
 1

ECE 1778 – Creative Applications for Mobile Devices
January 2016

Programming Assignment P1, for Programmers

Introducing Yourself & Development Environment & Touch Buttons

PART I
A key part of this course is to form an inter-disciplinary group to make a new and
exciting application. To both help form those groups, and to make sure you have
sufficient background as a programmer, please create the following:

1. A text description of your background, with the following items:
• A list of your degree(s), and where you received them. Be sure to include

the field(s) you were studying.
• A list of the computer programming courses that you have taken.
• A list (name and one line description) of the programming projects you

have undertaken, together with the size (in number of lines of code) and
the computer language used.

• A list of any companies that you have worked for as a programmer, if any.

2. Create a video of yourself describing your most significant programming project
done in the past – its goal, your role in its creation, and how well it worked. The
video must be less than 2 minutes long. Upload this video to YouTube by
going to the site https://www.youtube.com/upload and set this as an ‘unlisted’
type video. (This means only people with the link can see it). Once you’ve done
this, be sure to copy the YouTube link that is provided, for use in posting your
video below.

To post these for view by the class, go to the Piazza course website (you’ll see
instructions on how to enroll into the Piazza account on a Blackboard Portal
announcement/email) and click to the programmer_intros entry at the top left of the
site. Click the ‘new post’ button, and insert a new ‘question.’ You should place both
your written text (from (1) above) and your video (from (2) above) into this post. To
insert a video click ‘insert’ -> insert video, and in the insert media popup, use the
‘general’ method, and past your YouTube link into the source field.

Part I is due on Monday January 11th at 6pm. Sooner is better, though! A penalty
will be levied if late. See below for Part II.

 2

PART II
The goal of this part of the assignment is to set up the development environment that you
will use throughout this course, and make a basic ‘Hello World’ program and run it. As
we are trying to move quickly on the basics in the course, you will also learn about how
to layout simple buttons on the phone and how write code that reacts to them.

For Android Programmers
In this course you must have access to a Windows, Linux or Mac computer, all of which
are supported by the Android environment. You will have to download and install
several packages on your computer to begin learning development. Go to this web page
to begin:

http://developer.android.com/sdk/index.html

Follow the instructions to download and install the Android Studio, which contains
everything you need.

To ensure that you’ve got the basic setup working, do the “Building Your First App”
tutorial described in the tutorials section of the Android Developers website:
http://developer.android.com/training/basics/firstapp/index.html. The key thing is to
learn how to start a project and make the Android Phone emulator work on your
development computer. It will also be helpful to read this section of the Android
developer’s website: http://developer.android.com/tools/workflow/index.html

Learn Basic Environment

Obtain a copy of The Busy Coder's Guide to Android Development, version 6.9. First
obtain a license key from Braiden Brousseau, on of the TAs for the course. It can be
downloaded from http://commonsware.com/Android/. Look through pages 1 through 164
of the Murphy Book, doing the small coding exercises given there. There are parts you
can safely ignore, mostly associated with the older Eclipse environment. Also, some of
this repeats what you learned from the above websites, but it could make for a handy
reference.

You can simply read through the tutorials if you wish. Tutorial #1 gives a second set of
instructions on how to install the development kit, in a somewhat different order, which
you won’t need if you’ve followed the instructions above. If you have trouble with the
instructions above, you could try these instead. Tutorial #2 is a lot like the first app
tutorial that you did above.

This will expose you to the basic development environment, as well as the structure of an
Android Project’s files, and the Android Studio environment. The later pages move on to

 3

describe activities (which are the pages that an app user sees), and how to lay these out.
This includes user interfaces such as buttons and text fields, and how to display images.

You can download all of the examples in the The Busy Coder's Guide to Android
Development book from the website https://github.com/commonsguy/cw-omnibus. To
download all of the examples in a zip or tar file, click on the download ‘zip’ button on the
left upper part of the page.

For iOS (iPhone) Programmers

Go to the website https://developer.apple.com click on the member center and register,
and then download the Xcode 7.2 development kit from the mac App store. To be
enabled to download code into an actual device, you will either have to pay the $99
annual fee, or go to the following site that explains how to acquire the UofT site license
for these tools:

http://mobile.utoronto.ca/build/ios

For iOS-based devices (iPhone, iPad) you have two choices, depending on which
language you wish to use (I’m inclined to choose Swift at this point, but I don’t have
personal experience with it).

1. The older Objective-C language - use the book Beginning iOS 7 Development
by Jack Nutting, Fredrik Olsson, David Mark and Jeff LaMarche , is good, and I
think still applies to the current iOS9. It can be found here:
http://www.apress.com/9781430260226. It can be purchased electronically, right
off the Apress website, and is $USD 34.99 as of this writing.

2. The newer Swift 2 language, the Beginning iOS 9 Programming with Swift by
Simong Ng can be found here: http://www.appcoda.com/swift/. Click the ‘buy
now’ link on the page and select the ‘book only’ option, which is $USD 39 as of
this writing.

If you choose Objective-C read and do the exercises in Chapters 1, 2, and 3 of
Beginning iOS 7 Development, by David Mark, Jack Nutting, Jeff LaMarche and
Fredrik Olsson, which provides a good introduction to the iOS basics necessary to do this
assignment.

If you choose the Beginning iOS 9 Programming with Swift text by Ng, read and do
the exercises in Chapters 1 through 4.

Assignment
Write a mobile application that presents the users with four fields:

1. A text field that initially contains the word ‘No Clicks Yet’
2. A button labeled ‘Register a Click’.
3. A button labeled ‘Toggle Image’.

 4

4. A menu item.

The program should respond to the pressing of the buttons in the following way:

• When ‘Register a Click’ is pressed, the text field should have its contents
changed to ‘Clicked 1 times.’ Subsequent presses of the button should increment
beyond the number 1.

• When the ‘Toggle Image’ button is pressed, a picture of a dog should appear. The
next time it is pressed, the picture should disappear, and then appear on alternate
presses.

• Also, make a menu item that will act as a reset. When this button is selected, the
text field should return to ‘No Clicks Yet’, the count variable should be reset to 0,
and the picture of the dog if visible should become invisible.

You should only need an emulator to do this assignment, not an actual phone.

With all assignments, including this one, we’d like you to produce applications that work
well and robustly, as good training for the app that you’ll make in the project. As such,
we require that you follow Braiden Brousseau’s guide to Quality Apps, which is
appended below.

 5

To Hand In

For Part I: Due January 11th at 6pm, as described above.

For Part II: January 18th, 6pm. Marked out of 10, 0.5 marks off every hour late.
What to submit:

Android: a zip file containing both a final .apk of your assignment and your
complete project, runnable in android studio.

 iOS: a zip file of complete project, runnable on Xcode 7.2.

Submit your zip file through the Blackboard Portal for this course. Be sure to submit it
to the Assignment ‘P1’ To do this, go to the Programmer Assignments link on the left
side of the blackboard portal for this course, and click on Assignment P1. You should be
able to upload your submission file there.

 6

Braiden Brousseau’s Guide To Quality Apps

The purpose of this guide is to ensure that the software you create in this course – both
the project and the assignments, meet a certain standard of quality and robustness. The
assignments will include grades allocated towards these guidelines, as motivation to
make sure your code works well. This will stand you in good stead as you build the large
app that is your project. These guidelines come from our previous year’s experience with
marking assignments and projects. These guidelines are written for Android
programmers, but similar concepts apply for iOS.

Don’t let the User crash the App
The user shouldn't be able to crash an app by pressing touch objects in the "wrong" order
or by spam clicking something. If an activity requires button 1 to be pressed before
button 2 (for example to select what data file should be used before processing), then
pressing button 2 first should not crash the app. Nothing should happen, or better yet the
user could be notified that they must select a data file first by pressing button 1.

Don’t make the user wait
Avoid unnecessary slowdowns caused by overuse of new activities and fragments where
not appropriate.

Avoid waiting for large files to be read or written to storage. For example if you need to
load a very high resolution image consider loading a thumbnail version first while
waiting for the full resolution version. When saving a large piece of data consider doing
so asynchronously if the required save time noticeable impedes use of the app.

Make use of time while a user is idling. In an app that shows a user the top stories of the
day from a website, load the data for story 2 while the user is reading story 1. It is very
likely the next action from the user will be to click for the next story. This is better
experience than having to wait for a download every time.

List and other scrollable elements should always scroll smoothly.

In the context of the assignments in this course your app should never ‘feel” slow or
laggy. Most of the time your apps will feel fast and smooth without any intentional
consideration while programming them. When they don’t however it is usually a sign
something is implemented in a considerably suboptimal way and you are encouraged to
research and evaluate other techniques and implement something slightly more complex.

Use UI Elements Appropriately

Although you can programmatically set the text in an “EditText” box, if the app has no
intention of the user entering text here use a “TextView” or another element that the user
cannot change.

 7

Content-Independent Interface
The UI should behave and look similar regardless of what data is loaded or entered. For
example, loading a picture of different sizes should not cause buttons in the app to
physically move around to different places on the screen. Loading and displaying a large
text file shouldn't push UI elements off of the bottom of the screen, or somewhere else
unreachable. If the UI changes based on what content is loaded it should be intentional.

Appropriately Sized and Labeled Touch Targets.
Avoid making UI elements (that the user must touch) very small and close to other
elements they might touch by accident. It should be clear in an app what can be touched
and ideally what action will be taken. One can use text labels, icons, pictures, colors etc.
to convey to this type of information.

Fill Space Appropriately
UI elements should have fairly commonsense space occupancy. For example, suppose an
activities' main purpose is to measure how long it takes to run a certain distance and show
you your current time along the way. Making the running time font size 8sp in the upper
right hand corner while making a ‘share my time to twitter’ button 3/4 of the screen is
probably bad design.

Explore the apps you use everyday for inspiration on this type of design. Ultimately we
are not looking for programmers to be amazing designers but we want you to learn and
demonstrate your ability to finely control UI elements. Becoming confortable with this
during the assignments will pay significant dividends when the project works starts as
you have short development cycles in between presentations of your progress.

