
Blair Fort
Felix Lazbin

Marc Halatsis

GPS Friends
Final Report

Main word count: 1988
Apper context word count: 231

Introduction

GPS Friends is a location based microblogging service, allowing users to upload

text and image posts to a dynamic content feed. Posts are tagged with the user’s

present location, and are viewable to users within the geographical vicinity of 500

meters of the post. Those users, who are seeing the post, may add their own

comments to the post. The feed updates as the user moves through the sphere of other

posts. Each post is assigned a category, and may also be designated as private, such

that only their ‘friends’ may view the post. Users may request to be friends with other

users, whom must approve those friend request.

GPS Friends was created out of a desire to make an application that would

encourage people to explore their neighbourhoods. The app encourages wandering

around and socializing, with the goal of turning neighbourhoods into communities -

areas where citizens feel a sense of ownership through socialization and familiarity.

Overall Design

Our system consists of two main parts: the Android client application, acting as

the front-end for user interaction, and a remote server machine, which consists of a

database holding the application's data (such as user accounts and posts). An HTTP

interface that allows the client to communicate with the server.

Figure 1 is a diagram of the overall system, which is followed by descriptions of

each part.

Figure 1: Block Diagram of the Overall System Design

Client Component Descriptions:

● Graphical User Interface: This consists of activities that allow the user to

interact with the application on the Android device and perform actions such as

registering a new user account, logging in, viewing posts made in the user’s

geographical vicinity, and submitting new posts. The details of this component

are found in the Statement of Functionality & Screenshots section.

● Server Communicator: This component handles the details of communicating

with the server via the HTTP protocol. It handles all submissions of data to the

server, and parses/interprets the server’s responses, which range in complexity

from simple success/failure status indications to data sets retrieved from the

database.

○ Local State Store: This component, which is closely coupled with the

Server Communicator, maintains a local set of data retrieved from the

server. It contains information such as the session token required by the

authentication backend, the current user’s profile, and the posts in the

user’s vicinity. The store is updated whenever the Server Communicator

receives new data from the server, and is used extensively by the GUI to

display the contents to the user and allow the user to manipulate it.

Server Component Descriptions:

● Django Framework: This is a Python web framework used to rapidly develop

dynamic web applications. It is used on the server to provide a simple

communication interface for the client, access the database, and handle

authentication.

○ Data Fetchers: These consist of the set of HTTP request handlers that

are tasked with receiving information requests from the client, retrieving

the relevant data from the database, and sending it to the client in XML

format. The most important fetcher is responsible for returning a list of

user posts to the client, given the client’s geographical location

(latitude/longitude). The server returns all posts within 500 meters of the

client by converting coordinates between the latitude/longitude and

Cartesian (x/y) formats, using a third-party library that computes a

projection of the earth’s surface into the Cartesian plane. Before returning

the list of posts, the server also computes the distance and bearing (in

degrees) of each post relative to the client’s current location, which is later

used by the GUI to indicate the location of each post relative to the client.

○ Data Storers: These consist of the set of HTTP request handlers that are

tasked with receiving new information from the client and storing it in the

database. All storers are simple, performing only minimal processing and

validation on the received data, returning the success/failure status back

to the client upon completion. This is by design - the more complex

computations are performed by the fetchers based on the information

stored in the database by the storers.

● Database: This is a relational database system that is used to store all of the

information required by our application (e.g. user accounts, posts, and

friendships) in a series of interrelated tables. This project uses MySQL for this

purpose.

Figure 2 is a visual representation of the project’s relational schema:

Figure 2: Database's Relational Schema

Statement of Functionality & Screenshots

The Android app consists of the following working functionality: login, registration,

viewing the feed, viewing individual posts, creating posts, commenting on posts,

requesting friends, approving friends, and updating user avatars (profile pic).

● Login: This activity (figure 3) is the start-up screen. It allows users to login to the

server, using their username and password. Figure 4 shows the invalid

username and/or password notification. New users may click on the register

button, to start the registration activity.

● Registration: This activity (figure 5) allows the user the register for GPS Friends.

Registration requires an distinct email address, distinct username, first name, last

name and password. The activity does some initial data verification, such as, do

all fields have input, is the email a correctly formatted address, and do the two

password fields match and are at least 6 characters long. If this initial data

Figure 3: Login Screen Figure 4: Login Failed

verification fails, the user will be notified to which field(s) are incorrect (figure 6).

Otherwise, the data will be sent to the server, which makes sure that neither the

email address nor username are already registered. The user will be notified

upon success and the app will return to the login screen (figure 7). If registration

fails, the user is notified (figure 8).

● Feed: This activity (figure 9) displays posts in the user's vicinity. The list is

populated by sending the current GPS coordinates to the server which returns all

posts within 500 meters. Each post displays the username and avatar, the post's

category, text, time, and distance and direction from the user current location and

its number of comments. Also, each post, that contains images, will have a

camera icon. As the user moves, the distances and the direction arrows are

updated. The feed is automatically updated every minute or when the user

moves five meters. The user may view an individual post by selecting it in the list.

Figure 5: Registration Screen Figure 6: Incomplete Registration Data

Figure 7: Registration Succeeded Figure 8: Registration Failed

Figure 9: The Feed Figure 10: The Feed's Menu

This activity has a menu which allows the user to create a new post, refresh the

feed, or view their profile (figure 10).

● Posts: This activity allows the user the see a post's comments (figure 11),

images, make a comment (figure 12) and make a friend request (figure 13). If the

post has images, it will be indicated by the camera icon (figure 14). Clicking the

icon will display the images (figure 15).

● Creating a Post or Comment: This activity allows a user to create a new post

(figure 16), or comment on an existing post (figure 17). When creating a new

post, the user must select a category (figure 18) and can optionally capture

images to add to the post (figure 19). The user may view/delete images before

posting.

Figure 12: Post Screen's MenuFigure 11: Post Screen

Figure 15: Image View

Figure 14: Post with ImagesFigure 13: Friend Request

Figure 16: Create New Post

Figure 18: Choose Category Figure 19: Capture Image

Figure 17: Add Comment

● Friend requests: A notification of pending friend requests are displayed at the

top of the feed screen (figure 20). Clicking on the notification opens the friend

request dialog (figure 21). If the request is accepted, both users will now be able

to see the other user's private posts.

● User Profile: This activity allows the user to change their profile pic. A menu

allows the user to change the profile pic and save those changes to the server

(figure 22). Figure 23 shows the dialog for changing the profile pic. The dialog is

populated with all images on the phone's SD card.

Key Learning

Programmers

The programmers' key lesson learnt was to spend time upfront gaining a

thorough understanding of the Android debug environment and Android APIs. This

Figure 20: Pending Friend Requests Figure 21: Friend Request Dialog

would have saved tremendous time later on in the project. An example is Android

services. It would have been useful to understand how to use them to maintain a server

connection across activity.

Apper

One of the key lessons that I took away from the process of designing GPS

Friends is that it is extremely difficult to design a computer application without a strong

technical knowledge of the code and systems underlying the app. I say this for two

reasons. First, it makes communicating with those programming the application much

easier - one can, for example, gauge the feasibility of a proposed feature before

presenting it in a meeting. This streamlines the development process, and reduces

distractions and scope creep. Second, it facilitates communication between the

programmers and the designer by creating some degree of common ground, meaning

that when features are discussed, the discussion is not bogged down with the cognitive

burden of trying to understand one another.

Figure 22: Profile Menu Figure 23: Profile Pic Selection

A final note on communication and technical expertise. As someone from a very

theoretical background, I grew to respect the difficulty in applying theory to the practice

of making a technological object, while making it something viable, and that people

would enjoy using. Being an effective architect or designer requires a vastly different

skillset to being a talented theoretician, and the gap from one to the other may only be

bridged by experience. With this in mind, I wonder if teaching the appers some basic

technical skills would enable them to better bridge this gap.

Individual Contributions

Marc:

With the help of Blair and Felix, I formulated, and continued to develop, the initial

concept for the app, up to and including its current form. I conceived of the UI, from an

initial set of schematics, to its present form, iterating as the feature set evolved. I

created test data, so that the app’s full functionality could be displayed during

demonstrations. Finally, I made the presentation slides, and contributed to the written

components of the project.

Blair:

I wrote all the code for the app's GUI. This code includes all the activities, their

associated layouts and menus, communication with the GPS, camera and compass,

and the threads calling the client side communication function. Also, I was responsible

to testing and debugging the app with server at every spiral. Finally, I did the final

review and revision of all presentations and reports.

Felix:

I wrote the server-side application using Python and the Django framework, and

developed the database schema. On the client side (i.e. Android device), I wrote the

code responsible for directly communicating with the server, parsing the XML data

returned by it, and maintaining state information such as user login sessions. I was also

responsible for setting up the initial server environment and an SVN server to be used

for collaboration among programmers.

Apper Context

My academic background is a scattered one. On one hand, I studied Theory &

History at the Architectural Association School of Architecture. On the other, I am

studying Knowledge Management at the iSchool. Being completely honest, the latter

has not exactly captured my imagination, so I decided to emphasize the former when

formulating ideas for an app. I have spilled much ink on how to form or create livable

communities, how to make our cities more humane places, but I have never been given

the opportunity to implement theory.

As I mentioned above, this process does have its challenges, but in many ways, I

think that GPS Friends fulfils the mandate of making neighbourhoods and cities more

like communities. This application is an engine both for the dissemination of information

and memory, and the creation of new ones by way of exploration, and the expansion of

one’s social contacts. Perhaps most interestingly, this is all achieved by way of a virtual

overlay - a web of posts accessible by way of a mobile device. The potential of a virtual

architecture, particularly one in dialogue with a physical one, fascinated me.

Incidentally, my iSchool education did end up being of use too - thinking about

metadata led me to create the post categories as a way to quickly and easily create

new virtual maps, by rearranging and reorganizing pre-existing data.

Future Work

We would like to implement push notifications for replies and friend requests. In

addition, we would like to implement some means of filtering posts by category, allowing

a user to only see what interests them. A basic profile, where users could input their

interests, and the ability to searching according to those interests. For example,

someone might want to know where other people who like to speak Spanish hang out.

Finally, we would be interested in learning more about what a

marketing/entrepreneurship class could do for the app.

