
 1

ECE 1778 - Creativity and Programming for Mobile Devices
February 2014

Programming Assignment P4, for Programmers

Threads and Databases

The goal of this assignment is to learn the how to offload non-user interface tasks into
separate threads, and to get a handle on the basics of a simple on-device database.

1 Reading
Read the following sections from the course texts, if you are developing on Android:

i. Pages 201-211 (“The WebView Widget”) of the The Busy Coder's Guide to
Android Development, version 5.4.

ii. Pages 381-393 (“Dealing with Threads”) of the The Busy Coder's Guide to
Android Development, version 5.4.

iii. Pages 483-502 (“SQL Lite Databases”) of the The Busy Coder's Guide to
Android Development, version 5.4.

For iPhone: from Beginning iPhone 6 Development Exploring the iOS SDK by Mark,
Nutting, LaMarche and Olsson and the web, read:

i. Review the UIWebview Class – at this link.
ii. Lookup the method initWithContentsOfURL in the iPhone Documentation..
iii. Chapter 15 (“Grand Central Dispatch, Background Processing, and You”).
iv. Chapter 13 (“Basic Data Persistence”), the section on Using SQLite3.

2 Assignment

NOTE: As in previous assignments, when writing your code for this assignment, please
be sure to follow ‘Braiden Brousseau’s Guide To Quality Apps’ that was given as part of
Assignment P1. Part of your grade will be assigned for fulfilling them.

You are to write an application that creates a small SQL database that is populated from a
file (that contains a list of names) located at a specified URL on the Internet. It will then
search for those names on the Internet, and display the results. The application will do
two different pieces of work (populating the database and searching) by spawning two
separate threads from the main UI activity. Here is the specification in more detail:

When the application launches, it should present the user with three interface widgets:

1. A text field (call it DBURL) that defaults to the following string:
‘http://www.eecg.utoronto.ca/~jayar/PeopleList’ This string should be
changeable by the user.

2. A button that is labeled ‘Populate’ that is initially active.
3. A button that is labeled ‘Search’ that is initially inactive. (i.e. touching it causes

nothing to happen).

 2

When the Populate button is touched, the App should spawn a thread that goes to the
DBURL (which is a simple text file of names, one per line) and populate the database
with the list of names there. While this is happening, the UI should display some kind of
‘I know you’re waiting’ visual – such as a progress bar or spinning wheel. At this point it
should not be possible to activate the Search button.

When the database is populated the first thread should send a message to the main UI
process that it has finished (and then it should terminate), and the UI should both stop
displaying the wait motif, and should emit a ‘toast’ (Android) or an ‘alert’ (iPhone) that
indicates the database is loaded. At this point the second button (‘Search’) should become
active.

For iPhone Developers

When the search button is touched a UIWebView should be populated with
successive Google query’s for each of the names in the database. Each display of the
results should stay on the screen until the user pushes the ‘back’ button, and then the
result for the next name displayed.

For Android Developers

When the search button is touched a new activity should be launched which
implements a SectionsPagerAdapter to implement a standard android UI framework
called “Scrollable Tabs with Swipe” (When creating a new Eclipse project you can select
“Blank Activity” and then select “Scrollable Tabs with Swipe” as a navigation type to see
a complete example of this UI type).

You will then create a single Fragment class with an android WebView widget in

its layout that accepts (at least) a string as an input argument. For each name in the
database you will create an instance of this fragment with a name as the input argument
and associate it with a section of the SectionsPagerAdapter. Thus as you scroll to the
right from page to page you should see successive searches of the names in your
database. Pressing the ‘back’ button should cause the app to go back to the first activity
with the ‘populate’ and ‘search’ buttons.

 Although it will not be enforced or marked if you would like a small technical
challenge you can think about how one might ensure that the searches for only the pages
to the left and right of the currently visible page could be completely finished loading
before the user chooses to scroll to it.

For All Developers
1. We would like everyone to load the web searches inside their app, for this assignment

please refrain from launching a separate browsing app on the phone.
2. The official Google programmatic search API is no longer useful as it only allows 25

searches a day. For the purposes of this assignment a Google search can be done by
simply loading your Webview with a URL that looks something like
www.google.ca/search?q=this+is+my+search

 3

3. Due date: Tuesday February 25th, 6pm, marked out of 10, 0.5 marks off every hour
late. Submit your solution on Blackboard portal, uploading a file under the
Assignment P4 item.

What to submit:

1. Android developers: a zip file containing your final Android application file
(.apk); use your student number as the filename. Also submit the complete eclipse
project directory in a separate zip file.

2. iPhone developers: you must submit the complete project directory, including
source, in a zip file. Use your student number as the filename. Please do your
development on the 5.0.2 version of the SDK, and make sure that you haven’t
included any files by reference. In fact, please test your submitted zip file before
sending it in.

