Appendix C

Tutorial 2 — Implementing Circuitsin
Altera Devices

In this tutorial we describe how to use the physical design tools in Quartus 1. In addition to the modules
used in Tutoria 1, the following Quartus I modules are introduced: Fitter, Floorplan Editor, and Timing
Analyzer. To illustrate the procedures involved, we will first implement the example verilog project created
in Tutorial 1inaMAX 7000 CPLD.

C.1 ImplementingaCircuitinaMAX 7000 CPLD

Select File | Open Project and browse to the directory designstyle2, which contains the Verilog design
example used in Tutorial 1. Asdepicted in Figure C.1, select the example verilog project (Quartus Il project
files have the filename extension .gpf) and click Open.
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Figure C.1. Opening the example_verilog project.

C.11 Seecting aChip

In Tutorial 1 we used the Compiler to perform the synthesis operations, which generated the information
needed for functional simulation. Now, we will implement the design in a CPLD and then use timing
simulation.



To specify which chip to use, select Assignments | Device to open the window shown in Figure C.2.
To select the MAX 7000 CPLD family, click on the pull-down menu in the box labeled Family and select
MAX7000S. The S at the end of the name refers to the members of the MAX 7000 family that are in-system
programmable. Methods of CPLD programming are discussed in Chapter 3, in section 3.6.4. Note that in
some cases Quartus |1 will display the message “Device family selection has changed. Do you want to
remove all pin assignments?’ Click Yes to close this pop-up box.
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Figure C.2. Selecting a MAX7000S device.

In the Target device box you can specify that Quartus Il should automatically select a device during
compilation. The ability to have a chip chosen automatically is sometimes convenient for the designer.
However, in this case we wish to select a specific chip, so click on Specific device selected in ’Available
devices’ list.

The available chipsin the MAX 7000S family are displayed in the box labeled Available devices. One
available chip is the EPM7128SL C84-7 (if this device is not listed, change the Speed Grade item in the
Filter box to Any). The meaning of the chip nameis asfollows. The EPM7 means that the chip isamember
of the MAX 7000 family, and the 128 gives the number of macrocells in the chip. The designator LC84
indicates an 84-pin PLCC package; thistype of package isdescribed in section 3.6.3. The —7 givesthe speed
grade. We discuss speed gradesin Appendix E. Asindicated in Figure C.2, click on the EPM7128SL C84-7
device, then click OK to close the Settings window. We have chosen this chip because it is provided on an
Altera development board that is discussed in Appendix D.



C.1.2 Compiling the Project

In Appendix B we ran just the synthesis tools in Quartus I, by using the command Processing | Start |
Start Analysis & Synthesis. Now, we wish to run not only the synthesis tools, but also a number of other
tools that implement the circuit in the target device. To invoke al the needed tools, select Processing |
Start Compilation, or use the toolbar icon that looks like asolid purple triangle. Thisrunsin sequence four
of the modules in Figure B.16: Synthesis, Fitter, Assembler, and Timing Analyzer. Aswe saw in Tutorial 1,
the compilation progress through each Quartus |1 module is displayed in the Status window on the left side
of the Quartus 11 display. After the Analysis & Synthesis module converts the Verilog codeinto acircuit that
comprises macrocells, the Fitter module chooses locations on the device for these macrocells. A detailed
discussion of the CAD modulesis provided in Chapter 12.

When compilation is finished, the compilation report displayed in Figure C.3 is produced. As we said
in Tutorial 1, thereisalot of useful information in this report. Click on the small + symbol to expand the
Fitter section of the report, and then click on the Fitter Equations section to reach the display in Figure C.4.
Scroll through this part of the report to see the logic expressions implemented by our circuit. At the bottom
of the report the output f isgiven as

f = OUTPUT(ALL6);

This means that f appears on an output pin, and that output is defined by the logic expression called A1L6,
which isrealized as indicated near the top of the Fitter Equations section in Figure C.4. These expressions
properly implement our logic function f = xxo + Toxs.

C.1.3 Performing Timing Simulation

Timing simulation is done by using the same procedure that we described in Tutorial 1 for functional sim-
ulation. Select Assignments | Settings and click on the Simulator item, as shown in Figure B.24. Open
the drop-down list next to Simulation mode and change this setting from Functional to Timing.
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Figure C.3. The compilation summary.
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Figure C.4. The Fitter Equations section.

Use the input waveforms for =1, 22, and =3 that were drawn with the Waveform Editor in Tutorial 1 as
inputs for the timing simulation. Select Processing | Start Simulation to run the simulation. When it is
completed, the simulation report is displayed. Part of this report is shown in Figure C.5. Select View | Fit
in Window to see the complete time range of the waveforms. Compare these waveforms to those shown
in Figure B.25. The timing simulation produces the same results as the functional simulation in Tutorial 1
except that the times at which changes in f occur are now determined by the timing characteristics of the
EPM7128SL C84-7 chip.

We can use the vertical reference line in the display to determine the exact time when f changes value.
To do this select View | Snap to Transition, so that your mouse pointer will align perfectly with an edge on
any waveform. Click and drag the vertical reference line to the point where f first changes to 1, as shown
in the figure. The box labeled Master Time Bar now displays 27.5 ns, meaning that it takes 7.5 nsfor the
change in 23, which occurs at 20 ns, to cause achangein f. Thisresult is areflection of the —7 speed grade
of the chip, which is specified as having adelay from an input to an output pin of 7.5 ns.
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Figure C.5. The Timing Simulation Report.

C.1.4 Usingthe Floorplan Editor

In addition to examining the equations in the compilation report, another way to view the implementation
results is to use the Floorplan Editor. Select Assignments | Timing Closure Floorplan to open the win-
dow shown in Figure C.6. Another way to open this window is to click on the corresponding icon in the
toolbar. To make the window ook like the one in the figure, it may be necessary to change the setting in the
Floorplan tool by selecting View | Interior Cells, which causes the macrocells in the device to be displayed.
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Figure C.6 shows some of the macrocells in the EPM 7128SL.C84-7 chip. Aswe describe in Appendix E, the
macrocells are organized into logic array blocks (LABS), where each LAB contains 16 macrocells. To see
larger or smaller views of the LABS, click on the magnify buttons in the vertical toolbar; left-click to enlarge
the image and right-click to reduce it. To display different sections of the chip, use the window scroll bars.
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Figure C.6. The Timing Closure Floorplan display.

The Floorplan Editor uses different colors to indicate macrocells that are used in acircuit and macrocells
that are unused. For our small example three pins are used for the three inputs to the circuit, and one
macrocell provides the circuit output. Adjust the display so that the macrocell that produces the output f is
visible, as depicted in Figure C.7. Click on this macrocell to select it. The Floorplan Editor can draw lines
that indicate which other macrocells the selected macrocell is connected to by choosing View | Routing
| Show Node Fan-In. It is aso possible to see what logic function is implemented in the selected node
by selecting View | Equations. As seen in the figure, this choice displays the logic expressions from the
compilation report in the bottom part of the Floorplan window.

Instead of displaying the macrocells, the floorplan tool can aternatively display a picture of the pins on
the chip package. To change to this view, select View | Package Top. This leads to the display in Figure
C.8. To close the report file equation viewer, select again View | Equations to toggle off this feature.



ip: example_verilog {Timing Closure)

Chip name: | example_verilog (EPM71285LC84-7]

(o ——
(o

{10y

(o)

e iy
L qiy

L1 oy

—__1TOI (lf0

™~ H

i

Fandn(3/3  <GoTo |

E quations [1/1]

GaTos [ FanOut[i41)

51 [«1) [DATAOUT)
B 52 [+2] [DATAOUT)
553 [+3] [DATAOUT)

< A1L6 [i779) = A1LE_or_out;

ATLE or_out =A1LE pl_out # ATLE p2_out:

ATLE_pl_out = =2 & «l;
ATLE p2 out = 1w2 & =3;

=

o

(] [DATAIN]

Figure C.7. Viewing node fan-in and equations.
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Figure C.8. The package top view.



The Floorplan tool is not essentia in the CAD flow described above. It just provides a graphical view of
the information contained in the compilation report. We will describe a different use of the Floorplan tool
in Appendix D, in which it will be used to modify the implementation results produced by the Compiler,
instead of just displaying them.

We have now completed the implementation of the example. verilog project inaMAX 7000 chip. Close
the project.

C.2 Implementing a Circuit in a Cyclone FPGA

The CAD flow used to implement a circuit in a Cyclone FPGA is the same as that used for the MAX 7000
CPLD. We show in Chapter 4 that multilevel logic synthesis is an effective optimization strategy when
targeting designs to lookup table-based FPGASs. Figure 4.54 gives Verilog code for a seven-variable logic
function used to illustrate the benefits of multilevel synthesis. In this section we will create a new design
project, named example_verilog2, which represents the Verilog code in that figure.

Create a new project in adirectory named tutorial 2\ multilevel, and use the name example verilog2 for
both the project name and the name of the top-level entity. Select the Cyclone family and let the compiler
choose a specific device.

Create a Verilog design file called example verilog2 that comprises the code from Figure 4.54, as dis-
played in Figure C.9a. Compile the project. After successful compilation, in the compilation report expand
the Fitter section and click on Fitter Equations. At the bottom of this section in the report, the output f is
specified as

f = OUTPUT(ALL3);

As shown in Figure C.9b the logic expression for A1L3 implements f in a multilevel logic form. The
first level of logic is specified as

Al1L2 = xgwoxy + Tﬁ(wl + x2x7)

We show in Appendix E that the logic cell in the Cyclone FPGA is a 4-input lookup table (LUT) that can
implement any four-input function. Since the expression above has four inputs, it can be realized in one
logic cell in the device. This cell provides an input to the next-level expression

AlL3 = A1L2($3 + x4x5)

This expression aso has four inputs, and can therefore be realized in asingle cell. Thus, f isimplemented
as two cascaded logic cells. The reader is encouraged to verify that the expression for A1L3 properly
implements the function specified in Figure C.9a.

Having implemented the design in the Cyclone device, perform a timing simulation (as explained in
section C.1.3) to gain afedling for the timing characteristics of the Cyclone device. Once a project has been
compiled for the target device, it can be downloaded into a chip by using Quartus Il. The procedure for
programming a chip is described in Appendix D.
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(a) The Verilog source code.
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Figure C.9. The example_verilog2 source code and implementation.

C.3 Implementing an Adder using Quartus||

In section 5.5 we show how an n-bit ripple-carry adder can be specified in Verilog code. In this section we
show how the ripple-carry adder can be implemented using the Quartus Il system. Create a new project,
adder16, in a directory tutorial2\addern. We will implement the adder circuit in a Cyclone FPGA. Thus,
in the New Project Wizard window shown in Figure B.7, select the Cyclone family. Choose Yes under the
guestion Do you want to assign a specific device, and click the Next button. In the wizard's screen that
comes next choose the EP1C6F256C7 (if this device is not listed, change the Speed Grade item in the
Filter box to Any). We are using this device because it is available in the Cubic Cyclonium development
board provided by Altera.

C.3.1 TheRipple-Carry Adder Code

Verilog code for the n-bit adder is given in Figure C.10. It takes the carry-in signal, carryin, plus two n-bit
numbers, X and Y, asinputs and produces the n-bit output sum, .S, and carry-out signal, carryout. The code
uses the parameter n, so that the adder can be parameterized to work for any value of n. In this example, n
is set to 16. In the code the vector C' is used to represent the intermediate carries between the stages in the
adder. A for loop is used to create n full-adders that comprise the ripple-carry adder.

Type the code in Figure C.10 into the Text Editor, as explained in Section B.4.2, and save thefile in the
tutorial2\ addern directory using the name adder16.v. Compile the circuit. The compilation report is shown
in Figure C.11.



module adderl6 (carryin, X, Y, S, carryout);

parameter n = 16;
input carryin;
input [n—21.0] X,Y;
output [n—1:0] S
output carryout;
reg [n—1:0] S

reg [n:Q] C;

reg carryout;
integer k;

always @(X or Y or
begin
C[Q] = carryin;

carryin)

for (k=0; k <=n—-1; k=k+1)

begin

S[k] = X[K] " Y[K] " C[K];
Clk+1] = (X[K] & Y[K]) | (C[K] & X[K]) | (C[K] & Y[K]);

end
carryout = C[n];
end

endmodule

Figure C.10. Verilog code for aripple-carry adder.
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Figure C.11. The compilation report summary.

C.3.2 Simulatingthe Circuit
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To test the correctness of the circuit, we will perform timing simulation. For brevity only a few test vectors
will be used, but in areal design situation more extensive testing would be required.




Open the Waveform Editor window. Use Edit | End Time to set the desired simulation to run from
0 to 250 ns. Choose the grid lines to be placed at 25-ns intervals. This is done by selecting Edit | Grid
Size, which |leads to the window in Figure C.12. Set the period to 50 ns and click OK. Select View | Fit in
Window to display the entire simulation range in the window.
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Figure C.12. Setting the spacing of grid lines.

Select Edit | Insert Node or Bus, and then open the Node Finder utility to reach the window in Figure
C.13. Set thefilter to Pins: all and click List, which displays the input and output nodes as depicted in the
figure. Scroll down the list of displayed nodes until you reach carryin. Select this node by clicking on it and
then clicking the > sign. Next select the X input. Note that this input can be selected either as nodes that
correspond to the individual bits (denoted by bracketed subscripts) or as a 16-bit vector, which is a more
convenient form. Then, select the input Y and outputs S and carryout. This produces the image in the

figure. Click OK.
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Figure C.13. The Node Finder window.
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The Waveform Editor window now looks like the image in Figure C.14. Vectors X, Y, and S are initially
treated as binary numbers. They can also be treated as either octal, hexadecimal, signed decimal, or unsigned
decimal numbers. For our purpose it is convenient to treat them as hexadecimal numbers, so right-click on
X inthe Name column and select Properties in the pop-up box to get to the window displayed in Figure
C.15. Choose hexadecimal as the radix, make sure that the bus width is 16 bits, and click OK. (Quartus I1
uses the term bus to refer to multibit nodes.) 1n the same manner, declare that Y and .S should be treated as
hexadecimal numbers. The resulting waveform display is shown in Figure C.16.
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Figure C.14. Selected input and output nodes.

Node Properties <}
General |
Narne: I><
Type {inPUT |

Value type: ‘BfLeveI

Fadix

Bus width I‘IB

Figure C.15. Defining the characteristics of a node.
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Figure C.16. Using the hexadecimal representation for multibit signals.
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We will now set the test values of X and Y. The default value of these inputsis 0. To assign specific
values in various intervals proceed as follows. Select (highlight) the interval from 100 to 175 ns of input
X. Press the Arbitrary Value icon in the toolbar (it is labeled by a question mark), to bring up the pop-up
window in Figure C.17. Enter the value 3FFF and click OK. Then, set X to the value 7FFF in the interval
from 175 to 250 ns. Set Y to 0001 in the interval from 50 to 250 ns. Thus, the input waveforms should be
as depicted in Figure C.18. Save the file as adder16.vwf.

Arbitrary Value %]
Mode/group namers):
® Cancel |
Radix: IHexadecimaI j
Mumetic or named wvalue: j

Figure C.17. Assigning the value of a multibit signal.

C.3.3 Timing Simulation

To examine the functionality of the circuit, and determine its speed of operation in the chosen device, we will
perform atiming simulation. Select Assignments | Settings | Simulator to reach the window in Figure
B.25 and choose Timing as the smulation mode. Run the simulator. The result is given in Figure C.18. It

shows considerable delays in producing the correct value .S = 4000 because the carries are rippling through
the adder stages.
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Figure C.18. Theresult of timing simulation.

Point to the small square handle at the top of the reference line and drag it to the point where the S value
becomes 4000. A more accurate view can be obtained if the waveform image is enlarged using the Zoom
Tool. Enlarge the image to look like the display in Figure C.19. Click on the Selection Tool icon, and drag
the reference line as closely as possible to the point where the value 4000 becomes valid.
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The changein S from 0001 to 4000 is caused by the X input changing from 0000 to 3FFF, which occurs
at 100 ns. As seen in Figure C.19, the output .S changes to 4000 at approximately 123.4 ns. Therefore,
the propagation delay through the adder, for these particular values of inputs, is estimated to be 23.4 ns.
Note that, in this case, the adder performs the operation 3FFF + 1 = 4000 which involves a carry rippling
through most of the stages of the adder circuit. For other values of inputs, the propagation delay may be
much smaller. In Figure C.18, we see that the operation 0000 + 0001 = 0001 is completed in about 8.5 ns.
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Figure C.19. Detailed results of timing simulation.

When we compile our circuit using Processing | Start Compilation one of the modules executed is the
Timing Analyzer. Asexplained in Chapter 12, this module automatically produces an estimate of the speed
of the circuit. Open the compilation report by selecting Processing | Compilation Report or by clicking
on itsicon. The report includes the derived timing analysis. Click on the small + symbol next to Timing
Analyzer to expand this section of the report. Then, click on Timing Analyzer Summary to get the display
in Figure C.20. The summary indicates that the estimated worst case propagation delay from an input to
output pin, t,4, is 24.7 ns. This longest path starts at the carryin input and ends at S[15]. Note also that
the minimum delay is estimated to be 8.5 ns. More detailed information about the propagation delays
along various paths through the circuit can be seen by clicking on tpd on the left side of Figure C.20,
which displays the information in Figure C.21. Here, we see that there are several paths along which the
propagation delay is close to the maximum, including the one given in the summary in Figure C.20. These
longest-delay paths are referred to as critical paths.

& adder16 Compilation Report M=l E2

%[:l Analysis & Synthesis ‘I

Sh Fitter Type Slack |Required Time | Actual Time |From |To
Sh0 Assembler waorst-case tpd WA [Mone 24727 ns canin | 5[15]

S5 Timing Analyzer Worskease minmum tpd|NA& | Nene 8.454 ns Y[l |l
@% Timing Analkyzer Settings

1=z} Timing Analy:
@% tpd
%% Minirnurn bpd

’.5) Timing Analyzer Message:

4 >

—

%)

ZEF SUMMNArY

Figure C.20. The worst-case propagation delay.
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& adder16 Compilation Report =] E3
% Compilation Repork pd
@ Legal Matice Slack |RBequired P2P Time Actual P2F Time |From |To -
&R Flow Summary 1 F MM [Mone 24 777 ns canpin |55 ||
B8 Flow Settings _ 2 | MM [Mone 24539 ns =[0]  |5[15]
""5 i:w" E'apsec' Time 3 | N/ |More 24.44F ns vIo] |5[15]
% Sl Flow gg _ 4 /A, Moke 24.032 ng carmyin | carmyaut
]@D Analysis & Synthesis
-3 Fitter 15 A, Maoke 23844 ng ®[O] | carmyout
:]__5[:' Assembler 5 M, Mone 23751 ng Y[0] | camyout
3%@ Timing Analyzer 7 Mk Maorne 23564 nz canyin | 5[14]
5B Timing Analyzer Setkings |8 1 A2, MNone 23376 ns ®[0] |s[14]
é% Timing Analyzer Summary |9 M A Mane 23291 ng caryin | 5[13]
- &8 ted 10 [ Ns& [None 23.283ns NUMEL!
§§ ::'r::;"'-'r;:;dzer tossanos || N/ |None 23103 ns OGR!
& Tining Analy 95 2 [ e [Mome 23010 ns ERE)]
4] I3 | Mee [Mone 222713 ns camyin |5012) |x]

Figure C.21. Thecritical paths.

The Timing Analyzer performs severa types of timing analysis. The results displayed in Figure C.21
give the delays through a combinational circuit, from input pins to output pins. The other types of analysis
are applicable only to circuits that contain storage elements, namely flip-flops. This type of analysis is
discussed in section C.5.

C.34 Implementation in a CPLD Chip

We will now implement the ripple-carry circuit inaCPLD chip. Select Assignments | Device to reach the
window in Figure C.22. Choose the MAX 7000S family and select the device EPM7128SLC84-7.

Compile the circuit. Open the Timing Analyzer summary in the compilation report, which is depicted in
Figure C.23. Observe that the worst-case propagation delay is now 22.5 ns, which is smaller than the delay
observed in Figure C.20. We should not jump to a conclusion about the relative performance of FPGA and
CPLD devices, because this circuit is just a small example, and there are many other devices that we could
have chosen in our implementation. Also, there are other possibilities in implementing a design, as we will
see in the next section.

We have finished working on the addern circuit, so close the project.
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¥ Show Advanced Devices
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Figure C.22. Specification of the desired device.

=5 Compilation Report

-=h[B Legal Motice

- &HEE Flow Summary

5B Flow Settings

BB Flow Elapsed Time

B Flow Log

-&ZH0 Analysis & Synthesis
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& adder16 Compilation Report =l

Slack

Type Bequired Time | Actual Time|From | To
1§ “Worst-caze tpd Mt |Mone 228500 ne =[4]  [5[1E]
2| ‘Worst-caze minimum tpd|[ M4 [Hone 7.500 ne Y07 |S[0]

Figure C.23. The worst-case delay using a CPLD

C.4 Usingan LPM Module

In section 5.5.1 we discuss how an adder circuit can be implemented by using the Ipm add sub module in
the library of parameterized modules (LPM). In this section we compare the adder circuit produced by the
Ipm_add_sub module to the ripple-carry adder implemented in the previous section. Create a hew project,
adder16_lpm, in adirectory tutorial2\adder|pm. Choose the same FPGA chip asin section C.3.

The easiest way to instantiate an LPM module is by means of a wizard. Select Tools | MegaWizard
Plug-in Manager to activate the wizard. A number of pop-up boxes will appear in which we can specify
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the features of the desired module. In the screen shown in Figure C.24 choose to create a new variation of a
megafunction, and click Next. In the screen in Figure C.25 select the LPM_ADD.SUB module. Make sure
that the Cyclone family isindicated at the top right, and also select the entry Verilog HDL as the type of file
to create. Let the output file be named megadd.v. (The filename extension, v, will be added automatically.)
Click Next. In Figure C.26, specify that a 16-bit adder circuit is required. Click Next to reach the screen
in Figure C.27. Indicate that both inputs can vary and click Next. In Figure C.28 specify that both carry
input and output signals are needed. Observe that the wizard displays a symbol for the adder which includes
the specified inputs and outputs. In the screen in Figure C.29 decline the pipelining option. The last screen
is given in Figure C.30, which indicates the files generated by the wizard. Click Finish. We are interested
only in the megadd.v file, so make sure that thisin the only file selected by a check mark.

MegaWlizard Plug-In Manager [page 1]

The MegaWizard Plug-ln Manager helps you create or modify design
\ files that contain custom wvariations of megafunctions.

YWhich action do you want to perfarm?
& Create a new custom meagafunction varistion
" Edit an existing custom megafunction variation

 Copy an existing custom megafunction variation

Copyright € 1991-2003 Altera Corporation

Cancell <Elack| Iext » I Finish |

Figure C.24. Choose to create an LPM instance.

MegaWizard Plug-In Manager [page 2a]

Which megafunction would you like to customize? Which device Family will you be IE_l,lclone vI

ing?
Select a regafunction fram the list below R

-8 Installed Plugns ‘which lype of output fle do pou want to create?
Hﬁ arithmetic £ AHDL

{77 ALTACCUMULATE

7] ALTFP_MULT o1
B ALTMEMMULT % “erilog HOL

] ALTMULT_ACCUM [MALC)

-1 ALTMULT_aDD .

= “w'hat name do you want for the output file? Browse...

9 LPM_4BS Y i Bowse..|
| LPM_ADD_SUB Id:'\tutorial2\adderlpm\megadd

] LPM_COMPARE

LPM_COUNTER I~ Generate a Clearbox body [for EDA tools only)

E
E
E
E
E
E
E

Mp:
E
E
E
A

4] LPM_DIMIDE
S LPMOMULT I Rieturn to this page for another create operation
| PARALLEL_ADD
Fbd-Bazed Excalibur Mate: To compile & project successfully in the Quartus 1|
% software, your design files must be in the project directary or
’ a uzer library you specify in the User Librariez page of the
- gates Settings dialog box [Assigrments menu).
G- 110
-8 memary compiler “our current wser library directories are:
M-8 storage

@ P MegaStare

Cancel | < Back | Mext > I Firizh |

Figure C.25. Select the LPM and its Verilog specification.
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MegaWizard Plug-In Manager - LPM_ADD_SUB [page 3 of 7] E2

Currently selected device family: IEchIone j

rmegadd
datas(15..0]

How wide should the 'dataa’ and 'datab’ input buses ba? I'I = 'I bitz

datab[15.10]
=

which operating mode do you veant for the adder/subtractor?
' Addition only
™ Subtraction only

" Create an 'add_sub' input port to allow me to do both
[1 adds; O subtracts)

Resource Usage .
i g Cancel | < Back | et = | Finish |

Figure C.26. Choose the adder option and the number of bits.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 4 of 7]

megadd
Ldataa 15__0,1\_____ Is the 'dataa’ or 'datab’ input bus value a constant?
result[15..0
a4y L & Mo, both valuas vary
Jdatab[1 |
= " Yes, dataa =
" Yes, datab =
Resource Usage
16 0t Cancel | < Back | MNext > | Finish |

Figure C.27. Choose both inputs to be variable.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 5 of 7]

cin megadd Do you want any optional inputs or outputs?
Jdataa 15..0,1\] Input:
s, R2Ul15. 0] v Create a carry input

datab[15..0]
L,

Outputs:
¥ Create a carry output

[” Create an overflow output

Resource Usage

17 0t Cancell <Elack| ext » | Finish |

Figure C.28. Include carry input and output connections.
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MegaWizard Plug-In Manager - LPM_ADD_SUB [page 6 of 7]

) megadd
cin

Jdataa 15..0,1\]

result[15..0
Jdatabj15.0] "

Do you want to pipeline the function?
& Mo
 as, lwant an output latency of I Clock cycles

| Create anasynchronous Clear input

[T Create a Clock Enalle input

Resource Usage
17 lut

Cancell <Elack| ext » | Finish |

Figure C.29. Decline the pipelining option.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 7 of 7] -- Summary E2

Wwhen the ‘Finizh' button is preszed, the Megawizard Plug-In Manager
will create the checked filez in the following ligt. rou may chooze o
include or exclude a file by checking ar unchecking itz carespaonding
checkboy, respectively. The state of checkboxes will be remembered
for the next Megawizard Flug-ln Manager session.

The Meagawizard Plug-In tanager will create the checked files in the
directony: d:sbutonial2hadderlpm®

File | Degcription |
el [ megadd.v Y ariation file

O megadd.inc AHDL Include file

O megadd.crp YHODL Component declaration file

[ megadd.bsf Quartus spmbal file

[ megadd_inzt.w Instantiation tenplate file

[ megadd bb.v “erilog ‘Black Box' declaration file

Document ation. .. | Cancel | < Back | I [ | Finish I

Figure C.30. Files generated by the wizard.

The megadd module is shown in Figure C.31. (We have removed the comments to make the figure
smaller.) The top-level Verilog code that instantiates this module is given in Figure C.32. Enter this code
into afile called adder16_Ipm.v.

Compile the design. A summary of the timing analysis is shown in Figure C.33. In this design, the
worst-case propagation delay is 13.4 ns. Clearly, the adder implementation by means of an appropriate
LPM is superior to our generic specification in Figure C.10. The reason that this adder is much faster than
our previously created ripple-carry adder is that the LPM makes use of special circuitry in the FPGA for
performing addition. We discuss such circuitry, often called a carry-chain, in Section 5.4. We may conclude
that a designer should normally use an LPM if asuitable module existsin the library. Close the adder16 Ipm
project.
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module megadd (dataa, datab, cin, result, cout);
input [15:0] dataa;
input [15:0] datab;
input cin;
output [15:0] result;
output cout;
wire sub_wireQ;
wire [15:0] sub_wirel,;
wire cout = sub_wireQ;
wire [15:0] result = sub_wirel[15:0];

Ipm_add_sub Ipm_add_sub_component (
.dataa (dataa),
.datab (datab),
.cin (cin),
.cout (sub_wireQ),
result (sub_wirel));
defparam
[pm_add_sub_component.|pm_width = 16,
Ipm_add_sub_component.|pm_direction =”ADD”,
[pm_add_sub_component.|pm_type ="LPM_ADD_SUB”,
Ipm_add_sub_component.Ipm_hint =”ONE_.INPUT_IS.CONSTANT=NO";
endmodule

Figure C.31. Verilog code for the megadd module.

module adder16_lpm (carryin, X, Y, S, carryout);
input carryin;
input [15:0] X,Y;
output [15:0] S;
output carryout;

megadd adder_circuit (.cin(carryin), .dataa(X), .datab(Y),

result(S), .cout(carryout));
endmodule

Figure C.32. Verilog code that instantiates the LPM adder module.

Type Slack |Required Time | Actual Time |From |To

1§ “Woarst-caze tpd R Mone 13.242 nz [0l |5[158]
2| Worst-case minimum tpd| M A, Maone 9079 ne ¥[O]  |S[0]

Figure C.33. The worst-case delay for the adder 16 Ipm circuit.
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C.5 Design of a Finite State Machine

This example shows how to implement a sequential circuit using Quartus I1. The presentation assumes that
the reader is familiar with the material in Chapter 8. In section 8.1 we show a simple Moore-type finite
state machine (FSM) that has one input, w, and one output, z. Whenever w is 1 for two successive clock
cycles, z isset to 1. The state diagram for the FSM is given in Figure 8.3; it is reproduced in Figure C.34.
Verilog code that describes the machine appears in Figure 8.29; it is reproduced in Figure C.35. Create a
new project, ssimple, in the directory tutorial2\fsm. Create a new Text Editor file and enter the code shown
in Figure C.35. Save the file with the name simple.v.

Reset

w=1

Figure C.34. State diagram of a Moore-type FSM.
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module simple (Clock, Resetn, w, 2);
input Clock, Resetn, w;
output z;
reg [21]y,Y;
parameter [2:1] A =2'b00, B =2'b01, C = 2'b10;

/I Define the next state combinational circuit
always @(w ory)
case (y)
A: if (w)
ese
B: if (w)
ese
C. if (w)
ese
default:
endcase

<< <=<=<=<=<

NPOBO>®

o
<
R

I/ Define the sequential block

always @(negedge Resetn or posedge Clock)
if (Resetn==0) y<=A;
ese y<=Y;

I/ Define output
assign z=(y ==0C);

endmodule

Figure C.35. Verilog code for the FSM in Figure C.34.

C.5.1 ImplementationinaCPLD

Select the same MAX 7000S device asin section C.1. Compile the circuit. Open the Waveform Editor and
import the nodes Resetn, Clock, w, and z. These nodes are found by setting the Node Finder filter to Pins:
all. We also want to see the behavior of the state variables, which are implemented by means of flip-flops.
To find these nodes, set the Node Finder filter to Registers: post-fitting and click List. The Node Finder
displays two nodes, as shown in Figure C.36. Import both of these nodes into the Waveform Editor. Set the
total simulation time to 650 ns and set the grid size to 25 ns. Set Resetn = 0 during the first 50 ns, and then
set Resetn = 1. To enter the waveform for the clock signal, click on the name of the Clock waveform in the
Waveform Editor display. With the signal highlighted, click on the Overwrite Clock icon in the toolbar (the
icon depicts a clock). This causes the pop-up window in Figure C.37 to appear. Set the clock period to be
50 ns, make sure that the phase is 0 and the duty cycle is 50 percent, and click OK. The defined clock signal
is now displayed in the Waveform Editor window, as depicted in Figure C.38. Next, draw the waveform for
w asindicated in the figure. Save the file, under the name simple.vwf. Run the Timing Simulator to get the
result shown in Figure C.39.
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Node Finder

Mamed: Ii ﬂ Filter: IHEgiStEISZ post-fittingj Customize. .. | List |

Look in: IIsimpIeI J v Include subentities Stop |

Q

Cancel |

MNades Faund: Selected Modes:
Mame I Assignments I Tvpe | Cri _>| Mame I Assignments I Type
G yea 20 Unassigned  Registered o s I &G |simple|y~21 Unassigned  Registered
Ayl Unassigned  Reqistered Ca g | < | sirnple|y~20 Unassigned  Registered
A [ I 2 | | -
v
Figure C.36. Nodes that represent the state variables.
—Base waweform on
) Clock setfings:
& Time pariod:
Feriod: ISD.D Ins j
Fhase: ID.D Ins j
Duty cycle (%): |50 =
oK I Cancel |
Figure C.37. Setting the Clock input.
B simple.vwf* H=] B3
taster Time Bar: 0ps <| 'l Pointer: | 0ps Interval; | 0ps Start; | Ops End: | ER0.0 nz
ps 100.0 nz 2000 nz 300.0 ne 400.0 ne B00.0 nz BO0.0 nz |
Name Walue... i i i i i i
Opz | %
i
| I Resetn | BO
=d Clock BO
=3 w BO I | I ] S .
k=d z B
LR ol HU [i]
LR g w20 HU [i]

Figure C.38. Input test vectors.
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Simulation Waveforms
taster Time Bar:| 0 ps *l'lPointer:l 0ps Inlerval:| 0 pz Start:| End:l

pe 1000ns 2000ns 3000ns 4000ns 5000ns EO00,0 ns|

Mame Yalue at
0ps ps
]

[ g Resetn BO BN
P Clock g0 (WML L L LT
=d w BO L
= - BO 1 I EEEEN
= 2 HO 1 NEpE RN
hod

20 Ho fL L1 1

Figure C.39. Timing simulation waveforms.

The FSM behaves correctly, setting z = 1 in each clock cycle for which w = 1 in the preceding two
clock cycles. Examine the timing delays in the circuit, using the reference line in the Waveform Editor.
Observe that changes in the FSM'’s state occur 2.5 ns after an active clock edge and that 4.5 ns are needed
to change the value of the z output.

Open the Timing Analyzer summary in the compilation report, which is displayed in Figure C.40. The
bottom row indicates that the maximum frequency, which is often called fmax, at which the synthesized
circuit can operate is 125 MHz. Thisis a useful indicator of performance. The fmax is determined by the
longest propagation delay between two registers (flip-flops). The figure also shows the values of some other
timing parameters. The worst-case flip-flop setup time, tsu, and hold time, th, are given. Line 1 in figure
C.40 specifies that the w input cannot change within 6 ns of the active clock edge, or else the y~21 flip-flop
may become unstable. Line 3 shows that no input signal in our circuit has to remain stable after the active
clock edge, because the worst case hold-time requirement is negative. We explain in section 10.3.2 how
flip-flop timing parameters are determined in a target chip. The parameter tco indicates the time elapsed
from an active edge of the clock signal at the clock pin until an output signal is produced at an output pin.
Thisdelay is4.5 nsfor the z output, which iswhat we also observed in the waveforms in Figure C.39.

Type Slack | Required Time |Actual Time From |To
1§ “Warst-caze tsu M/ MHaone E.000 ns w w21
2| “Warst-caze tco M/ MHaone 4500 nz 21|z
3| Woarst-caze th M/ MHaone -1.000 ns w w21
4| “wWarst-case minimum boo |MAg MHaone 4500 nz 21|z
5| Clock Setup: 'Clock! M/ MHaone 126,00 MHz [ period = 8000 ns ] (w~21  |p~20

Figure C.40. Summary of the timing analysis for the FSM circuit.

Note that the states of this FSM are implemented using two state variables. The Verilog code in Figure C.35
specified the present state variables as y[1] and y[2]. However, Quartus |1 gave the names y~20 and y~21
to these variables, as we discovered when using the Node Finder. Quartus |1 uses the names of all inputs and
outputs as given in the Verilog code, but it may choose fairly arbitrary names for internal connections.

Two or more binary signals displayed in the Waveform Editor can be combined into a “group” (corre-
sponding to a vector in Verilog terminology) of signals that can be referred to by a single name. Open the
simple.wwf file and select the y~21 and y~20 simultaneously, so that their waveforms are highlighted (make
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sure that y~21 is listed above y~20, as shown in Figure C.38). Select Edit | Group to reach the pop-up
box in Figure C.41. Type y as the group name, choose hexadecimal as the radix, and click OK. This causes
y to be used, instead of y~21 and y~20, in the file simple.vwf. Perform timing simulation to get the result
in Figure C.42. Now, the FSM states are represented by the values of the vector .

Group

Group name; I.'H

Fiadix: I Hexsadecimal ﬂ

[ Display gray code count as binary count

QK. I Cancel |

Figure C.41. Grouping of signals.

Simulation Waveforms

taster Time Bar:| Ops 4| F'Dinter:l Interval:| Stalt:| End:l

Valu pe 1000ns 2000ns 3000ns 4000ns 5000ns EO00,0 ns|

Ops | %
i

M ame

[ g Resetn BO || |

P Clock go | LML L L L L L
=d w BO L

= - BO 1 IR EEEEN
@ #Hy HO

Figure C.42. Waveform displayed as a vector y.

C.5.2 Implementation in an FPGA

In section 8.8 we said that when implementing an FSM in an FPGA, a good strategy is to use one-hot
encoding, with one state variable assigned to each state. The Quartus Il synthesis tool automatically chooses
this approach when targeting an FPGA chip.

The reader is encouraged to recompile the simple.v code for the same FPGA chip used in section C.3.
Compile the code and observe that three flip-flops are used to implement the FSM. The timing analysis
results should show that the circuit will operate at an fmax of about 320 MHz.

C.6 Concluding Remarks

Having completed this and the preceding tutorial, the reader is familiar with many of the most important
features of Quartus 1. In the next tutorial we will show how the user can manipulate which pins on the target
chip are used for acircuit, and how PLD programming is done with Quartus 11.
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