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XMD
     

JTAG

Xilinx  FPGA

CPU
GDB

TCP
GUI

• Debugger on host system 

• Vendor-specific interface software 

• Software runs on target system 
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ModelSim
system_tb.v

system.v

• Cycle-accurate digital simulator 

• A system model in HDL 

• Testbench instantiates and stimulates model 

• All internal signals observable 
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• SimXMD:  Simulation-based eXperimental 

  Microprocessor Debugger 

• Translates debugger requests into 

simulator commands 
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Key SimXMD enablers 

• GDB Remote Serial Protocol 

– Defines requests and replies for: 

• Setting/deleting breakpoints 

• Advancing execution by instruction, line, breakpoint 

• Reading registers or memory state 

• Xilinx MicroBlaze Trace Port 

– Reports all information about a finished instruction: 

• Instruction code and address 

• Register and memory writes 

• ModelSim (Tcl) TCP server capability 

– Can receive remote commands and send back results 
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Operating SimXMD: Preparation 

1. Simulation model generation by design tool 

– Currently: Xilinx Platform Studio 

2. SimXMD is started (background operation) 

– Examines embedded project information 

– Modifies simulation model for Co-Debugging 

3. Compilation of simulation model 

4. Start of simulation 

5. Start of preferred debugger (GUI) 

6. Debugging at will 
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Operating SimXMD: Modes 

• In Run mode, debugging drives the simulation 

• In Replay mode, debugging iterates over previously 

simulated data 
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int main()

{

   a = functionA();

   b = functionB(a);

   c = b + 5 * d;

   return c;

}
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int main()

{

   a = functionA();

   b = functionB(a);

   c = b + 5 * d;

   return c;

}

pick Replay time
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PC = 3

Replay

int main()

{

   a = functionA();

   b = functionB(a);

   c = b + 5 * d;

   return c;

}

x2 0x3 0x4 0x5 0x6

PC = 6

Run

int main()

{

   a = functionA();

   b = functionB(a);

   c = b + 5 * d;

   return c;

}



Implementation: Debugging memory 

September 19, 2013 High-Performance Reconfigurable Computing Group    ∙     University of Toronto 

3
3
 



Implementation: Debugging memory 

• Digital hardware simulation models the complete 
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Implementation: Debugging memory 

• Digital hardware simulation models the complete 

memory hierarchy: 

– On-chip and external memory 

– All cache levels 

– Memory-mapped peripherals 

• Software debugging uses a flat, linear memory 

model: 

– The debugger requests a (virtual) memory address 

– The target hardware determines and reads 

the physical location 
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SimXMD tool support 

• Xilinx Embedded Development Kit  >= 13.x 

– Xilinx MicroBlaze Processor  >= 8.x 

• MentorGraphics ModelSim  >= 6.6g 

• Linux Operating System 

• Debuggers 

– Command-line GDB 

– Xilinx SDK (Eclipse) 

– DDD 

– KDbg 

– Nemiver 
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• Debugger can’t modify variables, registers 

• Volatile memory locations might be inaccurate 

– Shared-memory multiprocessing 

– DMA, Busmastering 

– Memory-mapped peripherals 

• Trace Port reports actions after instruction 

completes; several cycles difference 

• Not all MicroBlaze special registers reported 

– Not reported by Trace Port 

– Not used by GDB for anything 
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SimXMD and multiprocessors? 

• Any one core in a multicore system can be 

selected for debugging 

• Future work:  

– On-the-fly switching between cores 

– Concurrent debugging of several cores 

• The same memory volatility issues apply: 

– Logging of virtual memory accesses per processor 

• Different virtual addresses - same physical address? 

– Race conditions likely 
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SimXMD Performance 

• How much do the SimXMD modifications slow 

down simulation? 
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SimXMD Performance 

• How much do the SimXMD modifications slow 

down simulation? 

• How slow is SimXMD debugging in comparison 

with debugging a real target? 

• Test system: 

– Host:  Intel i5 Nehalem 4-core, 2.5Ghz, 12GB RAM 

– Target:  Xilinx Spartan 6 (Atlys board), JTAG 

  Microblaze @ 100MHz,  64kB on-chip BRAM 

  AXI bus, one GPIO peripheral 

– Application:    Writing 32kB byte-by-byte into BRAM 
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SimXMD overhead 
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Write size w/o SimXMD w/ SimXMD 

1 kByte 6.9 s 7.3 s 

2 kByte 13.8 s 14.5 s 

4 kByte 27.3 s 29.0 s 

8 kByte 54.9 s 57.7 s 

16 kByte 109.0 s 117.1 s 

32 kByte 218.9 s 231.7 s 
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Write size w/o SimXMD w/ SimXMD 

1 kByte 6.9 s 7.3 s 

2 kByte 13.8 s 14.5 s 

4 kByte 27.3 s 29.0 s 

8 kByte 54.9 s 57.7 s 

16 kByte 109.0 s 117.1 s 

32 kByte 218.9 s 231.7 s 

Average overhead:  6.0% 



SimXMD debugging speed  

• Same system and application 

• Let GDB execute script of 50 “steps” (1 code line) 

• Average time for a single code step: 
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Hardware with JTAG 1.350 s 

SimXMD Run mode 0.850 s 

SimXMD Replay mode 0.313 s 



Conclusions 
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Conclusions 

• SimXMD enables: 

– Simultaneous debugging of software and hardware 

– Hardware debugging “timed” by software sections 

– Software debugging without existing/implemented HW 

• SimXMD does not significantly slow down 

reasonable debugging efforts 

• SimXMD is open source 

• SimXMD’s modular architecture facilitates 

extension to other processors and tools 
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Conclusions 

SimXMD can be downloaded at: 

http://www.eecg.toronto.edu/~willenbe/simxmd 
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SimXMD can be downloaded at: 

http://www.eecg.toronto.edu/~willenbe/simxmd 

 

Thank you for your attention! 

Questions? 

September 19, 2013 High-Performance Reconfigurable Computing Group    ∙     University of Toronto 

6
4
 


