

UNIVERSITY OF TORONTO

Android Robotic

Manipulator
Final Report

ECE1778 – Creative Applications for Mobile Devices

René Rail-Ip, Hao Yan, and Paul Grouchy

2013/4/12

Word Count: 2399

Table of Contents

Introduction .. 1

Apper Context ... 1

Overall Design ... 3

Statement of Functionality and Screenshots from App .. 5

Key Learning ... 8

Contributions of Each Member ... 9

Paul Grouchy ... 9

René Rail-Ip ... 9

Hao Yan ... 9

Future Work .. 10

Extra ... 11

Resources ... 11

Table of Figures

Figure 1: Block Diagram .. 3

Figure 2: Connection attempt ... 6

Figure 3: Connection attempt failed ... 6

Figure 4: A.R.M. connected ... 6

Figure 5: Main button pressed.. 6

Figure 6: Playback mode ... 6

Figure 7: Trash icon pressed ... 6

Figure 8: Settings menu .. 7

Figure 9: Calibration activity ... 7

Figure 10: Settings activity .. 7

Figure 11: Lock activity (Arm Mode) ... 7

Figure 12: Lock activity (Wrist Mode) ... 7

1

Introduction

In the robotics and mechatronics field, smart systems are required to have accurate and

precise sensors in order to perceive and react to the environment around them. Many sensors

have been developed that measure force, speed, pressure, magnetic field, temperature,

proximity, light, sound, and more. However, technology exists that incorporates all of these

sensors onto one fairly small, affordable and portable device: the smartphone. Furthermore,

the smartphone contains varyingly fast processors, large touch screens for display and user

input, and the ability to develop applications that can access all of these functionalities.

Lately, there has been a large increase in the performance to cost ratio of MEMS (Micro

Electro Mechanical Systems) accelerometers and gyroscopes, which are used in smartphones.

With this increase and the growing acceptance for consumer and household robotics, it is

natural to begin to think of using this extraordinary device and its sensors for robotic

applications. The applications have grown beyond the household as well; industrial robots are

becoming less expensive and there is more expectation for intuitive and wireless control of

robots.

The Android Robotic Manipulator (A.R.M.) project aims to provide an initial proof-of-

concept that MEMS accelerometer and gyroscope technology can provide accurate and precise

enough data to provide motion control of a robotic entity. The overall goal of A.R.M. is “to

allow for wireless and intuitive real-time control of a robotic manipulator with an Android

smartphone.” The robotic manipulator used for this project is a four-degree-of-freedom arm

made of Robotis AX12A motors designed by CrustCrawler. The project aligns with the research

of the Apper as described below.

Apper Context

René Rail-Ip is the Apper for the A.R.M. group project. He studies in the field of Electrical

and Computer Engineering with a specialization in robotics and mechatronics, sensors, and

hardware implementations. The goal of his MASc thesis is to develop a platform to benchmark

and evaluate the performance of various MEMS accelerometers. In order to do this, accurate

and repeatable motions must be applied to the accelerometers while recording the raw data

output from the sensors. This requires for the accelerometer chips to be mounted onto a

motion platform while outputting data to a computing unit, which can save the data.

The primary objective of this research is to evaluate accelerometers’ capabilities in

applications as an accurate and precise inertial measurement unit, which is an instrument that

2

can track the position of some moving object through an environment. This involves integrating

the accelerometers’ and gyroscopes’ outputs in order to obtain positional data, whose accuracy

and precision depend largely on the algorithms and processing power being used.

There is a particular interest in the implementation and application of sensors for

robotic technologies. Smartphones today include amazing sensor technology to gain

information including applied forces, applied angular speeds, local pressure and temperature,

proximity information, and more. Because robots rely on accurate sensors to understand the

environment they are operating in, smartphones can become a very useful and affordable tool

for many robotic applications. The specific use of the accelerometers in the smartphone are of

interest to the research being conducted by René and developing a smartphone app that can

make use of this sensor data could pave the path for development of future applications to

evaluate and benchmark the performance of accelerometers within different smartphone

devices.

Throughout the project, a basic platform was set up to send motion commands to a

robotic manipulator while transmitting data between devices over a wireless network. The

wireless data communication was a two-way protocol with one end sending integrated

accelerometer, gyroscope, and magnetometer data and the other end sending confirmation

signals. Designing and building the entire system was good practice in developing an intelligent

motion platform that can communicate between devices, which is what will be needed for

René’s research.

Finally, the A.R.M. application requires that the accelerometer and gyroscope outputs

be mathematically integrated to obtain positional data, which is sent to control the robotic

manipulator. The algorithms used and researched to most optimally reduce sensor noise and

accurately obtain displacements from accelerations and velocities will be of great value to the

research in developing an inertial measurement unit that utilizes accelerometers and

gyroscopes to track humans or mobile robots within an environment. There are various

different types of algorithms and techniques used to obtain accurate and precise displacements

from the accelerations but the sensors suffer inherently from noise and temperature problems.

The successful utilization of the accelerometer and gyroscope data to control the robotic

manipulator completes a proof-of-concept for the use of these sensors as accurate

displacement measuring devices.

3

Overall Design

Figure 1 shows the overall design of the A.R.M. system including the client and server modules.

Figure 1: Block Diagram

 There are three major components to the A.R.M. application: the app on the mobile

device, the host computer running MATLAB and the AX12A Dynamixel robotic arm. On the

mobile device side, the A.R.M. app collects the movements of the device by the end user, but

only when the user is holding down the main button. The app then translates the device’s

movement outputs into an absolute, real-world coordinate frame using the device’s

4

magnetometer and rotation sensors. It is at this point that various noise-reduction steps are

implemented. There are three techniques used: thresholding, calibration, and speed decay.

Thresholding is used to ignore small acceleration values, calibration subtracts average

accelerometer values taken from when the device was calibrated at rest by the end-user, and

speed decay subtracts a fixed value per second from the speed to counteract the accumulation

of integration errors (device displacement is calculated by integrating accelerometer data to get

speed and then integrating speed to get displacement and accelerometer errors are

accumulated during these steps). Also, it is at this point that displacement values are scaled by

a user-defined sensitivity value. Relative device displacement values are periodically sent via

Wi-Fi to the host computer. If the user is not holding down the main button, zeros are sent.

The current gripper slider bar value is also sent with this data. If an axis’ movement is locked by

the user or by the Wrist Mode/Arm Mode functionality, a zero is sent for that movement. If a

periodic data send fails, the app assumes the Wi-Fi connection has been lost. The mobile app

was set up for intuitive usability, with the majority of the user interactions happening through

the main button (see screenshots below).

 On the host computer side, relative device movements are received from the device

over Wi-Fi and are used to compute (using inverse kinematics) the motor signals required to

move the robotic arm’s end effector in a manner that mimics the mobile device’s movements.

The custom code running in MATLAB must first detect whether the device is sending Wrist

Mode or Arm Mode data by examining which data values are zeros, and then use the non-zero

data to calculate the specified arm motor movements. The gripper is adjusted if the gripper

slider value has changed. The MATLAB code also detects when requested movements are

outside of the robotic arm’s motor ranges, in which case the mobile device is notified via a

signal over Wi-Fi (the device vibrates when it receives such a signal, thus implementing haptic

feedback). Furthermore, movement complete confirmations are sent back to the device over

Wi-Fi for use in playback functionality. The computed motor and gripper signals are sent via a

wired USB-to-Serial connection to the robotic arm, which then moves accordingly.

 Record functionality is implemented by saving the accumulated device movements

when the user hits the record button on the main screen. Playback transmits each movement

snapshot sequentially to the MATLAB server, waiting for the movement complete signal from

the server between sends of movement snapshots.

 “Return Robotic Arm to Home Position” and “Client Is Disconnecting From Server”

signals are sent from the device to MATLAB via special values in the gripper section of the

regular Wi-Fi packets.

5

Statement of Functionality and Screenshots

from App

The A.R.M. development team achieved full functionality with three caveats. On the

mobile device, movements were successfully recorded and converted into absolute

coordinates. Data packets were successfully transmitted over Wi-Fi to a host machine running

MATLAB, which in turn was able to move the robotic arm as the user intended. The first two

caveats are here, as when the user holds the main button down for an extended period of time,

the speed values accumulate error, thus producing erroneous displacement values. This was

partially mitigated through various noise reduction algorithms (mentioned above) and the

zeroing of speed whenever the user released the main button. However, further work on noise

reduction is necessary to improve functionality and usability. Furthermore, the robotic arm

does not react in real-time to device movements. While the reaction times are fast, further

work (including investigating Bluetooth data transmission and alternatives to our MATLAB

implementation) might help to decrease lag.

Axis locking, gripper control via a slider UI, haptic feedback, sensor calibration, and the

settings activity (with calibration and settings values persistent via internal storage) were all

successfully implemented. Arm and Wrist Modes were also functional, along with a “Home”

button to return the robotic arm to its home position.

Finally, record/playback functionality was successfully implemented, with surprisingly

good accuracy. A user is able to record snapshots of the current robotic arm position and then

play these positions back sequentially. This is where the third caveat comes in, as playback has

accuracy issues if the user records too few snapshots. It is postulated that this is a combination

of motor noise and inverse kinematics calculations that produce different robotic arm

movements to a specified position with and without intermediate steps. Implementing a

feedback controller might alleviate this issue.

Figure 2: Connection attempt

Figure 5: Main button pressed

6

Figure 3: Connection attempt failed Figure 4: A.R.M.

Figure 6: Playback mode Figure 7: Trash icon pressed

A.R.M. connected

: Trash icon pressed

Figure 8: Settings menu

Figure 11: Lock activity (Arm Mode)

7

Figure 9: Calibration activity Figure 10: Settings activity

Figure 12: Lock activity (Wrist Mode)

: Settings activity

8

Key Learning

During the development of this project, there are a couple of things that could have

been done differently.

The first key learning is the server architecture. The current implementation uses

embedded Java code inside MATLAB to act as a server to communicate with the Android app on

the smartphone. However MATLAB tends to have non-trivial delays and can sometimes miss a

message from the smartphone. This problem is probably due to the poor integration between

the server code in Java and the robotic arm controller program in MATLAB. It would likely be

better if the server was written as a piece of standalone software in Java or C. Then the

communication between the server and the A.R.M. application on the smartphone would be

more secure and reliable.

The second key learning is the communication method. The current implementation

uses Wi-Fi. Although it is a good standard for transmitting large files, it is not widely supported

by embedded devices and thus requires a computer to be connected to the robotic arm. There

was an identified problem in loss of data packets and other communication methods may not

suffer from this disadvantage. One possibility would have been to use the Bluetooth protocol.

This way the communication is strictly one to one and would not be disrupted by other

activities. Having both methods of communication implemented can have well-rounded

support for many different setups and situations, allowing for more versatile implementations

of the application.

9

Contributions of Each Member

Paul Grouchy

 Paul’s major contributions to the A.R.M project were all GUI design and development,

TCP/IP (i.e. Wi-Fi) communication on the mobile device side and all aspects of the

playback/record functionality. Furthermore, he contributed to user experience (UX) through

implementing features such as broken Wi-Fi connection detection, vibration features (including

haptic feedback on the mobile device side) and auditory feedback and prompts. Finally, Paul

implemented axis movement locking and the Wrist Mode/Arm Mode functionality on the

device.

René Rail-Ip

As the Apper of the A.R.M. group, René took responsibility on the server side of the

system. A server connection had to be built with which the smartphone could connect and

communicate. In addition, software that computes the necessary information to control the

robotic manipulator had to be developed. In receiving relative displacement coordinates from

the smartphone application, a process called inverse kinematics had to be used to transform

the coordinates into corresponding joint angles that bring the arm’s end effector to the

provided coordinates. Furthermore, the server had to distinguish between different modes,

home and disconnect commands, and the opening and closing of the gripper, while also testing

conditions to determine when to send “Movement Complete” and “Motor Boundary” signals.

Hao Yan
As one of the programmers in the team, Hao coded the modules of the A.R.M. app

related to sensors and integration algorithms. Hao also developed calibration and sensitivity

features. In addition, he implemented the rotation matrix to transform the acceleration data

from the smartphone’s coordinates to the absolute coordinates. Finally, Hao has contributed to

testing and ultimately enhancing the responsiveness and accuracy of the robotic arm

movements by reducing the noises in sensors and improving the integration algorithms.

10

Future Work

Although all major goals set for the project have been completed, there are some extra

functionalities and improvements that could be implemented if work on the project were to

continue.

One major improvement would be to include save and load functionality for the

record/playback feature. This way the app could keep records of many different movements

and the user could then easily choose a suitable movement from the list to playback anytime.

Additionally, further reduction of noise in sensors would greatly improve the intuitive

nature of the app. By using more advanced algorithms and filters, such as Kalman Filters, it

would be possible to improve the precision of integration results and make the robotic arm

movements more smooth and accurate.

Moreover, to ensure the robotic arm moves to the exact position the user wants, a

feedback controller for the robotic arm should be implemented. This feedback controller would

receive actual encoder readings from the robotic arm to determine if the arm’s motion is

finished and if the final position is close enough to the position the user required. In the case

that the robotic arm fails to respond to the user instructions or reach the desired position, the

feedback controller could continuously monitors the state and correct it and could eventually

report possible motor errors, such as voltage, position, or torque limits, to the user after a

timeout period.

Finally, the app could be extended to be compatible with other robotic and mobile

devices. Improved compatibility would allow for a larger user base and a variety of different

applications for A.R.M.

11

Extra

1. Would you interested in having a business school class on marketing/entrepreneurship

take it up?

No, because this project is mostly proof-of-concept.

2. We would like to have our code be available as open source on the Internet.

Resources

1. Coordinates Transformation of acceleration:

a. http://stackoverflow.com/questions/14963190/calculate-acceleration-in-

reference-to-true-north/14988559#14988559

2. Issues surrounding multiple ASyncTasks:

a. http://foo.jasonhudgins.com/2010/05/limitations-of-asynctask.html

b. http://stackoverflow.com/questions/11241600/async-task-doinbackground-not-

performed

c. http://stackoverflow.com/questions/4068984/running-multiple-asynctasks-at-

the-same-time-not-possible

3. Dynamixel API for Controlling AX12A Motors:

a. http://support.robotis.com/en/software/dynamixel_sdk/api_reference.htm

4. Java TCP/IP Server Implementation in MATLAB:

a. http://iheartmatlab.blogspot.ca/2008/08/tcpip-socket-communications-in-matlab.html

