

UrbanEyes: Final Report

Word count

Body 1964

Apper section 472

Sheraz Khan, Ravi Kalyani, Miroslav Cupák

Professor Jonathan Rose

ECE1778H1S

April 12, 2013

1. Introduction

UrbanEyes is an app that allows researchers of urban settings to collect data for mapping.

Urban planning researchers make maps to communicate data about cities and make

recommendations for change. For example, researchers may want to know the locations of

wheelchair-accessible building entrances to understand the differences in travel experiences of

people living with disabilities. UrbanEyes can facilitate projects like this (which are based on

spatial data) by simplifying the data collection process.

UrbanEyes works through a mobile and web application, where researchers create surveys

through the UrbanEyes web app, and surveyors respond to surveys by collecting data using

their smartphones. The researcher can then download the data from the web in a ready-to-use

format (a comma delimited file) for mapping. This workflow is captured in the diagram below.

Figure: The UrbanEyes workflow. Researchers input surveys into the web application. These are

sent to surveyors’ smartphones for data collection. Data is returned to the web application for

download.

This report outlines the functionality of UrbanEyes and the lessons learned through its

development.

2. Design and Implementation

Below is a block diagram describing UrbanEyes. As can be seen, the application consists of a

client (mobile application) and a server (web application). On the client side, the app allows

users to collect GPS and altitude data in three geometries (point, path and area), and allows

survey questions to be attached to those geometries. On the server side, the application allows

users to login, sign up, create/edit/delete surveys, and download data in a suitable format.

Figure: Block diagram describing UrbanEyes. On the left are blocks related to the mobile app,

while on the right are blocks describing the web app.

Delving further, the mobile application contains the tools for collecting data. The GPSTracker

provides the latitude and longitude of the phone when a survey is taken. The PathTracker uses

GPS coordinates taken at short intervals (10 meters) to draw paths, or areas. The

ObjectCounter is used to collect counts using a simple clicker-like interface.

The AltitudeProcessor uses the phone’s barometer to compute the elevation - a value which is

important to urban planners. The measurement is based on a comparison of the phone’s

measured atmospheric pressure a reference sea-level pressure. This yields the elevation in

meters above the sea level. The following formula is used to calculate the altitude (based on

the hypsometric equation, AMS 2012):

Here, Pphone is the pressure at the phone’s location, and Psea is the value at sea level. The

pressure at sea level is not a constant value and has to be obtained in real-time. We obtain it

from the WeatherBug1 service, which enables queries for current weather values based on GPS

coordinates. We verified the values we measured using an elevation map of Toronto (see figure

below).The pressure measured by our Nexus 4 phone varied by up to 0.2 mBar which

corresponds to a possible error of about 1.6 m in altitude. We were not able to compare values

between phones only one phone with a barometer was available.

Figure: Elevation map of Toronto and region. Each line corresponds to 10 m in elevation

(University of Toronto, 2010).

Whenever a user answers a survey, their answers are associated with the spatial location

provided by GPSTracker and AltitudeProcessor and form a submission managed by the

CheckPointManager. This information is visualized through the Mapper with respect to the

currently selected survey, which is managed by the SurveyManager. The data collected by the

1
 http://weather.weatherbug.com/

http://weather.weatherbug.com/

phone is communicated by the DataManager to the server. The Login Manager authenticates

users, since we require users to create an account in order to manage the submissions properly

and provide access control.

The web application communicates with the mobile application through a collection of services

represented by the DataService component. It allows the users to create an

account and sign in as well as authenticate via phone through the Authenticator

and UserManager components. SubmissionManager takes care of all the operations on

submissions including searching, filtering and saving. Management functionalities on surveys as

well as editing, removing or creating of surveys is done through the ProjectManager. As for the

data model, submissions and surveys are associated with several entities (submission, survey,

user, question, answer, answer type, point, option), the persistence and retrieval of which is

provided by the DBManager component. The data can be exported through the application in

XML and CSV formats using the services of the DataProcessor.

Implementation

The client is implemented as an Android application using Google Maps Android API v22 to

provide the main mapping view and ActionBarSherlock3 library to achieve a uniform

minimalistic look and feel across all Android devices.

The server is implemented as a Java EE 64 web application and uses several technologies from

the Java EE stack. The frontend is based on JavaServer Faces 25 and RichFaces 46 framework and

uses AJAX heavily. The application exposes the data via REST in XML using Java API for RESTful

Web Services (JAX-RS)7 and Java Architecture for XML Binding (JAXB)8, which is used to get data

from the server to the client. Communication in the other direction is facilitated using Java

Servlet 39. Main application logic is provided by Enterprise JavaBeans 310 facilitating Context

and Dependency Injection (CDI)11. Authentication and authorization is done via Seam Security12

2
 https://developers.google.com/maps/documentation/android/

3
 http://actionbarsherlock.com/

4
 http://http://www.oracle.com/technetwork/java/javaee/overview/

5
 http://javaserverfaces.java.net/

6
 http://www.jboss.org/richfaces

7
 http://jax-rs-spec.java.net/

8
 http://jaxb.java.net/

9
 http://jcp.org/aboutJava/communityprocess/final/jsr315/

10
 http://www.oracle.com/technetwork/articles/entarch/ejb-3-085455.html

11
 http://www.oracle.com/technetwork/articles/java/cdi-javaee-bien-225152.html

12
 http://www.seamframework.org/Seam3/SecurityModuleHome

https://developers.google.com/maps/documentation/android/
http://actionbarsherlock.com/
http://http/www.oracle.com/technetwork/java/javaee/overview/
http://javaserverfaces.java.net/
http://www.jboss.org/richfaces
http://jax-rs-spec.java.net/
http://jaxb.java.net/
http://jcp.org/aboutJava/communityprocess/final/jsr315/
http://www.oracle.com/technetwork/articles/entarch/ejb-3-085455.html
http://www.oracle.com/technetwork/articles/java/cdi-javaee-bien-225152.html
http://www.seamframework.org/Seam3/SecurityModuleHome

and persistence is implemented via Java Persistence API 213 with object-relational mapping

provided by Hibernate14.

3. Functionality

This section delves further into the functions of UrbanEyes. To start off, in order to be able to

collect data and create surveys, a user has to create an account through the web application.

Figure: Sign-up and login dialogs in the web application.

After signing in, the user is presented with several views. The basic view shows the user’s

surveys allowing them to view, edit, delete or export submissions to XML and CSV and an

option to create a new survey.

Figure: My Surveys view in the web application. The data is shown in a table with sorting and

filtering capabilities.

13

 http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
14

 http://www.hibernate.org/

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.hibernate.org/

When creating a survey, a user can specify its name, description, privacy status, questions and

contributors. Privacy status determines the access rights to a survey - a survey can be public

(accessible to every user) or private (accessible to specific users). Questions are typed in and

the type of the answer is offered, which is used on the client side to generate the correct input.

When editing an existing survey, a user is allowed to change anything except the questions to

prevent inconsistencies with existing submissions.

Figure: Pages for creating and displaying surveys.

Creating a survey

Viewing survey details

The application allows for viewing real-time survey submissions from the client. The user can

choose to view personal submissions or view all submissions for a survey they have access to.

More detailed information can be displayed within the application or exported to XML or CSV.

Figure: Submissions and detailed view. The data is shown in a table with sorting and filtering

capabilities.

When using the mobile application, the user is first presented with the login screen prompting

them for their username and password:

Figure: App’s login screen.

After logging in, the user is presented with a list of surveys they are allowed to contribute to.

The list is pulled from the server and contains surveys of 3 types – point, path and area surveys.

Figure: The list of surveys obtained from the server.

After selecting a survey, the user can choose to collect data by clicking the button “ADD

POINT”.

Figure: UrbanEyes Map view.

Subsequently, the survey is brought up. The forms are generated based on the question’s type

e.g. the input to a ‘YESNO’ question is presented as 2 radio buttons (yes and no), the input to a

‘COUNT’ question is presented with a simple clicker-like screen etc.

Figure: Different types of survey questions (text, count and number).

After submitting answers, a point is marked on the map and the data is sent to the server. This

process is similar for paths and areas, the only difference is that the user must move around to

draw these shapes.

Figure: Points, paths and areas as shown on the map.

Seeing as mistakes and misplacement of points are possible, points can be moved and edited to

update the data. This is especially important in urban settings, where GPS sensors can be

affected by tall buildings.

The data we measure can be used as an input to mapping programs. Currently, our web

application is able to export data in XML and CSV.

Figure: Sample submissions exported to CSV and XML.

4. Lessons Learned

The lessons and key learning related to project management, communication, feedback, and

GPS data on mobile devices. The main problems we encountered stemmed from the initial

change in direction of the app, the establishment of data formats and the work required for the

web application.

At the beginning of the project, our idea for UrbanEyes included a counter for moving objects

using the camera. This was not feasible and as such, significant time was spent reorienting the

project. For the programmers, this required an understanding of OpenCV. For the apper, this

required rethinking the relevance of the app to urban planning. This aspect of the app would

not have been included if done differently.

In addition to this, it was clear from the beginning that there were problems with explaining

why the app was relevant and related to the lack of an engaging use-case. The apper learned

the value of having clear, real and impactful use cases when proposing apps and the value of

clear and simple communication. Furthermore, the programmers learned to question ideas and

think critically about the purpose of technologies they are developing.

Key learning for all involved was the value of regular, task-oriented meetings. Meetings were

held weekly after class and before presentations to practice. After them, action plans and notes

were shared. The value of this direct communication was essential in moving the project

forward and implementing feedback.

The programmers had to gain significant technical knowledge. This involved understanding of

Java EE stack and all the related technologies (see implementation) as well as creating a full-

featured web application. Significant effort was put into understanding altitude computation

using a barometer, understanding Google Maps API and integrating Google Maps with Android.

The apper had to understand how shapefiles (the industry standard file format for geographic

information) are encoded and can be created, as well as how Google Maps encode coordinates.

For all, understanding the strengths and weaknesses of GPS was necessary.

5. Breakdown of Work

Ravi

● client-server information interchange spec

● line and polygon setting tools, mobile user interface, survey generation, communication

with server

Sheraz

● how to convert coordinates into Shapefiles and formatting CSV files for import

● researching geographic coordinate system transformations required for GPS data from

smartphone

● altitude measurement calculation and verification

● testing and user interface recommendations

● project management and meeting coordination

Miroslav

● complete web application including data management, access control, communication

with the client, sorting, filtering and export of data to XML and CSV, user interface

design

● mapping part of the mobile application including a point marking tool

● altitude measurement based on barometer and data from weather website

6. Future Work

Some features should be added before the UrbanEyes is launched. On the mobile app, adding

sound measurement and better organizing project types would be helpful additions. On the

web application, converting CSV files to shapefiles would be an extremely useful addition.

Another useful addition would be to allow researchers to upload locations for surveyors to

collect data from. Choosing layout and colours for the website and embedding a Google map

could be useful additions as well.

7. Relevance to Urban Planning Research

At its core, UrbanEyes achieves two purposes: (1) it makes the process of collaboratively

collecting data simple and streamlined, and (2) it makes this capability available to a wide

audience through a very simple user interface on both the web and the smartphone.

While it might be logical to assume that people studying cities (especially planners) would be

well versed in mapping, this is generally untrue. A sort of paradox exists in the urban research

fields, in that planners and researchers require spatial data to make recommendations about

urban settings, but not all planners have access to mapping and GPS tools. Often planners are

not trained in collecting GPS data using technical instruments, and mapping software can be

prohibitively expensive. With the development of Google maps and open source software for

mapping, more community groups, non-profits and even governments have been allowed to

map, but significant barriers still exist.

Problems still arise in that, while tools exist to create maps, the data to create the maps are

unavailable. This is especially true in Canada, where geographic data control has had a long and

generally proprietary nature (i.e., data is often not shared). While this is changing with the

development of open data portals in Canadian municipalities, there are still many types of data

that have never been collected. UrbanEyes makes this possible, especially on the small scale.

Cases of this can be seen throughout cities. For example, when non-profits concerned with the

accessibility of buildings in a region of a city want to make recommendations to city council,

having a list of buildings with and without accessible entrances would be useful. Having the

locations of the entrances can allow the non-profit to estimate how much farther people with

disabilities have to travel in comparison to people who can walk. This information can inform

policy, but does not currently exist.

While Canadian practice lacks spatial data, other locations may lack data in even more

pronounced ways. In cities in developing countries, data is also generally unavailable for both

the city and for the residents. Cities need data to efficiently address problems present in their

jurisdiction, while residents need data to hold their governments accountable. While UrbanEyes

may not be a world-wide sensation, the app contributes to the solution of these problems.

Using common and familiar tools, data can be used to inform and make recommendations

about cities based in evidence. With mobile internet service increasing yearly and 3G becoming

increasingly available (ex, Brennan 2012), this will become even more important in the future.

What was achieved in the app is a way for people to share the data they have collected,

especially as contributions to open data. Opening ownership to spatial data made by people is

important for keeping governments and planners accountable as projects move forward.

8. Business School Interest
We are not interested in having Business School class on marketing/entrepreneurship take up

UrbanEyes.

9. Source Code
We have made the source code for both mobile and web application available online at

https://github.com/mcupak/urbaneyes, where we plan to develop it further after the course.

10. Technical Resources
We found several resources very helpful during the implementation process.

Drawing maps on Android

● Google Maps Android API v2 Documentation and Samples:

https://developers.google.com/maps/documentation/android/ (Apr 2013).

Barometer usage for altitude measurements

● Samsung Developers Technical Docs: http://developer.samsung.com/android/technical-

docs (Apr 2013).

● WeatherBug API:

http://developer.weatherbug.com/docs/read/WeatherBug_Rest_XML_API (Apr 2013).

Authentication and authorization

● Seam Security Examples: https://github.com/seam/examples (Apr 2013).

RichFaces

● RichFaces Showcase: http://showcase.richfaces.org/ (Apr 2013).

● RichFaces Developer Guide:

http://docs.jboss.org/richfaces/4.3.X/4.3.1.Final/Developer_Guide/en-US/html/ (Apr

2013).

Java EE 6

https://github.com/mcupak/urbaneyes
https://developers.google.com/maps/documentation/android/
http://developer.samsung.com/android/technical-docs
http://developer.samsung.com/android/technical-docs
http://developer.weatherbug.com/docs/read/WeatherBug_Rest_XML_API
https://github.com/seam/examples
http://showcase.richfaces.org/
http://docs.jboss.org/richfaces/4.3.X/4.3.1.Final/Developer_Guide/en-US/html/

● JBoss Quickstarts: http://www.jboss.org/developer/quickstarts.html (Apr 2013).

● Java EE 6 Specifications:

http://www.oracle.com/technetwork/java/javaee/tech/index.html (Apr 2013).

● Java Servlet Tutorial: http://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html (Apr

2013).

Web Application Deployment

● OpenShift User Guide: https://access.redhat.com/site/documentation/en-

US/OpenShift/2.0/html/User_Guide/ (Apr 2013).

http://www.jboss.org/developer/quickstarts.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html
https://access.redhat.com/site/documentation/en-US/OpenShift/2.0/html/User_Guide/
https://access.redhat.com/site/documentation/en-US/OpenShift/2.0/html/User_Guide/

References

American Meteorological Society. 2012. Hypsometric Equation. Retrieved online at

http://glossary.ametsoc.org/wiki/Hypsometric_equation. (Apr 2013).

Brennan, C. (Oct 31, 2012). Satellite tech powers 3G revolution for rural Africa. CNN. Retrieved

online at

http://edition.cnn.com/2012/10/29/business/3g-africa-mobile-broadband (Apr 2013).

Ipsos. 2013. Close to Half of Canadians Now Own a Smartphone. Retrieved online at

http://www.ipsos-

na.com/news-polls/pressrelease.aspx?id=6005. (Apr 2013).

University of Toronto. 2010. Toronto Digital Elevation Model. Retrieved online at

http://maps.library.utoronto.ca/. (Apr 2013).

http://glossary.ametsoc.org/wiki/Hypsometric_equation
http://edition.cnn.com/2012/10/29/business/3g-africa-mobile-broadband
http://www.ipsos-/
http://maps.library.utoronto.ca/

