
High-Performance Reconfigurable Computing Group

University of Toronto

SimXMD

Co-Debugging Software and Hardware

in FPGA Embedded Systems

Ruediger Willenberg and Paul Chow

September 19, 2013

University of Toronto FPGA Seminar

The “When Harry Met Sally” rule of CAD

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2

The “When Harry Met Sally” rule of CAD

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3

The “When Harry Met Sally” rule of CAD

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4

The “When Harry Met Sally” rule of CAD

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5

The “When Harry Met Sally” rule of CAD

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6

FPGA embedded systems

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

7

 CPU

Application

Peripheral B

FPGA

FPGA embedded systems

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

8

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

FPGA embedded systems

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

9

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

FPGA embedded systems

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
0

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

 CPU

Application

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

FPGA embedded systems

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
1

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

 CPU

Application

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

FPGA embedded systems

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
2

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

 CPU

Application

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code
(untested)

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

FPGA embedded systems

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
3

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

 CPU

Application

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code
(untested)

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

Optimal: Debug hardware, software and their

 interaction together

FPGA embedded systems

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
4

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

 CPU

Application

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code
(untested)

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

Optimal: Debug hardware, software and their

 interaction together

Embedded SW debugging chain

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
5

XMD

JTAG

Xilinx FPGA

CPU
GDB

TCP
GUI

Embedded SW debugging chain

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
6

XMD

JTAG

Xilinx FPGA

CPU
GDB

TCP
GUI

• Debugger on host system

Embedded SW debugging chain

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
7

XMD

JTAG

Xilinx FPGA

CPU
GDB

TCP
GUI

• Debugger on host system

• Software runs on target system

Embedded SW debugging chain

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
8

XMD

JTAG

Xilinx FPGA

CPU
GDB

TCP
GUI

• Debugger on host system

• Vendor-specific interface software

• Software runs on target system

HW debugging

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
9

ModelSim
system_tb.v

system.v

HW debugging

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
0

ModelSim
system_tb.v

system.v

• Cycle-accurate digital simulator

HW debugging

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
1

ModelSim
system_tb.v

system.v

• Cycle-accurate digital simulator

• A system model in HDL

HW debugging

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
2

ModelSim
system_tb.v

system.v

• Cycle-accurate digital simulator

• A system model in HDL

• Testbench instantiates and stimulates model

HW debugging

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
3

ModelSim
system_tb.v

system.v

• Cycle-accurate digital simulator

• A system model in HDL

• Testbench instantiates and stimulates model

• All internal signals observable

HW/SW Co-Debugging?

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
4

ModelSim
system_tb.v

system.vGDB

GUI

HW/SW Co-Debugging?

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
5

ModelSim
system_tb.v

system.vGDB

GUI

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

HW/SW Co-Debugging?

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
6

ModelSim
system_tb.v

system.vGDB

GUI

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

• SimXMD: Simulation-based eXperimental

 Microprocessor Debugger

HW/SW Co-Debugging?

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
7

ModelSim
system_tb.v

system.vGDB

GUI

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

• SimXMD: Simulation-based eXperimental

 Microprocessor Debugger

• Translates debugger requests into

simulator commands

Key SimXMD enablers

• GDB Remote Serial Protocol

– Defines requests and replies for:

• Setting/deleting breakpoints

• Advancing execution by instruction, line, breakpoint

• Reading registers or memory state

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
8

Key SimXMD enablers

• GDB Remote Serial Protocol

– Defines requests and replies for:

• Setting/deleting breakpoints

• Advancing execution by instruction, line, breakpoint

• Reading registers or memory state

• Xilinx MicroBlaze Trace Port

– Reports all information about a finished instruction:

• Instruction code and address

• Register and memory writes

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
9

Key SimXMD enablers

• GDB Remote Serial Protocol

– Defines requests and replies for:

• Setting/deleting breakpoints

• Advancing execution by instruction, line, breakpoint

• Reading registers or memory state

• Xilinx MicroBlaze Trace Port

– Reports all information about a finished instruction:

• Instruction code and address

• Register and memory writes

• ModelSim (Tcl) TCP server capability

– Can receive remote commands and send back results

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
0

Operating SimXMD: Preparation

1. Simulation model generation by design tool

– Currently: Xilinx Platform Studio

2. SimXMD is started (background operation)

– Examines embedded project information

– Modifies simulation model for Co-Debugging

3. Compilation of simulation model

4. Start of simulation

5. Start of preferred debugger (GUI)

6. Debugging at will

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
1

Operating SimXMD: Modes

• In Run mode, debugging drives the simulation

• In Replay mode, debugging iterates over previously

simulated data

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
2

x2 0x3 0x4 0x5

PC = 5

Run

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

x2 0x3 0x4 0x5

PC = 5

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

pick Replay time

x2 0x3 0x4 0x5

PC = 3

Replay

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

x2 0x3 0x4 0x5 0x6

PC = 6

Run

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

Implementation: Debugging memory

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
3

Implementation: Debugging memory

• Digital hardware simulation models the complete

memory hierarchy:

– On-chip and external memory

– All cache levels

– Memory-mapped peripherals

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
4

Implementation: Debugging memory

• Digital hardware simulation models the complete

memory hierarchy:

– On-chip and external memory

– All cache levels

– Memory-mapped peripherals

• Software debugging uses a flat, linear memory

model:

– The debugger requests a (virtual) memory address

– The target hardware determines and reads

the physical location

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
5

Boot
Memory

Shared
Log

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

SimXMD memory access logging

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
6

Shared
Log

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

Boot
Memory

SimXMD memory access logging

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
7

Shared
Log

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

$memlog

VPI

Boot
Memory

SimXMD memory access logging

VPI: Verilog Procedural Interface

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
8

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

Shared
Log

$memlog

VPI

Boot
Memory

SimXMD memory access logging

VPI: Verilog Procedural Interface

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
9

SimXMD
ModelSimTCP

system_tb.v
system.v

Shared
Log $memlog

VPI

Boot
Memory

GDB
TCP

GUI

SimXMD memory access logging

VPI: Verilog Procedural Interface

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
0

SimXMD tool support

• Xilinx Embedded Development Kit >= 13.x

– Xilinx MicroBlaze Processor >= 8.x

• MentorGraphics ModelSim >= 6.6g

• Linux Operating System

• Debuggers

– Command-line GDB

– Xilinx SDK (Eclipse)

– DDD

– KDbg

– Nemiver

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
1

SimXMD modular architecture

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
2

SimXMD limitations

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
3

SimXMD limitations

• Debugger can’t modify variables, registers

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
4

SimXMD limitations

• Debugger can’t modify variables, registers

• Volatile memory locations might be inaccurate

– Shared-memory multiprocessing

– DMA, Busmastering

– Memory-mapped peripherals

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
5

SimXMD limitations

• Debugger can’t modify variables, registers

• Volatile memory locations might be inaccurate

– Shared-memory multiprocessing

– DMA, Busmastering

– Memory-mapped peripherals

• Trace Port reports actions after instruction

completes; several cycles difference

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
6

SimXMD limitations

• Debugger can’t modify variables, registers

• Volatile memory locations might be inaccurate

– Shared-memory multiprocessing

– DMA, Busmastering

– Memory-mapped peripherals

• Trace Port reports actions after instruction

completes; several cycles difference

• Not all MicroBlaze special registers reported

– Not reported by Trace Port

– Not used by GDB for anything

 September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
7

SimXMD and multiprocessors?

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
8

SimXMD and multiprocessors?

• Any one core in a multicore system can be

selected for debugging

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
9

SimXMD and multiprocessors?

• Any one core in a multicore system can be

selected for debugging

• Future work:

– On-the-fly switching between cores

– Concurrent debugging of several cores

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
0

SimXMD and multiprocessors?

• Any one core in a multicore system can be

selected for debugging

• Future work:

– On-the-fly switching between cores

– Concurrent debugging of several cores

• The same memory volatility issues apply:

– Logging of virtual memory accesses per processor

• Different virtual addresses - same physical address?

– Race conditions likely

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
1

SimXMD Performance

• How much do the SimXMD modifications slow

down simulation?

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
2

SimXMD Performance

• How much do the SimXMD modifications slow

down simulation?

• How slow is SimXMD debugging in comparison

with debugging a real target?

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
3

SimXMD Performance

• How much do the SimXMD modifications slow

down simulation?

• How slow is SimXMD debugging in comparison

with debugging a real target?

• Test system:

– Host: Intel i5 Nehalem 4-core, 2.5Ghz, 12GB RAM

– Target: Xilinx Spartan 6 (Atlys board), JTAG

 Microblaze @ 100MHz, 64kB on-chip BRAM

 AXI bus, one GPIO peripheral

– Application: Writing 32kB byte-by-byte into BRAM

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
4

SimXMD overhead

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
5

Write size w/o SimXMD w/ SimXMD

1 kByte 6.9 s 7.3 s

2 kByte 13.8 s 14.5 s

4 kByte 27.3 s 29.0 s

8 kByte 54.9 s 57.7 s

16 kByte 109.0 s 117.1 s

32 kByte 218.9 s 231.7 s

SimXMD overhead

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
6

Write size w/o SimXMD w/ SimXMD

1 kByte 6.9 s 7.3 s

2 kByte 13.8 s 14.5 s

4 kByte 27.3 s 29.0 s

8 kByte 54.9 s 57.7 s

16 kByte 109.0 s 117.1 s

32 kByte 218.9 s 231.7 s

Average overhead: 6.0%

SimXMD debugging speed

• Same system and application

• Let GDB execute script of 50 “steps” (1 code line)

• Average time for a single code step:

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
7

Hardware with JTAG 1.350 s

SimXMD Run mode 0.850 s

SimXMD Replay mode 0.313 s

Conclusions

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
8

Conclusions

• SimXMD enables:

– Simultaneous debugging of software and hardware

– Hardware debugging “timed” by software sections

– Software debugging without existing/implemented HW

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
9

Conclusions

• SimXMD enables:

– Simultaneous debugging of software and hardware

– Hardware debugging “timed” by software sections

– Software debugging without existing/implemented HW

• SimXMD does not significantly slow down

reasonable debugging efforts

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
0

Conclusions

• SimXMD enables:

– Simultaneous debugging of software and hardware

– Hardware debugging “timed” by software sections

– Software debugging without existing/implemented HW

• SimXMD does not significantly slow down

reasonable debugging efforts

• SimXMD is open source

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
1

Conclusions

• SimXMD enables:

– Simultaneous debugging of software and hardware

– Hardware debugging “timed” by software sections

– Software debugging without existing/implemented HW

• SimXMD does not significantly slow down

reasonable debugging efforts

• SimXMD is open source

• SimXMD’s modular architecture facilitates

extension to other processors and tools

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
2

Conclusions

SimXMD can be downloaded at:

http://www.eecg.toronto.edu/~willenbe/simxmd

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
3

Conclusions

SimXMD can be downloaded at:

http://www.eecg.toronto.edu/~willenbe/simxmd

Thank you for your attention!

Questions?

September 19, 2013 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
4

