
(1)

ECE 1778:
Creative Applications for Mobile Devices

 Lecture 4
January 30, 2013

Today

1.  Logistics – Plan, Assignments
2.  Recon Instruments Android Goggles
3.  Some Notes on Programming Android

–  Life cycle
–  Sensors
–  Debugging

4.  Proposal Discussions

(2)

Logistics

(3)

Assignments

n  A2 and P2 were due yesterday
–  2 people who are in groups did not hand these in (and didn’t

notify me)

n  A3 and P3 are ready, and posted
–  But are not due for 2 weeks,
–  To give you time to work on your plans, due next week.

n  A1 and P1 have been graded, with comments online
–  Generally well done; TAs have provided some specific feedback

where warranted
–  See blackboard portal

(4)

Project Stages

1.  Forming Groups
–  All groups are formed, but some lack 2nd programmer; have 1

2.  One-Page Proposal
–  I have responded to all sent yesterday; will do rest today

3.  Project Plan
–  Due Next week Feb 6th

4.  Proposal & Plan Presentations
–  February 11 & 13
–  NOTE EXTRA LECTURE Monday Feb 11, 6-8pm, MP 137

5.  Spiral 2 & Spiral 4 Presentations
–  2: March 6/13 4: March 20/27

6.  Final Presentations
–  Weeks of April 3 & 10

7.  Final Report Due April 12th
(5)

Plan Due Next Week: Feb 5 @ 6pm

1.  Reprise Goal, make more precise
2.  Rough design of what the user sees

–  Mock-ups of screens
–  https://gomockingbird.com
–  Any drawing package will do

3.  Block Diagrams overview of planned code
–  Implies a top down, divide & conquer approach
–  With short prose description of each
–  Should relate to the screens given above
–  Example: see Figure 1 on page 4 of:
http://www.eecg.utoronto.ca/~jayar/ece1778.2012/fitformula.pdf

(6)

Fit Formula’s Final Block Diagram

(7)

Plan, continued

4.  Statement of Risks/Issues
–  What roadblocks/issues/challenges do you foresee?
–  App-wise, programming-wise, hardware-wise, ethics-wise

5.  What do you need to learn that you don’t know
–  all members

6.  Important: Appers
–  Submit a separate essay on how App relates to field of Apper,

and how the Apper will contribute to project
–  500 words

(8)

Plan Document

n  Plan length: 1500 words max
–  Not including 500 word Apper essay (#6)
–  Should include pictures
–  Include word count, penalty for overage.

n  Seeking clarity, not quantity of words
–  ‘Omit needless words’

n  Submit PDF doc to Portal, look for ‘Assignment’ Plan
–  Due Tuesday February 5th at 6pm
–  Worth 10% of grade (includes presentation done following

week)

 (9)

Pepper Website

n  We are using Pepper for Two Purposes:

1.  As a class discussion board, for posting questions and
answers; monitored by TAs & myself

2.  As a workplace for interaction among group members
–  Every group has its own, private interaction space
–  Listed under the ‘home’ community on pepper
–  For posting information, videos, software, etc.
–  Can use as a record of work, and a holding space for work
–  Can use a medium of interaction
–  Not graded

(10)

Class Participation

(11)

Class Presentations & Participation

n  A key part of what has happened in this course was the
contribution students made to other’s projects

n  You will do many presentations in this class
–  Indeed, one side-effect of this project course is some real

practice in giving high-quality, concise & clear communication
–  Most presentations will be 5 minutes in length
–  Must be geared so that most people in the class will understand

n  Want everyone to come, listen & provide useful input
–  The grading scheme includes participation
–  Expectation that you’ll listen and provide thoughtful feedback and

suggestions to other’s presentation, starting today

(12)

Grading Scheme

n  Assignments: 16%
–  4 assignments

n  Project: 80%
–  Proposal 5%
–  Plan (incl presentation) 10%
–  Spiral 2 Presentation 10%
–  Spiral 4 Presentation 10%
–  Presentation/Demo 10%
–  Final Report 30%

n  Class Participation 9%

(13)

Recon Instruments Android Goggles

(14)

Don’t Forget

n  We have one pair of Recon’s instrumented ski goggles
–  Available for use in your project

n  Ski Goggles with:
–  Head ‘down’ display
–  GPS
–  Full android processor with SDK
–  9-axis accelerometer/gyroscope/compass
–  Bluetooth connection to mobile phone
–  Wrist-based selection tool for input

(15)

Features

(16)

n  See http://www.youtube.com/watch?v=2-9UAJ4v_8M
n  and http://www.youtube.com/watch?v=XpY2Oh4stM0
n  and http://www.youtube.com/watch?v=VqjGsYf4upI

SDK

n  Go to http://developers.reconinstruments.com
–  For tutorials, design guide and downloads

(17)

Android Essentials

•  Life Cycle
•  Sensors
•  Debugging
•  Pop-Up Messages – Toast & Alerts

(18)

Android Activity ‘Life Cycle’

(19)

Android Application Life Cycle

n  Recall: Activities are screens that the user
sees, and associated process

n  Android manages these Activities as a
stack.

n  When a new activity is started, it is placed
on the top of the stack and becomes the
running activity

n  The previous activity always remains below
it in the stack,
–  and will not come to the foreground again until

the new activity exits.

(20)

Important to Pay Attention to ‘LifeCycle’

n  To ensure app behaves well in several ways, including:

1.  Does not crash if the user receives a phone call or switches to
another app

2.  Does not consume valuable system resources when the user is
not actively using your app

3.  Does not lose the user's progress if they leave your app and
return to it at a later time

4.  Does not crash or lose the user's progress when the screen
rotates between landscape and portrait orientation.

(21)

An Activity Can Be in 1 of 4 ‘States’

State 1: Active/Running
–  Activity in the foreground of the screen (at the top of the stack)
–  Has ‘focus’, meaning user interactions go to it.

State 2: Paused
–  activity has lost focus but is still visible
–  a new smaller or transparent activity has focus on top of the

activity)
–  A paused activity is completely alive (it maintains all state and

member information and remains attached to the window
manager), but can be killed by the system in extreme low
memory situations.

(22)

Activity States 3 and 4

State 3: Stopped
–  activity is completely obscured by another activity
–  retains all state and member information
–  no longer visible to the user so its window is hidden
–  it will often be killed by the system when memory is needed

elsewhere.

State 4: Destroyed
–  If an activity is paused or stopped, the system can drop the

activity from memory by either asking it to finish, or simply
killing its process.

–  When displayed again to the user, it must be completely
restarted and restored to its previous state.

(23)

Android Talking to Your App

n  The Android operating system asks (or tells) your app to
go into those different states by invoking methods
associated with your Activity

(24)

Methods Called By Android to Change States

n  Diagram shows states and methods called to change state
–  Colours: the states
–  MethodName(): methods called by Android OS

(25)

Three Key States

n  Activity can be in 1 of 3 states for long period of time:
1.  Resumed

–  In this state, the activity is in the foreground and the user can
interact with it. (Also sometimes referred to as the "running"
state.)

2.  Paused
–  In this state, the activity is partially obscured by another activity—

the other activity that's in the foreground is semi-transparent or
doesn't cover the entire screen. The paused activity does not
receive user input and cannot execute any code.

3.  Stopped
–  In this state, the activity is completely hidden and not visible to

the user; it is considered to be in the background. While stopped,
the activity instance and all its state information such as member
variables is retained, but it cannot execute any code. (26)

State Management

n  The other states (Created and Started) are transient and
the system quickly moves from them to the next state by
calling the next lifecycle callback method. That is, after
the system calls onCreate(), it quickly calls onStart(),
which is quickly followed by onResume().

n  Depending on the complexity of your activity, you
probably don't need to implement all the lifecycle
methods.

n  However, it's important that you understand each one
and implement those that ensure your app behaves the
way users expect.

(27)

References

1.  The Android Documentation:
http://developer.android.com/training/basics/activity-
lifecycle/index.html

2.  Murphy, Busy Coder’s Android, Pages 275-297

–  “Handling Activity Lifecyle Events”

n  Once your project gets going, it is really important to
read through this and understand it
–  Previous years’ students pointed out that this was the key thing

they had not understood in Android, that caused the most
problems

(28)

The Key ‘LifeCycle’ Methods

OnCreate()
–  Familiar with already – brings the activity to life

OnPause()

–  Another Activity has gained the ‘focus’
–  Should stop any background threads, release large resources

(such as a camera)
–  No guarantee that OnDestroy() will be called, so best to save

all state here

OnResume()
–  Called as activity starts, or is restarted from a pause
–  Can recall state from file, refresh the User Interface – see

example

(29)

Relating to Sensors

For Assignment P3 (due in 2 weeks)
And general sensor stuff

(30)

The Accelerometer

(31)

The Accelerometer

n  The Accelerometer in phones is
quite an exciting sensor!

n  It can be used to feel motion in
three dimensions
–  It samples the acceleration at least

100 times/second
–  But not reliably!
–  It is very sensitive

n  It measures acceleration in m/s2

(32)

Gravity

n  Recall: acceleration due to gravity is 9.8 m/s2
n  When the phone isn’t moving, one or more of the axes

will ‘feel’ this acceleration due to gravity or part of it.
n  A phone that is falling, will feel 0 acceleration on all three

axes

n  Online Android documentation describes how to isolate
out both gravity (to figure out which axes it is on) and
motion aside from gravity:
–  http://developer.android.com/reference/android/hardware/

Sensor.html

(33)

The Accelerometer Coordinate Space

n  Coordinate-system is defined relative
to the screen of the phone in its
default orientation.
–  axes are not swapped when the device's

screen orientation changes.

n  X axis is horizontal & points right
n  Y axis is vertical & points up
n  Z axis points towards the outside of

the front face of the screen.
–  coordinates behind the screen have

negative Z values.

(34)

Using the Accelerometer

n  Bones of an application to
–  Read the accelerometers every time they change
–  Output the raw values in each dimension
–  Will include gravity

(35)

To Access a Sensor

Three key classes:
1.  SensorManager
2.  Sensor
3.  SensorEvent

n  Need to create a SensorManager class

(36)

SensorManager

n  Is a class that lets you figure out what sensors are on the
device:
–  produces a list of all the sensors available,
–  your program must need to check and see if the one you want is

actually on the device:

n  First, create the general sensor manager
 myManager = (SensorManager) getSystemService
 (Context.SENSOR_SERVICE);

n  Then, ask if the sensor you want is on the phone, e.g. the
Accelerometer:

 sensors = myManager.getSensorList
 (Sensor.TYPE_ACCELEROMETER);

(37)

SensorEvent Class

n  ‘event’ is signaled when there is a new reading
n  SensorEvent class contains the reading of the sensor,

including:
1.  Accuracy of the measurement
2.  Sensor that generated the event
3.  Timestamp

• The time in nanoseconds at which the event happened
• Can check the spacing, in time, of your readings!

4.  Values of the reading itself
•  e.g the three values of the acceleration along each axis

(38)

Declarations & usual

public class readaccel2 extends Activity {
 private TextView accText;
 private SensorManager myManager;
 private List<Sensor> sensors;
 private Sensor accSensor;
@Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 accText = (TextView)findViewById(R.id.accText);

 (39)

Set-up Sensor

 // Set Sensor + Manager
myManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

sensors =
myManager.getSensorList(Sensor.TYPE_ACCELEROMET
ER);
 if(sensors.size() > 0)
 {
 accSensor = sensors.get(0);
 }
 }
 (40)

Listening, Reading, Output

private final SensorEventListener mySensorListener = new
SensorEventListener() {
 public void onSensorChanged(SensorEvent event) {
 float x = event.values[0];
 float y = event.values[1];
 float z = event.values[2];
 String output = String
 .format(”x: %f / y: %f / z: %f", x, y, z);
 accText.setText(output); }
public void onAccuracyChanged(Sensor sensor, int
accuracy) {}};

(41)

Registering the Listener

@Override
 protected void onResume()
 {
 super.onResume();
 myManager.registerListener(mySensorListener,
 accSensor, SensorManager.SENSOR_DELAY_GAME);
 }

n  Last parameter sets the frequency of updates

(42)

OnPause – Turn off accelerometer

@Override
 protected void onPause()
 {
 myManager.unregisterListener(mySensorListener);
 super.onStop();
 }
}

n  i.e. unregister the listener

(43)

To Use the Compass (Magnetometer)

n  Change:
sensors = myManager.getSensorList
 (Sensor.TYPE_ACCELEROMETER);

n  To:
sensors = myManager.getSensorList
 (Sensor. TYPE_MAGNETIC_FIELD);

(44)

The Other Sensors

(45)

There are quite a few Sensors!

n  Some are just different calculations with same sensor
1.  Accelerometer:

–  Sensor.TYPE_ACCELEROMETER

2.  Gravity
–  The accelerometer with non-gravity acceleration filtered out?
–  Sensor.TYPE_GRAVITY
–  Only available on Android 2.3 and later

3.  Linear Acceleration
–  The accelerometer with gravity removed (filtered)
–  Sensor.TYPE_LINEAR_ACCELERATION
–  Only available on Android 2.3 and later

(46)

Compass/Magnetic field

n  Sensor.TYPE_MAGNETIC_FIELD:
n  Measures the magnetic field in three dimensions,

–  Measured in micro Tesla

n  So, just Change:
sensors = myManager.getSensorList
 (Sensor.TYPE_ACCELEROMETER);

n  To:
sensors = myManager.getSensorList
 (Sensor. TYPE_MAGNETIC_FIELD)

(47)

Gyroscope

n  Sensor.TYPE_GYROSCOPE:
n  Gives pitch, roll and yaw in radians/second

–  Measures motion more directly

(48)

Light Sensor

n  Used for measuring ambient light to set screen
brightness

n  Measures the light, in Lux, coarsely
–  Seem like roughly 8 different values, maybe, when I tried it on

the Nexus One

n  Sensor. TYPE_LIGHT

n  Available on Nexus S

n  DEMO

(49)

Proximity Sensor

n  Used for measuring how close the phone is to person’s
ear

n  To turn off the touch screen
n  Usually binary: close or far
n  Sensor.TYPE_PROXIMITY

n  DEMO

(50)

Useful Method – sensor maximum

n  MaxRange = accSensor.getMaximumRange();

n  Tells the largest value a sensor can deliver on a device

(51)

Using the Debugger in Eclipse/Android

(52)

Debugging

n  Simple debug: use Log.d(TAG, “String”);
n  Better: use the debugger in Eclipse/Android

n  First, make sure your phone or emulator is set to enable
‘USB debugging’

n  From the home screen:
–  Settings->Applications->Development
–  Check USB Debugging (have to do that 7-times magic

incantation)

(53)

Set a Breakpoint

n  Go to your source file,
n  right click in the left-most column
n  Select ‘Toggle Break Point’

–  Will set a breakpoint at that source code line (little blue dot)

(54)

Right Click over
here

To Run the Debugger

n  Click the ‘green bug’ to the left of to the ‘play’ button

(55)

Once the Breakpoint is Hit

n  The whole Debugger perspective shows up:

(56)

Can Single Step over, Step In, Run

n  See this graphic near the top:

1.  Continue running from Breakpoint
2.  Step in to a function
3.  Step over a line (single step)

(57)

Can View Value of Variables

n  In the upper right window pane:

n  To switch between regular and debug perspectives
(58)

API Demos!

(59)

Google’s API Demos

n  Are great for learning everything Android
n  Every feature of the phone is used, in a simple example
How:
n  Be sure to have downloaded the ‘Samples for SDK’ from

the SDK Manager available in Eclipse
n  To see them, create a new project in Eclipse (not an

Android Project)
–  Under ‘Android Project’
–  Select ‘Android Project from Existing Code’

n  Load in the project from this directory:
–  adt-bundle/sdk/samples/android-N/APIdemos

(60)

Then, Experiment and Learn!

n  Each feature –
activity, camera,
sensor, is shown as
a simple example,
along with code

n  Lots!

n  Demo

(61)

Pop-up Messages

(62)

Pop-Up Messages

n  Are really handy for conveying an alert or
information to the user.

n  Two kinds in Android:
1.  Toasts
2.  Alerts

(63)

Toasts

n  A temporary message that
appears and then disappears
after a fixed amount of time
–  e.g. battery low warning
–  Someone signed in to Skype
–  Won lottery

n  Purpose is to be un-obtrusive
–  Doesn’t take ‘focus’ away from

your activity

(64)

Toast Code – Easy!

n  Create and show, all in one:
Toast.makeText(this,

 "Eureka, you win!",
 Toast.LENGTH_LONG).show();

Three fields:
1.  ‘this’ is the current class context

–  Can also use getApplicationContext() instead
2.  The text to be shown
3.  Length of time to show

–  LENGTH_LONG or LENGTH_SHORT constants

(65)

Alerts

n  A specific message that
changes focus

n  User must respond by clicking

n  Three parts:
–  Message title
–  Actual message
–  Up to three response buttons:

• Positive
• Neutral
• Negative

n  Use OnClick to respond to
buttons

(66)

Alert Code – using Toast to respond

new AlertDialog.Builder(this)
 .setTitle("MessageDemo")
 .setMessage("How are you feeling?")
 .setPositiveButton("I'm Positive",

 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dlg, int sumthin) {
 Toast.makeText(MessageDemo.this, "Eureka, you win!",

 Toast.LENGTH_LONG).show();
 }

})
(67)

Construction
of the part of

the Alert

A Toast in
response to
the positive

click

Neutral Button in Alert

n  A cascade of method calls

.setNeutralButton("Either Way",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dlg, int sumthin) {
 Toast.makeText(MessageDemo.this, "Neutral Feeling",

 Toast.LENGTH_SHORT).show();
 }

})

(68)

Neutral Button in Alert

n  Another cascade

.setNegativeButton("Either Way",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dlg, int sumthin) {
 Toast.makeText(MessageDemo.this, ”I’m feeling bad",

 Toast.LENGTH_SHORT).show();
 }

}).show();

(69)

This
shows the

Alert
DEMO:

MessageAlert

