuring efficient use of
limited resources, such as database connections. From an application evolution
and maintenance perspective, this configuration also encourages a separation
of presentation logic and business logic.

However,one of the drawbacks of the EJB-centric deployment configuration
is that any change to the presentation logic requires a rollout to every client.

16 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

Java Client

Client Container

Client Server

EIS
Resources

Client Device

Figure 2.5 Standalone Deployment Configuration

ch02_5-34.qxd 7/18/02 11:19 AM Page 16

Web-Centric Deployment Configuration
In the Web-centric deployment configuration, shown in Figure 2.7, a Web con-
tainer sits between the client and the EIS resources, and there is no EJB con-
tainer. Both presentation logic and business logic are handled by components
in the Web container. A Web-centric deployment configuration typically results
in an emphasis on the look and feel of the application, with less emphasis on
supporting the business logic.

This configuration provides a number of benefits. Clients aren’t affected by
changes to EIS resources, since clients don’t access these resources directly
(again, unless the extent of the change requires additional information to be
supplied by the client, for example). It is also easier to redeploy the entire ap-
plication, since all of the application logic resides on the server.

J2EE Platform Overview | 17

EJB Container

EJB Server

EJBJava Client

Client Container

Client Server

EIS
Resources

Client Device

Figure 2.6 EJB-Centric Deployment Configuration

HTML Client

Client Device

JSP Servlet

Web Container

Web Server

Client Server

EIS
Resources

Figure 2.7 Web-Centric Deployment Configuration

ch02_5-34.qxd 7/18/02 11:19 AM Page 17

However, although the use of EJBs is sometimes considered to be overkill,
the omission of EJBs results in some of the same issues raised for the standalone
deployment configuration. Specifically, this configuration does not encourage a
clear division of responsibility between presentation logic and business logic,
often resulting in tightly coupled elements that impede application evolution
and maintenance. Also, from a scalability perspective, it is the developer’s re-
sponsibility to ensure the efficient use of limited resources, such as database
connections.

Multitier Deployment Configuration
The multitier deployment configuration is shown in Figure 2.8 and was also
shown in Figure 2.2. This configuration includes both a Web container and an
EJB container. Presentation logic is handled by elements in the Web container,
with business logic handled by EJBs in the EJB container.

In this configuration, clients aren’t affected by changes to EIS resources
since these resources aren’t accessed directly by the clients (again, unless the
extent of the change requires additional information to be supplied by the
client, for example).

It is also possible to redeploy the entire application without requiring any
rollout to clients, since the application resides wholly on the server. From a
scalability perspective, the EJB container is responsible for ensuring efficient
use of limited resources, such as database connections.

From an application evolution and maintenance perspective, this configu-
ration encourages a clean separation of responsibilities. The presentation logic
is decoupled from EIS resources, and the business logic is decoupled from the
look and feel. This separation helps when allocating work to developers with

18 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

JSP Servlet

Web Container

Web Server

EJB Container

EJB Server

EJB

Client Device

Server

EIS
Resources

Figure 2.8 Multitier Deployment Configuration

ch02_5-34.qxd 7/18/02 11:19 AM Page 18

different skills. It also allows for concurrent development, testing, and deploy-
ment of presentation logic and business logic elements. The decoupling of
presentation logic and business logic also increases the reuse potential of the
business logic elements.

The multitier deployment configuration can also ease the migration from
one client device (such as a Web browser) to another (such as a PDA). A com-
plete rewrite of the application isn’t required since the business logic encapsu-
lated in the EJBs remains unchanged.

To summarize, there are a number of deployment configurations,each with
its pros and cons. One of the objectives of the J2EE platform is to be flexible
enough to support whatever configuration best fits an organization, while ad-
dressing the development concerns we discussed earlier in this chapter.

J2EE Component Technologies

Let’s now take a closer look at the J2EE application component technologies.

Applets

A Java applet is a Java program that executes within an applet container that is
contained within a client device, such as a Web browser. An applet is primarily
used to provide some form of rendering in the user interface where performance
is key. For example, supporting graphical manipulation in a Web browser may
be best achieved by using an applet. An applet is specified using the OBJECT tag
in HTML,as shown in the code fragment below.

<html>
<body>

<object codetype="application/java" code="TestApplet.class"
width=300 height=100>

....
</object>

</body>
</html>

This tag tells the browser to load the applet whose compiled code is in the
file TestApplet.class. The code fragment below is the source code of the applet.
This code shows the paint method that is invoked whenever the applet must
repaint itself.

import java.applet.Applet;
import java.awt.Graphics;

J2EE Component Technologies | 19

ch02_5-34.qxd 7/18/02 11:19 AM Page 19

public class TestApplet extends Applet
{

public void paint(Graphics g)
{

....
}

}

Application Clients

An application client is a standalone Java application that can contain presenta-
tion logic, business logic, and integration logic, and as a result is sometimes re-
ferred to as a “fat client”. In order to perform its processing, an application
client may access the server-side elements of the presentation tier, the elements
of the business tier, and the elements of the integration tier. Application clients
are often used where a more sophisticated user interface is required than can
be provided using a markup language such as HTML. An application client may
be used to provide an administration interface to a J2EE application.

Java Servlets

A servlet is a Java class that is used to implement presentation logic on the
server. A servlet defines the way in which a request is processed and the way in
which a response is generated. Servlets are often accessed directly from a client
device, such as a Web browser, either by using a URL or through the use of an
HTML form, as shown in the HTML fragment below. When the form repre-
sented by this HTML code is submitted to the Web server for processing, the
Web server identifies the target servlet, based on the name specified in the
form’s “action” attribute; identifies the appropriate servlet method, based on
the form’s “method” attribute; constructs an appropriate request; and invokes
the servlet method, passing the request as an argument.

<html>
<body>

<form method=post action="/auction/main">
....

</form>
</body>

</html>

The code fragment below is the source code of the servlet used in the
example above. This code shows aspects of the implementation of the doPost
method that is invoked by the Web server when the HTML form is submitted.
This method takes two parameters. The first parameter is an HttpServlet-
Request, which provides the content of the request. The second parameter is

20 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

ch02_5-34.qxd 7/18/02 11:19 AM Page 20

an HttpServletResponse,which is used to return the response. In implementing
the required presentation logic, a servlet often interacts with other servlets,
EJBs, and JSPs. Specific design patterns that describe such interactions are dis-
cussed in Chapter 8, Design.

package com.pearlcircle;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class PresentationRequestController extends HttpServlet
{
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException
{
....

}
}

It is often necessary for a servlet to produce output that can be rendered in
the client device, such as HTML (if this is the output expected). This requires
writing the doPost method so that it places HTML in the HttpServletResponse
object. However,when it comes to Web page layout, the J2EE platform provides
an alternative technology, JavaServer Pages (JSP), to render the markup lan-
guage required.

JavaServer Pages (JSP)

A JSP is a text document that, like a servlet, describes how a request is pro-
cessed and a response is generated. A JSP is often accessed directly from a
client device, such as a Web browser, using a URL. For example, accessing the
URL http://www.pearlcircle.com/utils/getServerDate.jsp will result in the Web
server executing the getServerData.jsp file and returning the response gener-
ated by this JSP. One way to think about JSPs is that they provide an alternative
to servlets for generating statements in a markup language. Internally, the Web
server automatically compiles JSPs into servlets before they are executed. This
does raise the question of when to use servlets and when to use JSPs, since
they can provide equivalent functionality. This is a design decision that is
touched upon in Chapter 8.

The content of a simple JSP file that returns the date associated with the
machine on which the Web server is executing is shown below. We can see
that the JSP contains two types of statements. The first type of statement is a
markup language to be returned in the response. In the example, the markup
language is HTML. The second type of statement is a command language that

J2EE Component Technologies | 21

ch02_5-34.qxd 7/18/02 11:19 AM Page 21

supports the generation of dynamic content when the JSP file is executed. In
the example, the text new Date().toString() is a command that will create a
new Java Date object, and return its current value as a string. All command
statements are enclosed within “<% … %>” pairs. The statement @page
import=“java.util.Date” is included to declare the location of the Date class.

<%@page import="java.util.Date"%>
<html>

<body>
<h2>Web server information</h2>
<table border=1>

<tr>
<td>Date:</td>
<td><%= new Date().toString()%></td>

</tr>
</table>

</body>
</html>

When this JSP file is executed by the Web server, it produces output similar
to that shown below. All of the HTML statements are placed in the response as-
is. However, the command statements in the original JSP file are executed and
the result included in the response. In particular,we can see that executing the
statement new Date().toString() produced the value “Wed Mar 03 17:02:50
GMT+00:00 2002”.

<html>
<body>

<h2>Web server information</h2>
<table border=1>

<tr>
<td>Date:</td>
<td>Wed Mar 03 17:02:50 GMT+00:00 2002</td>

</tr>
</table>

</body>
</html>

When rendered, this HTML produces the result shown in Figure 2.9.
JSP technology encourages an interface-based contract between the

provider of the JSP pages and the provider of any application components used
by the JSP pages (which may be EJBs,as well as simple Java classes like the Date
class used in the above example). This division of responsibility is something
that we shall revisit later in this book when we discuss user-experience model-
ing in Chapter 7,Analysis.

22 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

ch02_5-34.qxd 7/18/02 11:19 AM Page 22

Enterprise JavaBeans (EJB)

Enterprise JavaBeans (EJBs) reside in the business tier and are typically respon-
sible for implementing the business logic of J2EE applications. In this section
we discuss the different types of EJBs and the interfaces and classes that consti-
tute an EJB.

A client’s access to an EJB is provided through interfaces. The interfaces
provided by an EJB are dependent on the manner in which the EJB is intended
to be invoked. An EJB can offer interfaces that allow the EJB to be invoked
remotely (known as the home interface and the remote interface) or interfaces
that allow the EJB to be invoked locally (known as the local home interface
and the local interface)5.

Figure 2.10 shows a client accessing the home interface and remote inter-
face of an EJB. These interfaces are considered remote from the perspective of
the client in that the EJB providing these interfaces may physically reside in a
different JVM than the client (possibly on another machine). Figure 2.10 also
shows the single bean class that implements the operations defined in the EJB

J2EE Component Technologies | 23

Figure 2.9 The Output from a JSP Rendered in a Browser

5 Local interfaces were introduced in EJB 2.0,which is part of J2EE 1.3.

ch02_5-34.qxd 7/18/02 11:19 AM Page 23

interfaces (even though an EJB may be implemented by any number of classes).
This class is an internal implementation class that is not directly accessed by
client objects (it is invoked indirectly by the EJB container).

Figure 2.11 shows a client accessing the local home interface and local
interface of an EJB. These interfaces are considered local from the perspective
of the client in that the EJB providing these interfaces always resides in the
same JVM as the client.

One of the advantages of using remote interfaces is that the application
developer need not be concerned with the physical location of the target EJB.
However,one of the disadvantages is that,even though the target EJB may reside
in the same JVM, there is an overhead in treating it as being potentially remote.

Local interfaces are used in situations where co-location of source and tar-
get is both required and known. Use of these interfaces allows the EJB con-
tainer to optimize the messaging. One of the disadvantages of local interfaces is
that it is the responsibility of the client to determine whether the target EJB
should be treated as local or potentially remote.

Some guidance is therefore required in making the decision of whether to
use local or remote interfaces. This is briefly discussed in Chapter 8.

Home Interface
The home interface of an EJB declares operations that pertain to the manage-
ment of the elements represented by the EJB. For example, there are typically
operations to create, remove, and find these elements. Consider the code frag-
ment below, where we see the home interface of a UserAccount EJB. The cre-
ate operation supports the creation of a new UserAccount.

24 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

EJB Server

EJB Container

EJBHome
Interface

Remote
Interface

Remote
Client

Bean
Class

Figure 2.10 An EJB Exposing Home and Remote Interfaces

ch02_5-34.qxd 7/18/02 11:19 AM Page 24

package com.pearlcircle;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
....

public interface UserAccountHome extends EJBHome
{

public UserAccount create() throws CreateException, RemoteExcep-
tion;

....
}

Remote Interface
The remote interface of an EJB declares business operations supported by the
EJB. In the code fragment below, we see an operation to set the password of a
UserAccount.

package com.pearlcircle;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;
....

public interface UserAccount extends EJBObject
{

public void setPassword(String password) throws RemoteException;
....

}

J2EE Component Technologies | 25

EJB Server

EJB Container

EJB

Local
Client

Bean
Class

Local Home
Interface

Local
Interface

Figure 2.11 An EJB Exposing Local Home and Local Interfaces

ch02_5-34.qxd 7/18/02 11:19 AM Page 25

Local Home Interface
Should the UserAccount EJB support local interfaces rather than remote inter-
faces, then the definition of the local home interface would be as shown in the
code fragment below. As you can see, the definition of the local home interface
is identical to that of a remote home interface, with the exception that the
interface extends EJBLocalHome rather than EJBHome, and that RemoteExcep-
tion is not thrown. The convention used here is to prefix the interface name
with the word “Local”.

package com.pearlcircle;

import javax.ejb.CreateException;
import javax.ejb.EJBLocalHome;
....

public interface LocalUserAccountHome extends EJBLocalHome
{

public LocalUserAccount create() throws CreateException;
....

}

Local Interface
Likewise, the definition of the local interface is identical to that of the remote
interface, with the exception that the interface extends EJBLocalObject rather
than EJBObject, and that RemoteException is not thrown. Again, the conven-
tion used here is to prefix the interface name with the word “Local”.

package com.pearlcircle;

import javax.ejb.EJBLocalObject;
....

public interface LocalUserAccount extends EJBLocalObject
{

public void setPassword(String password);
....

}

Bean Class
A code fragment of the bean class for the UserAccount EJB (irrespective of
whether it supports remote or local interfaces) is shown below.

package com.pearlcircle;

import javax.util.*;
import javax.ejb.*;

26 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

ch02_5-34.qxd 7/18/02 11:19 AM Page 26

....

public abstract class UserAccountBean implements EntityBean
{

// Instance variables
private String password;
....

// Business operations
public void setPassword(String password) { this.password = pass-

word; }
public String getPassword() { return password; }
....

// Container operations
public void ejbCreate() throws CreateException { }
public void ejbRemove() { }
public void ejbActivate() { }
public void ejbPassivate() { }
....

}

This example has been kept deliberately simple to help us concentrate on
specific EJB features. You can see that the bean class contains instance variables
that represent the state of the objects implemented by this EJB.You can also see
that the bean class implements the business operations defined in the remote
interface (or local interface), such as setPassword. Finally, you can see that the
bean class implements operations that are required as part of the two-way con-
tract between the bean and the container. For example, when a client invokes
the create operation on the home interface (or local home interface), this even-
tually results in the container calling the ejbCreate method of the bean class.

There are three distinct “flavors” of EJBs: session beans, entity beans, and
message-driven beans.

Session Beans
Session beans, as the name suggests, are beans whose state is valid in the con-
text of a “user session.” For example, if you were to access a Web site that pro-
vided a “shopping cart” capability then, in most circumstances, the content of
the cart would be “lost” were you to exit the site before placing the order. This
occurs because the content of the cart is not, in this scenario, maintained be-
yond the life of the user session6. The content of the cart is often referred to as
“conversational state,”since it is available during the “conversation”the user has

J2EE Component Technologies | 27

6 Depending on the J2EE platform implementation,the state may reside in memory or on disk.

ch02_5-34.qxd 7/18/02 11:19 AM Page 27

with the Web site. The J2EE platform specifies two types of session beans:
stateless session beans and stateful session beans.

A stateless session bean is intended to be very lightweight, in that it main-
tains no conversational state whatsoever. Stateless session beans are often used
as “controllers” that coordinate a series of interactions between other EJBs, but
don’t actually maintain any state of their own. A good example would be a state-
less session bean that handles the checkout of the shopping cart we’ve just men-
tioned. In implementing the checkout process, the session bean determines the
items in the cart, ships the items, debits the bank account of the buyer, credits
the bank account of the seller,and then empties the shopping cart. Although the
stateless session bean may store intermediate values (in program variables) dur-
ing the execution of the checkout operation, it does not maintain these values
outside of this operation. This is why it is called “stateless.”

A stateful session bean, on the other hand, does maintain the state be-
tween one invocation and the next, within the context of the user session. For
example, a shopping cart could be implemented as a stateful session bean7.
Another common example of conversational state is login information, such as
username and password. If this information weren’t maintained with the ses-
sion, then the user would have to log in with every request made. Hence, a
stateful session bean could be used in this circumstance also.

Entity Beans
Entity beans represent coarse-grained elements that are considered to be multi-
user and generally long-lived. They are, therefore, provided with support for
persistence. Examples of entity beans are Customer, Order, and Product.

An entity bean has an associated primary key class. This is a Java class that
is used to represent the primary key of the entity and may be a user-defined
class8. For example, if we were implementing a Product entity bean, then we
might have a ProductPrimaryKey class that holds the product manufacturer
and product model as attributes, since these two attributes are what make a
product unique. This class is used, for example, as a parameter to the findByPri-
maryKey method on a home interface. The J2EE platform specifies two types of
entity beans: container-managed persistence (CMP) entity beans and bean-man-
aged persistence (BMP) entity beans.

28 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

7 HttpSession objects, available to servlets, provide an alternative mechanism for managing conversational state.
The choice is discussed briefly in Chapter 8,Design.

8 Any Java class that implements the Serializable interface can be used as a primary key class.

ch02_5-34.qxd 7/18/02 11:19 AM Page 28

A CMP entity bean is one that delegates the storage and retrieval of its per-
sistent attributes to the EJB container. This is only possible if the container
knows which attributes are to be made persistent. This is specified in the de-
ployment descriptor associated with the entity bean (deployment descriptors
are discussed later in this chapter). The deployment descriptor can also specify
the relationships that a CMP entity bean has with other local CMP entity beans.
If specified, the EJB container will manage such relationships. The J2EE platform
also defines an EJB Query Language (EJB QL) that a developer uses to specify
the queries used by a CMP entity bean within its finder methods9.

A BMP entity bean is one that handles its own persistence, rather than
delegating this responsibility to the EJB container. BMP entity beans are typi-
cally used in situations where the persistence facilities available to CMP entity
beans are insufficient. A developer is therefore responsible for writing a certain
amount of database access code when creating a BMP entity bean, and will
make use of the Java DataBase Connectivity (JDBC) API.

Message-Driven Beans
In addition to session beans and entity beans, the J2EE platform specifies mes-
sage-driven beans10. Message-driven beans are designed to support asynchro-
nous communication. A client sending messages to message-driven beans does
not block waiting for a response after sending a message.

A client of a message-driven bean uses the Java Message Service (JMS) to
deliver a message to either a queue or a topic. A queue represents a list of mes-
sages that are processed by a single message-driven bean,whereas a topic repre-
sents a list of messages that are processed by potentially many message-driven
beans. From the perspective of a client, message-driven beans are anonymous
and have no client-visible identity (all interactions occur via queues and topics).

A message-driven bean is automatically instantiated by the container within
which it resides and consumes messages from a JMS destination (a message
queue or topic), as shown in Figure 2.12.

A code fragment of the bean class for a CloseAuction EJB (that e-mails the
buyer and seller when an auction closes) is shown below. We can see from this
example that the core of the bean implementation is the onMessage operation
that is invoked by the EJB container when a message is received on the queue

J2EE Component Technologies | 29

9 EJB QL was introduced in EJB 2.0,which is part of J2EE 1.3.

10 Message-driven beans were introduced in EJB 2.0,which is part of J2EE 1.3.

ch02_5-34.qxd 7/18/02 11:19 AM Page 29

or topic associated with this bean (this association is set up when the bean is
deployed).

package com.pearlcircle;

import javax.ejb.*;
import javax.jms.*;
....

public class CloseAuctionBean implements MessageDrivenBean, Message-
Listener
{

// Process a message
public void onMessage(Message msg)
{

....
}

// Container operations
public void ejbCreate() throws CreateException { }
public void ejbRemove() { }
....

}

Assembly and Deployment

In this section, we discuss various aspects of J2EE Assembly and Deployment,
specifically J2EE Modules.

J2EE Modules

An overview of J2EE modules is provided in Figure 2.13.

30 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

EJB Server

EJB Container

Message-Driven
Bean

Message
Queue or Topic

Client
JMS

Figure 2.12 Interactions Involving a Message-Driven Bean

ch02_5-34.qxd 7/18/02 11:19 AM Page 30

After their initial creation, all application components (such as JSPs, serv-
lets, and EJBs) are packaged within a J2EE module, which is physically repre-
sented as a Java Archive (JAR) file. A JAR file contains one or more files, usually
in a compressed form (much like ZIP files). The use of JAR files allows related
files to be deployed as a unit. For example, a Web module is used to package
the presentation tier components of a J2EE application, such as JSP files, serv-
lets, and required Java classes.

Assembly and Deployment | 31

EJB Module
(JAR File)

Java Classes

Resource Adapters

Java Classes

META-INF\ejb-jar.xml

Web Module
(WAR File)

WEB-INF\web.xml

Resource Adapter Module
(RAR File)

META-INF\ra.xml

Application Client Module
(JAR File)

application-client.xml

J2EE ModulesApplication Components

J2EE Application
(EAR File)

META-INF\application.xml

J2EE Application

Java Classes

Servlets

Figure 2.13 J2EE Module Overview

ch02_5-34.qxd 7/18/02 11:19 AM Page 31

A J2EE module can be deployed as is, or it can be assembled, along with
other J2EE modules, into a larger module that represents the J2EE application,
which is then deployed. A summary of the different J2EE modules is shown in
Table 2.1. This table includes the name of the deployment descriptor associ-
ated with each J2EE module, and its location within that module.

Every J2EE module includes a description supplied in a deployment de-
scriptor,which is an XML file. The example below shows the elements describ-
ing a UserAccount EJB, which is a CMP entity bean. We have chosen to show
the description of a single EJB, although a deployment descriptor can describe
any number of items.

This descriptor introduces the UserAccount entity EJB to the container in
which it will reside. It declares the bean’s name, the names of the interfaces
supported by this bean (and their type in terms of home,remote, local home,or
local), the name of the bean class, the name of the primary key class, the per-
sistence type (container-managed or bean-managed), and the names of all per-
sistent fields.

<ejb-jar>
<description>Online Auction</description>
<display-name>OnlineAuction</display-name>
<enterprise-beans>

<entity>
<ejb-name>UserAccount</ejb-name>
<home>com.pearlcircle.UserAccountHome</home>
<remote>com.pearlcircle.UserAccount</remote>
<ejb-class>com.pearlcircle.UserAccountBean</ejb-class>
<prim-key-class>com.pearlcircle.UserAccountPK</prim-key-class>
<persistence-type>Container</persistence-type>
<cmp-field><field-name>userId</field-name></cmp-field>
<cmp-field><field-name>password</field-name></cmp-field>

32 | Chapter 2 An Introduction to the Java 2 Platform, Enterprise Edition

Table 2.1 J2EE Modules

J2EE Module Content File Type Deployment Descriptor

Web module JSPs, servlets, image files, Web Archive (WAR) WEB-INF\web.xml
static HTML files, Java
classes

EJB module EJBs, Java classes Java Archive (JAR) META-INF\ejb-jar.xml

Resource adapter Resource adapters Resource adapter Archive META-INF\ra.xml
module (RAR)

Application client Java classes Java Archive (JAR) application-client.xml
module

J2EE application J2EE modules Enterprise Archive (EAR) META-INF\application.xml
module

ch02_5-34.qxd 7/18/02 11:19 AM Page 32

<cmp-field><field-name>firstName</field-name></cmp-field>
<cmp-field><field-name>lastName</field-name></cmp-field>
<cmp-field><field-name>address</field-name></cmp-field>
<cmp-field><field-name>city</field-name></cmp-field>
<cmp-field><field-name>state</field-name></cmp-field>
<cmp-field><field-name>zipcode</field-name></cmp-field>
<cmp-field><field-name>country</field-name></cmp-field>
<cmp-field><field-name>phone</field-name></cmp-field>
<cmp-field><field-name>email</field-name></cmp-field>
....

</entity>
....

</enterprise-beans>
</ejb-jar>

Summary

In this chapter, we have provided a brief introduction to the Java 2 Platform,
Enterprise Edition.

Although the J2EE platform provides a good starting point for developing
enterprise systems, it only provides a part of the solution required. In particular,
the J2EE platform does not provide a complete solution since we still need to
define the application logic that executes using the J2EE platform. J2EE is also a
complex platform, and we need to look for ways to simplify the developers’
perception of these complexities.

Both of these concerns can be addressed by following the process de-
scribed in this book. Before introducing this process in Chapter 4,An Introduc-
tion to the J2EE Developer Roadmap, we discuss the foundation upon which
this roadmap is based in Chapter 3, An Introduction to the Rational Unified
Process.

Summary | 33

ch02_5-34.qxd 7/18/02 11:19 AM Page 33

ch02_5-34.qxd 7/18/02 11:19 AM Page 34

