

Nutrition Facts

Final Report for ECE 1778.

Apper: Jamie Waese

Programmers: Sagun Bajracharya, Jacob Li & Guang Wei Yu

Word Count: 1996 words

Apper Statement: 357 words

Total Word Count: 2353 words

1

Introduction

Nutrition labels have been mandatory on all prepackaged foods in Canada since
December 2007. These labels provide information on the amounts of 13 core
nutrients and calories in an amount of food, along with a % Daily Value indicator to
help people make informed decisions over food choices. This data is presented in the
form of a standardized table, called the Nutrition Facts Table, which is text based
and difficult to extract meaningful information from. Given that this information is
important, it is unfortunate that the design specifications are so poorly suited for
user comprehension.

The purpose of our app is to revisualize the data presented in the Nutrition Facts
label in a more comprehensible manner. By scanning a nutrition label, users can
automatically generate an intuitive and accessible chart of the data, along with a
list of foods with equivalent nutritional values. The app also calculates personalized
daily nutrition recommendations based on the user’s sex, age, height, weight, and
activity levels. Until label regulations are modified to reflect current thinking about
data visualization, this app can help people make smarter nutritional choices.

Figure 1. A sample nutrition facts label. Note how the data is presented entirely with text,
requiring considerable cognitive processing to parse information. There is also a fair
amount of “non-data ink” which further complicates visual analysis of the image.

2

Overall Design

General Design Notes:
The app opens directly to its main screen where the user can begin using it
immediately. To maintain the familiar look and feel of the Nutrition Facts label, a
similar black-text-on-white-background motif was used. We also matched the fonts
and horizontal bars as page separators. For internal design consistency, all colors
were chosen from this color palette:

Figure 2. Our color palette.

Data Visualization:
Our data visualization charts went through several rounds of design before we
settled on the final layout. Here are two early incarnations:

Figure 3. An early mockup, rejected
because of the lack of hierarchical
organization.

Figure 4. Another early mockup,
rejected because of unnecessary
infographics.

3

Our final design was influenced by the work of several prior designers, particularly
Bradley Mu, who created this fine piece:

Figure 5. Bradley Mu’s entry to Good Magazine’s Redesign the Food Label contest.
(http://www.bradleymu.com/newsite/nutrition-label/)

4

http://www.google.com/url?q=http%3A%2F%2Fwww.bradleymu.com%2Fnewsite%2Fnutrition-label%2F&sa=D&sntz=1&usg=AFQjCNF3uRpcvFbXk0JxQcA2-bPWfkg5Kw

Our final design is presented here:

Figure 6. Our redesigned food label.

The minimalist aesthetic is consistent with current thinking in data visualization.
Color-coded bar charts are easier to extract information from than text because they
rely on features we preattentively recognize: size, placement, color, etc. For this
prototype we chose to display Calories, Fat, Carbohydrates, Cholesterol and Sodium.
A future version will allow users to select additional items they wish to track.

5

Block Diagram:

Figure 7. Block diagram of app.

Video Feed:
This block takes in continuous video data from the camera and sends it to the
display screen. When the user clicks on the camera button, a picture is taken of the
current preview, and gets passed onto the optical character recognition (OCR)
engine.

Filters / Image Cleanup
This block pre-processes a bitmap grayscale image polled from preview video feed.
The grayscale image is cropped and rotated to appropriate orientation, and passed
through a binarization filter using Otsu’s method. The output is 1-bit Leptonica Pix
format binary image which the Tesseract (OCR) engine accepts.

Otsu’s method is used to dynamically threshold the grayscale image to produce a
binary image. The dynamic thresholding enable binarization of image under various
lighting conditions. It is also ideal for nutrition fact type label as the foreground (the
words) are highly contrasted from the background (usually white). We also add
image smoothings to make OCR easier to perform. We use Leptonica image
processing libraries to perform these filterings.

6

Tesseract (OCR) Engine
The filtered image is scanned by a port of the desktop Tesseract engine and a simple
text file containing all of the characters that the engine recognized is output. We
took a third party open source simple OCR program, pared it down, and used it as
the basis for this block.

Fuzzy String Parser
The raw text file from the OCR engine is run through a fuzzy string parser which
looks for specific substrings which correspond to nutritional fields (i.e., “Calories”, or
“Sodium”). This is done by splitting every line in the input text file between text and
numbers, then generating a Levenshtein distance between the input substring and a
substring from the dictionary, and (if certain thresholds are met) finally choosing an
interpretation of that input substring. The numbers are then taken as the value for
the discovered field.

A filter to fix misidentified characters (ex. the OCR engine returned a “o 9” instead of
a “0 g”) was also implemented in this block. The filter uses the context from the text
before and after, as well as similar character shapes, to determine whether a
character has been misidentified or not.

Visualization Generators
Two separate types of visualizations are generated from data returned by the fuzzy
string parser. The first includes all of the charts and graphs and the second provides
a set of pictures of comparable foods for each nutritional field. The first visualization
page uses modified native progress bars to display fat, carbohydrates, sodium and
cholesterol; a custom backport of the native number picker to display the serving
size picker; and a custom version of the third party library Progress Wheel. The
second visualization page has a fixed number of images stored for each nutritional
field - each image represents an approximate ‘tier’ in its field (either low, medium,
or high). It also uses the custom number picker.

Preview Pane:
This block is responsible for displaying anything the user can see while using the
app. This includes the initial video feed as well as the revisualization that is
returned by our app.

User Preferences:
This block allows users to personalize the daily recommended nutritional values
that get passed to the graph generator.

7

The calorie counter is based on the Mufflin equation for Resting Metabolic Rates
(http://www.caloriesperhour.com/tutorial_BMR.php):

● Men: (10 x weight in kg) + (6.25 x height in cm) - (5 x age in years) + 5
● Women: (10 x weight in kg) + (6.25 x height in cm) - (5 x age in years) - 161

This is multiplied by a factor determined by McArdle et al (1996) according to the
user’s activity level, as interpolated from the following table:

Activity Factor Category Definition

1.2 Sedentary Little or no exercise and desk job

1.55 Moderately Active Moderate exercise or sports 3-5 days a week

1.9 Extremely Active Hard daily exercise or sports and physical job

This block also includes the saving and loading feature, which allows the user to
save a label for future perusal or comparison.

8

http://www.google.com/url?q=http%3A%2F%2Fwww.caloriesperhour.com%2Ftutorial_BMR.php&sa=D&sntz=1&usg=AFQjCNH1vjXfPzby-FVH2s_RAZMsO99JYA

Statement of Functionality

Below are screenshots detailing the various parts of our app:

Figure 8. Camera Screen.

Camera Screen

This is the main screen of the app. From here, the
user can scan a Nutrition Facts label and access
the Personal Settings or Load Image screens. User
help tips are accessed by pressing the “Click me
for help” line.

Figure 9. Processing Screen.

Processing Screen

Upon capturing an image, a series of random
nutrition facts provides engagement while the
image gets processed in the background.

9

Figure 10. Visualization Screen

Visualization Screen

This screen uses status bars to display the
captured data. A scroll wheel allows users to
update the displayed values according to their
desired number of servings. The buttons at the
bottom of the page link to the Save Label
function, and the list of Equivalent Foods.

Figure 11. Equivalent Foods Screen.

Equivalent Foods Screen

This page displays photographs of foods that
have equivalent nutritional values for the field
selected by the scroll wheel. (Ex. 1 serving of
cookies has 6g fat, which 1 ice cream cone also
has)

10

Figure 12. Personal Settings Screen.

Personal Settings Screen

Users can adjust their daily recommended
nutrition values by customizing the sliders for
height, weight, age, and activity level. Tapping
the person icon changes gender.

Load Label Screen

From the main screen, touching the Open File
icon brings the user to this page. Here, the user
may view any previously saved Nutrition Label.

Figure 13. Load Label Screen.

11

Considerations for Next Time

We have learned that OCR is a computationally expensive and challenging task. It is
particularly difficult when nutrition labels are warped, the surface is laminated, or
the lighting is not favourable.

Currently, all computations are done locally on the mobile device. This results in an
overall processing time of 12 ~ 15s. If this app were to be remade, we would consider
doing all the processing on a server rather than on the mobile device. The OCR
engine, Tesseract, performs better on servers than on mobile devices. Even
accounting for upload / download time, this should provide a performance boost.

Contributions by Group Members

Jamie:
I designed the look and feel of the app -- first using broad strokes with Moqups.com,
then again with fine detail using Photoshop. I also prepared all the graphic elements
and did a fair amount of research to support the daily recommended nutrition
values and food equivalency comparisons. Finally, I contributed to the production of
the app by providing usability and design notes at every stage of development and
spearheading the preparation of this final report.

Sagun:
I implemented the main page of the app that displays a camera preview inside a
bounding box to guide users in taking pictures of nutrition labels. I also set up the
back end computations required to crop and downscale the image to a small portion
of the entire image, reducing the overall computational power required for OCR. In
addition to the main page, I also implemented the settings page that is capable of
remembering the user’s settings throughout various instances of the app.

Jacob:
I created the fuzzy string matcher and misidentification fixer which takes in raw
junk text data from the OCR of the image and interprets words that would be on a
nutritional label within that data. In addition, I also created the main visualizations
page, which showed all of the nutritional fields in a graphical format. Finally, I
implemented the saving and loading features which allowed users to save labels and
view them later.

Guang:

12

I implemented the filters for image pre-processing. For pre-processing, I used Otsu’s
method to apply dynamic thresholding to a grayscale image to obtain a binary
image, and a smoothing filter to close out edges in the letters. Instead of passing
grayscale bitmaps, we pass the binary image which is only 1-bit of information per
pixel to the OCR engine. Additionally, I implemented the visualization page which
gives pictures of equivalent foods for each nutritional field. Finally, I implemented a
randomized factoid popup feature during OCR computation to keep users occupied.

Apper Context

As a student of data visualization, I am interested in developing tools and
techniques that help people grasp the significance of raw data through visual
means. My expertise is on the design side, and my studies focus on applying what we
know from a growing body of literature about data visualization to bioinformatic
research tools that were not originally built with that in mind. Since my skills are
multidisciplinary by nature, my future projects will span many fields, not just
biology. Working with nutrition data has given me an opportunity to explore data
visualization paradigms beyond the world of biology, and thus broaden the scope of
my expertise. With that in mind, I am grateful to have had the opportunity to work
on this project as part of my studies.

This app influences my research field in that it provides an example of how the
rigorous application of current thinking about data visualization can be applied to
commonplace subjects (such as the Nutrition Facts label) for non-educated users.
There is an informal divide in the data visualization community between
visualization apps intended for academia vs. visualization apps intended for the
public. Apps intended for the public often over-decorate their data with unnecessary
shading, 3D depth, outlines, and pictographs in order to make the data appear more
“interesting”. Apps intended for academia begin with the premise that the data is
already interesting, and they focus on stripping away anything that might interfere
with capturing the information they are designed to convey. This app demonstrates
the positive effect of applying an academic design approach to an app made for the
general public.

Given that I don’t have a background in computer science, this experience has
taught me several valuable lessons about about software engineering. I have
already applied the notions of agile vs. cascade planning, wireframe mockups, and
block charting to my dissertation project. While most of my studies are focused on
building web applications, I am intrigued by the possibilities of applying multiple
sensors and mobile computing to my future data visualization projects. Thank you
for the opportunity to create this app as part of my graduate studies.

13

Future Work

It currently takes a long time to scan, process and display the data. A majority of this
time is spent doing text identification. This is because Tesseract scans the image
pixel by pixel to identify pixel clusters that potentially resemble letters. To speed this
process up we convert the input image to grayscale and then threshold it so we are
left with a binary representation of the image (where black pixels are 1s and white
pixels are 0s). This helps find clusters of pixels quicker (since neighbouring pixels can
be considered connected if they share the same value) and thus reduces the overall
processing time of our app by about 10s.

However, the total processing time is still 12 ~ 15s. In the future, to reduce this time
we would like to recognize entire words rather than individual letters. Because there
are a limited number of words that can appear on nutrition labels, we expect this to
reduce the overall processing time by another 4 ~ 6s since clusters of pixels
representing words are much easier to identify than small clusters of pixels
representing single letters.

14

Referenced Libraries and Projects:

Tesseract - https://github.com/rmtheis/tess-two
Sample OCR Application- https://github.com/rmtheis/android-ocr
ProgressWheel - https://github.com/Todd-Davies/ProgressWheel
NumberPicker - https://github.com/SimonVT/android-numberpicker

Source Code Release:

We would like to keep our source code unreleased for now, as we’re hoping to do
more work on it for a proper release into the Play Store.
Everything else (video, paper) can be posted online.

Referenced Nutrition Algorithm:
McArdle,William, Frank Katch, and Victor Katch. 1996. Exercise Physiology 4th
edition Baltimore: Williams and Watkins

15

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Frmtheis%2Ftess-two&sa=D&sntz=1&usg=AFQjCNGE1IzI1cOI0VUEZtAH7hjs3XYG2Q
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Frmtheis%2Fandroid-ocr&sa=D&sntz=1&usg=AFQjCNGzQFrfKvv3TufscGR4eHudM6MMbA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FTodd-Davies%2FProgressWheel&sa=D&sntz=1&usg=AFQjCNELKQlHCxrU-AglFU5zZ0e0AKC64g
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FSimonVT%2Fandroid-numberpicker&sa=D&sntz=1&usg=AFQjCNEPI2q94Eo3I_Xpr4pMGsvDuN4ukQ

